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Abstract: Results on the problem of stabilizing a nonlinear continuous-time system by a finite
number of control or measurement values are presented. The basic tool is a discontinuous version
of the so-called semi-global backstepping lemma. We derive robust practical stabilizability results
by quantized and ternary controllers and apply them to a few control problems.

1. INTRODUCTION

The problem of controlling systems through a limited
bandwidth channel has recently raised a great interest
in the community, as thoroughly surveyed in Nair et al.
(2007). In this paper, we consider nonlinear continuous-
time systems. For these systems, the problem is twofold: (i)
selecting a discrete set of control values, and (ii) scheduling
the control values in the feedback loop. In Liberzon (2003),
adopting a time-varying quantization, and assuming input-
to-state stabilizability of the system, the author shows
asymptotic convergence to the origin. In Liu and Elia
(2004), Hayakawa et al. (2006) and Ceragioli and De
Persis (2007), the role of static logarithmic quantization
to prove practical semi-global stabilizability of nonlinear
stabilizable systems has been investigated. The three pa-
pers mainly differ in the type of solution adopted. They
also present results which rely on notions of robustness
different from input-to-state stability.
In this paper we depart from the results of Ceragioli and
De Persis (2007), where – knowing a Lyapunov function
and the system model – a Lyapunov redesign was carried
out to reject the perturbation due to quantization, to show
how the quantization effect can be attenuated even when
the Lyapunov function is hardly known and the model
is affected by uncertainty. A discontinuous version of the
semi-global backstepping lemma of Teel and Praly (1995),
in which the measured state is logarithmically quantized,
is applied to show that minimum-phase nonlinear systems,
possibly with uncertain parameters, can be robustly semi-
globally practically stabilized by a a quantized function of
partial-state measurements. Other papers have dealt with
uncertainty of the model. The work Phat et al. (2004)
deals with the robust stabilization of linear discrete-time
uncertain systems over a finite data-rate communication
channel. A similar problem is considered in Zhang et al.
(2006), but from the point of view of adaptive control. An
adaptive scheme for nonlinear continuous time systems is
finally proposed in Hayakawa et al. (2006).
We additionally show that semi-global practical stabi-
lization is possible even using a simple switched ternary
controller. Similar elementary controllers have been stud-
ied in Kaliora and Astolfi (2004) for a different class of
nonlinear systems. A remarkable application of this result

is the robust output feedback stabilization over a network
of the class of nonlinear systems of Marino and Tomei
(1993).Finally we present a result on semi-global practical
regulation of the output when output measurements are
finitely quantized and no other processing is carried out.
Preliminary facts are presented in Section 2. In Section
3, the semi-global backstepping tool in the presence of
quantization is presented. The ternary controller is intro-
duced in Section 4. Applications of these basic results to
a number of control problems are illustrated in Section 5.

For lack of space proofs of the results could not be in-
cluded. We refer the interested reader to the full version of
the paper available at www.dis.uniroma1.it/∼depersis

2. PRELIMINARIES

The system we focus our attention on is of the form

ẋ = F (x, µ) + G(x, µ)ζ

ζ̇ = q(x, ζ, µ) + b(x, ζ, µ)u
(1)

with x ∈ Rn−1, ζ ∈ R, µ an unknown parameter ranging
over the compact set P , u ∈ R, b(x, ζ, µ) ≥ b0 > 0 for all
(x, ζ, µ). Many systems of interest can be reduced to this
form (cf. Section 5). We suppose that the upper subsystem
satisfies the following property (Teel and Praly (1995), see
also Isidori (1999)):

Definition. The system ẋ = F (x, µ), x ∈ Rn−1, satisfies
a Uniform Lyapunov Property if there exists an open
set A ⊂ Rn−1, a real number c ≥ 1, a continuously
differentiable definite positive function V : A → IR+ such
that Γc+1 := {x : V (x) ≤ c + 1} ⊂ A and

∂V

∂x
F (x, µ) < 0 ∀x ∈ Γc+1 , x 6= 0 .

