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Abstract: This paper deals with guaranteed state estimation for nonlinear continuous-time
systems. Interval observers are a powerful tool to compute the bounds of the state vector by
propagating the uncertainties on the initial state and the parameter vectors and the errors on the
measurements. Nevertheless, a widely recognized drawback of interval analyis-based observers
is the overestimation due to dependence and wrapping effects. In this paper, contraction theory
is used as an alternative in order to reduce the pessimism induced by interval analysis. The
proposed interval observer is based on the Luenberger approach where the observation gain is
chosen in order to guarantee stability and contraction properties. The methodology is illustrated
with simulations on a numerical example.
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1. INTRODUCTION

State and parameter estimation problems are usually
solved by probabilistic methods, which are relevant when
explicit characterizations of the measurement noise and
the state perturbations are available. In many practical
cases, it is more natural to assume the perturbations
belonging to a bounded set but without any stochastic
information. In this context, the set of all state and param-
eter vectors that are consistent with the measured data, a
model structure and prior bounds could be characterized.

This paper is devoted to the reliable state estimation of
a large class of nonlinear continuous-time systems in a
bounded-error context. The underlying systems are de-
scribed by ordinary differential equations (ODE) where the
initial state and a set of parameters are not well-known as
it would be the case for many practical applications.

Consider a system described by the following equations:










ẋ(t) = f (x (t) ,p, t)
y (t) = g (x (t) ,p, t,w(t))
x (t0) ∈ [x0]
p ∈ [p]

(1)

where f ∈ Ck−1(D), (the value of k will be discussed later),
D ⊆ R

n is an open set, n and m are respectively the
dimension of the state vector x and the output vector y.
The functions f and g are possibly nonlinear. The initial
state x (t0) is assumed to belong to a prior known box
[x0]. Assume in addition that the measurements ym

j are
available at the sampling times tj ∈ {t1, . . . , tN}.
The measurement noise is assumed additive, bounded but
otherwise unknown. The prior domain for the output
vector yj is the box

[

yj

]

=
[

ym
j − e,ym

j + e
]

, where e
represents the set of perturbations sources not taken into
account in the model.

The goal is to characterize the set of all the state vectors,
solutions of the state equation (ODE), that are consis-
tent with the available measurements and a priori errors.
In bounded error context, state estimation for nonlin-
ear discrete-time systems has already been studied using
set inversion Kieffer et al. [2002], Magnus et al. [2000],
Schweppe [1968]. Also, an extension of Kalman filtering to
intervals has been introduced in Guanrong et al. [1997],
but the domain computed by the latter estimator is not
guaranteed to contain the actual value of the state.

To the best of our knowledge, state estimation for non-
linear continuous-time systems in the bounded error con-
text was first introduced in Jaulin [2002] where a state
estimator based on the first order enclosure of the state
equation has been proposed. Since such enclosures are very
pessimistic, it is necessary to partition the state vector
into small boxes at each step time in order to control
the pessimism. Such a procedure is computationally time-
consuming when the dimension of the state vector is high.
In Räıssi et al. [2004, 2006], it is shown that pessimism can
be controlled without performing state vector partitions by
using high order interval Taylor models. Neverthless, the
proposed method is efficient only when uncertainty on the
state and parameter vectors remains small.

In order to overcome overestimation induced by interval
analysis, the authors of Gouzé et al. [2000], Walter and
Kieffer [2003], Kieffer and Walter [2006] propose to use
the theory of cooperative systems Smith [1995] in order to
bracket the whole state of the uncertain system between
a lower and an upper deterministic systems, i.e. involving
no uncertainty. These two systems permit to compute a
minimal outer approximation of the state, i.e. the smallest
box containing the actual solution. In the linear case, it
is usually possible to use this property even if the model
is not cooperative, the observer gain can be selected in
order to have cooperativity. In the nonlinear case, it is not
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always possible to choose an observer gain such that the
observer verifies cooperativity.

Based on contraction theory, it will be shown in this paper
that an enclosure of the state vector can be computed for
a large class of nonlinear systems without using interval
analysis even for non cooperative systems.

The paper is structured as follows. In section 2, previous
works on guaranteed state estimation are briefly reviewed.
Section 3 describes the proposed methodology based on
contraction theory, which can be seen as an alternative
to the classical Taylor methods. Finally, in section 4, the
state estimation algorithms are illustrated on a simulation
example.