Introduce the Lyapunov function (Teel and Praly (1995))

W (x, ζ) =
cV (x)

c + 1 − V (x)
+

dζ2

d + 1 − ζ2

defined on the set {x : V (x) < c + 1} × {ζ : ζ2 < d + 1},
for some d ≥ 1, and definite positive and proper therein.
For an arbitrary σ > 0, consider the set

S = {(x, ζ) : σ ≤ W (x, ζ) ≤ c2 + d2 + 1} .
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The set is well-defined, because if W (x, ζ) ≤ c2 + d2 +
1, then V (x) < c + 1 and ζ2 < d + 1. In Teel and
Praly (1995) (see also Bacciotti (1989)) it is proven that a
linear high-gain partial-state feedback u = k̄ζ exists which
makes Ẇ (x, ζ) negative on S (thus allowing the authors to
conclude that any trajectory starting in S is attracted by
Ωσ := {(x, ζ) : W (x, ζ) ≤ σ}). In the next 2 sections, we
carry out this investigation in 2 cases in which the feedback
information ζ is available in a “limited” form.

Following Teel and Praly (1995), consider the derivative

Ẇ (x, ζ) = (∂W/∂x)ẋ + (∂W/∂ζ)ζ̇. It is possible to obtain
the following inequality to hold for all (x, ζ) ∈ Ωc2+d2+1:

Ẇ (x, ζ) ≤
c

c + 1

∂V

∂x
F (x, µ) + w(x, ζ, µ)ζ+

2
d(d + 1)

(d + 1 − ζ2)2
ζb(x, ζ, µ)u ,

w(x, ζ, µ) =
c(c + 1)

(c + 1 − V (x))2
∂V

∂x
G(x, µ)+

2
d(d + 1)

(d + 1 − ζ2)2
q(x, ζ, µ) .

Because of the ULP property, if the state belongs to
S0 = {(x, ζ) ∈ S : ζ = 0}, then Ẇ (x, ζ) < 0. By
continuity, there exists a neighborhood U of S0 where the
sum of the first two terms on the right-hand side of the
inequality above remains strictly negative. Without loss
of generality, we can suppose that a constant η > 0 exists
such that U = {(x, ζ) ∈ S : |ζ| < η} (see Figure 1).

Then, to show that Ẇ (x, ζ) is negative on S, it is enough

to investigate the sign of Ẇ (x, ζ) on S̃ := S \ U only.

3. STABILIZATION BY QUANTIZED CONTROL

In what follows, we consider the case in which the mea-
surement ζ is quantized by a logarithmic quantizer. Let
u0 ∈ IR+, j ∈ N and 0 < δ < 1 be constants to design.
Also let ui = ρiu0, with ρ = 1−δ

1+δ
(Liu and Elia (2004)) .

The following map is the quantizer

Ψ(r) =



































u0
1

1 + δ
u0 < r

ui

1

1 + δ
ui < r ≤

1

1 − δ
ui , 1 ≤ i ≤ j

0 0 ≤ r ≤
1

1 + δ
uj

−Ψ(−r) r < 0 ,

(2)

and u = −Ψ(k̄ζ) is the quantized input. Observe that it
is equivalent to consider either the quantized control law
u = −Ψ(k̄ζ) or the control law u = −k̄Ψ̄(ζ), function
of the quantized partial-state Ψ̄(ζ), provided that Ψ̄ is
appropriately defined. As a matter of fact, define Ψ̄ as Ψ in
(2), but with a new set of quantization levels ūi (instead
of ui) defined as ūi = ρiū0, with ū0 = k̄−1u0. Then, it
is easy to show that k̄Ψ̄(ζ) = Ψ(k̄ζ), and all the results
drawn with u = −Ψ(k̄ζ) also hold for u = −k̄Ψ̄(ζ). In what
follows, we only refer to the quantized input u = −Ψ(k̄ζ).

Observe that the quantizer has 2j + 3 quantization levels,
with u0, j, k̄ to determine. Of course, the size of the
deadzone of the quantizer, i.e. the region around the zero
where Ψ = 0, decreases as j increases. The parameter δ

Fig. 1. The sets of interest in the paper. The regions at the
top, center and bottom, delimited by the boundary
of Ωc2+d2+1 and the 2 horizontal solid lines, are
respectively Ω−, Ω0, Ω+.

can be viewed as the quantization density, and we do not
assume any constraint on its value (for open-loop unstable
systems, δ ∈ (0, 1) results in no loss of generality Ceragioli
and De Persis (2007)). The closed-loop system is

ẋ = F (x, µ) + G(x, µ)ζ

ζ̇ = q(x, ζ, µ) − b(x, ζ, µ)Ψ(k̄ζ) .
(3)

Observe that the vector field on the right-hand side of
(3) is discontinuous and solutions of the system must
be intended in some generalized sense. Here we focus
on Krasowskii solutions, but other types of solutions
are possible (see e.g. Ceragioli and De Persis (2007)
and references therein). The main reason to consider
Krasowskii solutions lies in the fact that a rather complete
Lyapunov theory for the study of the stability of these
solutions is available.

Definition. A curve ϕ : [0, +∞) → IRn is a Krasowskii
solution of a system of ordinary differential equations
ẋ = G(t, x), where G : [0, +∞) × IRn → IRn, if it
is absolutely continuous and for almost every t ≥ 0 it
satisfies the differential inclusion ẋ ∈ K(G(t, x)), where
K(G(t, x)) = ∩δ>0coG(t, Bδ(x)), with coG the convex
closure of the set G.

In the present case, Krasowskii solutions are absolutely
continuous functions which satisfy the differential inclu-
sion (see e.g. Ceragioli and De Persis (2007))
(

ẋ

ζ̇

)

∈

(

F (x, µ) + G(x, µ)ζ
q(x, ζ, µ)

)

+
{(

0
−b(x, ζ, µ)

)

v , v ∈ K(Ψ(k̄ζ))

}

K(Ψ(k̄ζ)) ⊆






{(1 + λδ)k̄ζ , λ ∈ [−1, 1]}
uj

1 + δ
< |k̄ζ| ≤

u0

1 − δ

{λ(1 + δ)k̄ζ , λ ∈ [0, 1]}
uj

1 + δ
≥ |k̄ζ| .

Then we claim the following version of the so-called “semi-
global backstepping lemma” in Teel and Praly (1995) with
quantized feedback:

Lemma 1. For any δ ∈ (0, 1), there exist positive numbers
k∗, j∗, and u0 such that, for any gain k̄ ≥ k∗ and any
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Fig. 2. Chattering-free implementation of the control u =
−Ψ(k̄ζ) in Hayakawa et al. (2006).

number of quantization levels j ≥ j∗, any Krasowskii
solution ϕ of the system (3) is such that, if ϕ(0) ∈
Ωc2+d2+1, then there exists T > 0 such that ϕ(t) ∈ Ωσ

for all t ≥ T .

Proof. (Sketch) Consider Ẇ (x, ζ) when (x, ζ) ∈ S and
v ∈ K(Ψ(k̄ζ)), in the two cases in which the quantizer
is inside and outside the deadzone. In both cases an
appropriate design of k̄, u0 and j yields Ẇ (x, ζ) < 0. Pick:

k̄ ≥ k∗ = (d + 1)M0/(db0m0(1 − δ)) ,

j ≥ j∗ =

⌈

log

(

d2

(c2 + d2 + d + 1)2
b0m0

4M1

)

log

(

1 − δ

1 + δ

)−1
⌉

and u0 = (1 + δ)k̄ max(x,ζ)∈S̃ |ζ|, with:

m0 = min
(x,ζ)∈S̃

ζ2 , M0 = max
(x,ζ)∈S̃ , µ∈P

|w(x, ζ, µ)ζ| ,

M1 = max
(x,ζ)∈S̃ , µ∈P

|b(x, ζ, µ)| · ( max
(x,ζ)∈S̃

|ζ|)2 .
(4)

Remark. The constant k∗ differs from the one in Teel
and Praly (1995), Isidori (1999) by the presence of the
factor (1 − δM )−1. That is, as expected, the error due to
quantization is counteracted by raising the controller gain.
Moreover, it is interesting to observe that the constant j∗,
that is the number of quantization levels, only depends on
the size of the domain of attraction and of the target set.

In Hayakawa et al. (2006), a switching rule to imple-
ment the quantized control (2) has been proposed and
is illustrated in Figure 2. It is based on the introduction
of the new quantization value ui(1 + δ)−1 between each
pair (ui, ui+1). In this way (see Hayakawa et al. (2006),
Section 3 for details), the existence of a unique solution is
guaranteed, while avoiding the occurrence of chattering.
It is important to stress that the analysis at the basis
of the results in this paper remains valid also for this
solution. As a matter of fact, we require Ẇ (x, ζ) < 0 to be
negative for all (x, ζ) ∈ S and all v ∈ K(Ψ(k̄ζ)) = {(1 +
λδ)k̄ζ : λ ∈ [−1, 1]}. This implies, for instance, that at
the discontinuity point ui/(1 + δ) in the Figure, v is any

point of the segment AE. Hence, Ẇ (x, ζ) continues to
be negative even at the transition, and we can conclude
convergence in finite time to Ωσ also for this solution.

Now suppose that the hysteresis-like mechanism dis-
cussed above has been introduced. When controlling a

ζ ≤ η/2 ζ ≤ −η

ζ ≥ −η/2ζ ≥ η

u = ku = 0u = −k

Fig. 3. The partial-state switched controller.

continuous-time system with a finite number of control val-
ues, two main parameters play a role, the number of quan-
tization levels employed and the minimum time elapsed
between 2 consecutive switchings. These parameters give
a rough idea of the bandwidth needed to implement the
controller through a network. The number of quantiza-
tion levels in the present case is given by the estimate
j∗ derived in the proof of the result above. Bearing in
mind (2), computing how often a transition occurs reduces
to compute over the set of all the quantization levels
ui ∈ {ui : ui = ±ρiu0 , i = 0, 1, . . . , j} the smallest time
needed for the solution of (1) with u = ui to cross the
region of the state space {(x, ζ) : ui/(1+δ) < k̄ζ ≤ ui/(1−
δ)}. Observe that the size of the set is independent of k̄, for
ui depends on u0 which is proportional to k̄. In the next
section we propose a different stabilization scheme which
has the advantage of presenting only 3 quantization levels,
although it does not necessarily yield a lower bandwidth.

4. TERNARY CONTROLLER

Let η be the positive constant introduced at the end of
Section 2 in the definition of the neighborhood U , and
introduce the following sets, depicted in Figure 1:

Ω− = {(x, ζ) ∈ Ωc2+d2+1 : ζ ≥ η} ,
Ω0 = {(x, ζ) ∈ Ωc2+d2+1 : |ζ| < η} ,
Ω+ = {(x, ζ) ∈ Ωc2+d2+1 : ζ ≤ −η} .

Assume without loss of generality that η is small enough
that Ω−, Ω+ are not void. We propose the following
controller. At the initial time t = 0, assume that (x, ζ) ∈
Ωc2+d2+1, and set the control value as

u(0) =







−k̄ if ζ(0) ≥ η
0 if |ζ(0)| < η
k̄ if ζ(0) ≤ −η .

(5)

For t > 0, the controller is chosen as

u(t) =















−k̄ if [u(t−) = 0] ∧ [ζ(t−) ≥ η]

0 if
{[u(t−) = −k̄] ∧ [ζ(t−) ≤ η/2]}∨
{[u(t−) = k̄] ∧ [ζ(t−) ≥ −η/2]}

k̄ if [u(t−) = 0] ∧ [ζ(t−) ≤ −η] ,

(6)

with k̄ > 0 a parameter to design, and where the symbol
r(t−) denotes the limit lims→t− r(s), that is the value of
r(t) immediately before the transition of the controller
takes place. The transition graph in Figure 3 illustrates
the behavior of the controller (6).
We state the analogous of Lemma 1 but with the ternary
controller above.

Lemma 2. There exists a choice of k̄ and η such that the
Lyapunov function W (x, ζ), computed along any trajec-
tory of the closed-loop system (1), (5), (6) which starts in

S, satisfies Ẇ (x(t), ζ(t)) < 0 for all (x(t), ζ(t)) ∈ S.
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Fig. 4. Sample trajectories for the closed-loop system.

Two sample trajectories of the switched system are de-
picted in Figure 4. The first one starts in S and is such
that ζ(0) ≥ η, and converges to Ωσ hitting the 2 planes
with ζ = η and ζ = η/2. The second one starts in Ωσ

and never leaves the set. Observe that in the latter case,
the Lyapunov function W (x, ζ) may increase along the
trajectory, but never exceed σ.

The previous result shows polynomial decay of the Lya-
punov function. Nevertheless, a slight variation of its proof
shows that, if the Lyapunov function for the x subsystem
decays exponentially, so does the entire closed-loop system
as far as u 6= 0.

5. APPLICATIONS

Systems with uniform relative degree
It is well-known that a nonlinear input-affine system is
said to have a uniform relative degree r if it has a relative
degree r at x0 for each x0 ∈ Rn. It is also well-known
that there exists a globally defined diffeomorphism which
changes the system into one of the following form (see e.g.
Proposition 9.1.1. in Isidori (1995)):

ż = f(z, ξ1)

ξ̇i = ξi+1 , 1 ≤ i ≤ r − 1

ξ̇r = q̄(z, ξ) + b̄(z, ξ)u
(7)

with z ∈ IRn−r, and b̄(z, ξ) ≥ b0 > 0 for all (z, ξ).
Systems like the one above restricted to the components
z, ξ1, . . . , ξr−1, with ξr viewed as an input, can be always
stabilized by means of a linear high-gain partial-state
feedback (Isidori (1995), Theorem 9.3.1), provided that the
origin z = 0 is a globally asymptotically stable equilibrium
point for ż = f(z, 0), i.e. system (7) is minimum-phase. As
a matter of fact, let λr−1 + ar−2λ

r−2 + . . . + a1λ + a0 be
a polynomial with all its roots with strictly negative real
parts, and ξr = −(kr−1a0ξ1 + kr−2a1ξ2 + . . .+ kar−2ξr−1)
the candidate “control law”. Then, for any R > 0 there
exists k∗ > 0 such that, if k ≥ k∗, every solution of

ż = f(z, ξ1)

ξ̇i = ξi+1 , 1 ≤ i ≤ r − 2

ξ̇r−1 = −(kr−1a0ξ1 + kr−2a1ξ2 + . . . + kar−2ξr)
(8)

starting from the cube in IRn−1 whose edges are 2R long,
asymptotically converges to the origin. Perform the change
of coordinates

ξr = −(kr−1a0ξ1 + kr−2a1ξ2 + . . . + kar−2ξr) + ζ , (9)

let x = (z, ξ1, . . . , ξr−1), and rewrite (7) as

ẋ = F (x) + Gζ

ζ̇ = q(x, ζ) + b(x, ζ)u ,

where F (x) is the vector field on the right-hand side of
(8), and G, q, b are understood from the context. The
system ẋ = F (x) satisfies the ULP property. We conclude
that both Lemma 1 and 2 can be applied to system (7) to
obtain

Proposition 1. Consider a minimum-phase nonlinear sys-
tem of the form (7). For any R > 0 and any ε > 0, there
exist a quantized feedback law u = −Ψ(k̄ζ), or a ternary
feedback law (5), (6), with ζ given by (9), and a time
T > 0, such that any trajectory ϕ of the closed-loop system
which starts in the cube centered at the origin of side 2R
lies in the cube centered at the origin of side 2ε for all
t ≥ T .

In particular, the proposition shows that it is as simple as
in the non-quantized case to stabilize nonlinear minimum-
phase systems with quantized measurements provided that
the relative degree of the system is one. In fact, if this is
the case, then ζ coincides with the output of the system.

In the remaining, systems for which results similar to
Proposition 1 apply are referred to as semi-globally prac-
tically stabilizable systems.

Robust switched stabilization of nonlinear systems
In this section we propose a simple switched controller to
stabilize nonlinear systems of the form

ż = F (µ)z + G(ξ1, µ)ξ1

ξ̇1 = q10(ξ1, µ)z + q11(ξ1, µ)ξ1 + b1(ξ1, µ)ξ2

...

ξ̇r−1 = qr−1,0(ξ1, . . . , ξr−1, µ)z+
r−1
∑

i=1

qr−1,i(ξ1, . . . , ξr−1, µ)ξi + br−1(ξ1, . . . , ξr−1, µ)ξr

ξ̇r = qr0(ξ1, . . . , ξr, µ)z+
r

∑

i=1

qri(ξ1, . . . , ξr, µ)ξi + br(ξ1, . . . , ξr, µ)u ,

(10)

where z ∈ Rn−r, and bi(z, ξ1, . . . , ξi, µ) ≥ bi0 > 0 for all
(z, ξ1, . . . , ξi, µ) ∈ Rn−r+i. We also assume that, for all
µ ∈ P , there exists P (µ) = PT (µ) > 0 such that

FT (µ)P (µ) + P (µ)F (µ) ≤ −I .

The first fact we recall is the following:

Lemma 3. Set ξ = col(ξ1, . . . , ξr−1). There exists an (r −
1) × (r − 1) matrix M0(ξ) and a 1 × (r − 1) vector
δ(ξ) of smooth functions such that ξT M(ξ)ξ is a definite
positive and proper function, and the function V (z, ξ) =

zT P (µ)z + ξT M0(ξ)ξ satisfies V̇ (z, ξ) ≤ −εV (z, ξ), where

V̇ (z, ξ) is the derivative of V (z, ξ) along the trajectories of
(10) with u = δ(ξ)ξ.

By the change of coordinates ζ = ξr − δ(ξ)ξ, letting as
before x = (z, ξ), it is not hard to see that we are in
the setting of Section 4, and systems of the form (10)
can be semi-globally practically stabilized by the ternary
controller (5), (6), where now the guards depend on ζ =
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ξr−δ(ξ)ξ. This result can be also employed to give a simple
robust output-feedback switched stabilization scheme for a
class of nonlinear systems, as shown in the next subsection.

A simple output-feedback switched stabilization scheme
Consider the nonlinear system

ẋ = F (µ)x + G(y, µ)y + ḡ(µ)γ(y)u
ẏ = H(µ)x + K(y, µ)y ,

(11)

with x ∈ R
n, y ∈ R the measured output, and γ(y) a

smooth function bounded away from zero. Under appro-
priate conditions, namely (Marino and Tomei (1993), and
also Isidori (1999), Section 11.3) (i) the system has a well-
defined uniform relative degree r ≥ 2 and (ii) its zero
dynamics is globally asymptotically stable, one can prove
that, for the system above, to which it is appended the
additional dynamics

ξ̇i = −λiξi + ξi+1 , 2 ≤ i ≤ r − 1

ξ̇r = −λr−1ξr + γ(y)u ,
(12)

there exists a change of coordinates z = T (x, y, ξ, µ), linear
in (x, y, ξ, µ), which transforms the extended system into

ż = F̃ (µ)z + G̃(y, µ)y

ẏ = H̃(µ)z + K̃(y, µ)y + b(µ)ξ2

ξ̇i = −λiξi + ξi+1 , 2 ≤ i ≤ r − 1

ξ̇r = −λr−1ξr + γ(y)u ,

with b(µ) bounded away from zero. This system is a special
case of (10), and therefore there exists a ternary switched
controller depending on y, ξ2, . . . , ξr for it. The appended
dynamics (12) with u given by (5), (6), and ζ = ξr −δ(ξ)ξ,
ξ = (y, ξ2, . . . , ξr−1), is a switched dynamic output feed-
back controller which semi-globally practically stabilizes
the system (11). The implementation of the closed-loop
system through a network is illustrated in Figure 5, with
the encoder depicted in Figure 6. The decoder, on the
other hand, is simply a device which converts the packets
received by the channel into one of the 3 values {−1, 0, 1},
which are then multiplied by the gain k̄.
The approach to output feedback stabilization through
a network outlined above is different from the one in
De Persis (2006) where uniformly completely observable
systems were considered. Although the former is less gen-
eral, it applies to uncertain systems, and employs a linear
“encoder” on the sensor side. Similar considerations hold
for the results of Cheng and Savkin (2007) in which the
approach of De Persis (2006) is applied to a different class
of nonlinear systems. A similar class as (11) was considered
in Liberzon (2007), where the output is quantized with no
pre-processing. However, in that paper, the control law u
must be designed so as to guarantee input-to-state stability
with respect to state measurements errors, a task which
may be considerably harder than designing the control
law as in Lemma 3. Observe that we do not employ a
dense quantization, that is we do not require a small
quantization error (the quantization density can be any
number in (0, 1)) to compensate for the lack of input-to-
state stability.

Remarks on quantized output feedback stabilization
In the preceding subsection we focused on an output feed-
back stabilization scheme based on “quantizing” the state
of a linear filter which preliminarily processes the output.

Channel

(11)
u y

s

EncoderDecoder - -

�

6

Fig. 5. The switched output feedback controller for system
(11) implemented through a network.

y
ξ

v

ζ

s

ξ̇ = Aξ + bv ξr − δ(ξ)ξ

γ(y)

A- -
- -

�

-

Fig. 6. The encoder. The block labeled with A is the
automaton depicted in Figure 3. This block outputs
3 possible values. The device which converts these
values into packets of 2 bits which can be transmitted
through the network is not depicted for the sake of
simplicity.

Except for the case of minimum-phase relative-degree-one
systems (see Remark following Proposition 1), if no pre-
processing of the output is allowed, then the problem
becomes more difficult. Here we discuss some of these
difficulties for a special case of system (10), the one with
ż = f(z, ξ1), bi(ξ1, . . . , ξi, µ) = 1, measured output y = ξ1,
and such that, for all i, the sums involving the functions qij

are simply replaced by a function qi(z, ξ1). These systems
are sometimes said to be in observer canonical form (Teel
and Praly (1995)). Available for feedback is the quantity
Ψy(y), where the map Ψy is defined as in (2), with ui

replaced by yi = ρiy0, 0 ≤ i ≤ j, and y0 and j parameters
to determine. Consider the dynamic controller

η̇ = Aη + bu
u = −(kra0Ψy(y) + kr−1a1η2 + . . . + ar−1ηr) ,

with b ∈ Rr a vector whose entries are all equal to zero
except for the last one which is equal to 1,

A =











−cr−1 1 0 . . . 0 0
−cr−2 0 1 . . . 0 0

· · · · · · · ·
−c1 0 0 . . . 0 1
−c0 0 0 . . . 0 0











,

and λr + cr−1λ
r−1 + . . . + c1λ + c0 is a polynomial whose

roots have all strictly negative real parts. Perform the
change of coordinates e = ξ − η, ζ1 = ξ1, ζi = k−(i−1)ηi,
i = 2, . . . , r, to obtain, with u specified above, the closed-
loop system

ż = f(z, ζ1)
ė = Ae + Q(z, ζ1)

ζ̇ = kAcζ + Qk(z, e, ζ1) + Gk(Ψ(ζ1) − ζ1)
y = ζ1 ,

(13)

where
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Ac =







0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
−a0 −a1 −a2 . . . −ar−1






, Q(z, ξ1) = cξ1+







q1(z, ξ1)
q2(z, ξ1)

. . .
qr(z, ξ1)






, Qk(z, e, ζ1) =













q1(z, ζ1)
1

k
(c2e1 − c2ζ1)

. . .
1

kr−1
(cre1 − crx1)













,

and Gk = −ka0 [ 0 0 . . . 1 ]
T
. We set

ẋ
△
=

[

ż
ė

]

=

[

f(z, 0)
Ae

]

+

[

f(z, ζ1) − f(z, 0)
Q(z, ζ1)

]

△
= F (x) + G(x, ζ1)ζ1 ,

and obtain

ẋ = F (x) + G(x, ζ1)ζ1

ζ̇ = kAcζ + Qk(z, e, ζ1) + Gk(Ψ(ζ1) − ζ1) .
(14)

If we assume the origin to be a globally asymptotically
stable equilibrium for the system ż = f(z, 0), we can
guarantee the existence of a positive definite and proper
Lyapunov function V (x) such that

∂V

∂x
F (x) < 0 for all x 6= 0 .

Furthermore, let Pc = PT
c > 0 be the matrix such that

AT
c Pc +PcAc = −I, and set U(ζ) = ζT Pcζ. Finally, define

the Lyapunov function W (x, ζ) as before, except for ζ2

replaced by U(ζ). It is shown in Teel and Praly (1995) that,
no matter how small σ in the set S is chosen, there always
exists k̄∗ such that for all k ≥ k̄∗, the Lyapunov function
W (x, ζ) computed along the solutions of the system (14),
is strictly decreasing as far as the state evolves in the set S,
provided that no quantization is present, i.e. Gk(Ψ(ζ1) −
ζ1) = 0. It is possible to check that the system retains
the same property even when Gk(Ψ(ζ1) − ζ1) 6= 0. In
particular, we have the analogous of Lemma 1:

Lemma 4. For any δ ∈ (0, 1), there exist positive numbers
k∗, j∗ such that, for any gain k̄ ≥ k∗ and any number of
quantization levels j ≥ j∗, each Krasowskii solution ϕ of
system (14) is such that, if ϕ(0) ∈ Ωc2+d2+1, then there
exists T > 0 such that ϕ(t) ∈ Ωσ for all t ≥ T .

The proof is not dissimilar from that of Lemma 1. In the
original coordinates, the result only guarantees practical
regulation of the output y = ξ1 and not of all the coor-
dinates, for ηi = ki−1ζi. The adoption of the “zooming-
in” technique of Liberzon (2003) does not overcome this
limitation, because there is no guarantee for the gain k to
remain bounded as the state converges to the origin. One
could turn to Teel and Praly (1995) where, to surmount
the obstacle, it is additionally supposed that z = 0 is a
locally exponentially stable equilibrium for ż = f(z, 0).
This shows that the state of (14) with Gk(Ψ(ζ1)− ζ1) = 0
asymptotically converges to zero. In the case of quan-
tized measurements considered above, however, the same
hypothesis does not suffice, and one has to additionally
suppose a quantizer Ψy with an infinite number of quan-
tization levels, i.e. in (2) 1 ≤ i < ∞ and Ψ(r) = 0
if and only if r = 0. Then one can prove that all the

Krasowskii solutions of (14) converge to zero, and so do
the trajectories of the original system.

6. CONCLUSION

We have discussed a few results on the problem of stabi-
lizing nonlinear systems using a finite number of control
or measurement values and in the presence of parametric
uncertainty.
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