2. STATE OF THE ART

The estimators proposed in Jaulin [2002], Räıssi et al.
[2004], Walter and Kieffer [2003], Kletting et al. [2006]
are based on the prediction/correction approach, as in the
Kalman filter. The prediction step consists on computing
at tj+1 the set Xtj+1/tj

of state vectors that are consistent
with the state enclosure Xtj/tj

. The correction allows us
to contract Xtj+1/tj

by using the information provided by
the measurement ym(tj + 1).

2.1 Prediction

Prediction allows us to compute Xtj+1/tj
containing the

reachable set of the state at tj+1 with an initial condition
given by Xtj/tj

at tj . It consists in solving the equation (2)
in a guaranteed way.

{

ẋ(t) = f (x (t) ,p, t)
x (t0) ∈ [x0]
p ∈ [p]

(2)

In this step, uncertainties on initial state and parameters
are propagated and the measurements at tj are not taken
into account. In the literature, two methods are proposed
to perform prediction. The first one Jaulin [2002], Räıssi
et al. [2004], Kletting et al. [2006] is based on a validated
integration of the ODE (2) which is performed by using
an extension of Taylor expansions to intervals (for more
details see Nedialkov [1999] and the references therein).
The second is based on cooperative theory Gouzé et al.
[2000], Walter and Kieffer [2003], Kieffer and Walter
[2006].

Interval Taylor expansions

Consider ODE (2). Using Taylor theorem, one can com-
pute an approximation of the solution of the ODE at tj+1

when xj and p are perfectly known.

xj+1 = xj +
k−1
∑

i=1

hif [i] (xj) + hkf [k] (x (tξ)) (3)

with tξ ∈ [tj , tj+1], hj is the step time which is not

necesseraly constant and f [i], {i = 1 . . . k}, are Taylor
coefficients which can be recursively computed by using
automatic differentiation Rall [1979]. For this approach,
f ∈ Ck−1(Rn) where k is a high number. When the initial
state x0, and hence xj , are not exactly known, Taylor

expansions should be extended to intervals, for more
details on interval analysis see Moore [1966], Neumaier
[1990], Hansen [2004]. An inclusion function of (3) is then
needed. It is easy to prove that if a box [ξ] containing all
the state trajectory for t ∈ ]tj , tj+1[ is known, then the
interval vector

[xj+1] = [xj ] +

k−1
∑

i=1

hi
jf

[i] ([xj ]) + hk
j f

[k] ([ξ]) (4)

is guaranteed to contain the state at tj+1. Several methods
can be used to compute a set [ξ]; the most used is
based on Picard-Lindelöf operator and the fixed point
theorem Nedialkov [1999]. Actually, the numerical scheme
(4) is improved by some matrices factorizations (see for
instance Nedialkov [1999] and the references therein). The
methods proposed in these references are efficient only
when uncertainties on initial state and on parameters are
not large. If this is not the case, this interval-based method
is not efficient as the numerical evaluation of the solution of
the state equation becomes pessimistic Räıssi et al. [2006].

For a particular class of dynamical systems, many authors
Walter and Kieffer [2003], Kieffer and Walter [2006],
Gouzé et al. [2000] used the monotone systems theory
Smith [1995] in order to bracket the whole state flow
of the uncertain systems between a lower and an upper
deterministic systems (without any uncertainty). These
two systems lead to an outer approximation of the state
at time tj+1 without any numerical conservatism. In the
following section, the main properties and definitions of
monotone systems are recalled.

Dynamical monotone systems

Definition 1. A dynamical system is called monotone if
ordered initial states lead to ordered states at any time tj
with the same order relation.

The monotony property was introduced in 1920th years
in the context of ordinary differential equations Müller
[1920], for more details see Smith [1995].

Definition 2. A dynamical system is cooperative over a
compact set D, if all off-diagonal elements of the jacobian
matrix of the state equation are positive, i.e

∀i 6= j, t ≥ 0,x ∈ D,
∂fi(x, t)

∂xj
≥ 0 (5)

Remark 1. If a dynamical system is cooperative, then it
is monotone.

Theorem 3. Smith [1995], Walter and Kieffer [2003], Ki-
effer and Walter [2006], Gouzé et al. [2000] Consider two
cooperative systems

{

ẋ = f (x, t)
ẋ = f (x, t)

(6)

which satisfy the conditions
{ ∀p ∈ [p,p], ∀x ∈ D, ∀t ∈ [t0, T ]

f(x, t) ≤ f(x,p, t) ≤ f(x, t)
(7)

In addition, if some initial conditions verify

∀p ∈ [p,p], x(t0) ≤ x(t0) ≤ x(t0) (8)

then the solution of (2) remains in the range

X : {x(t) ≤ x(t) ≤ x(t), t0 ≤ t ≤ T } (9)
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The monotony property can be used to compute minimal
outer approximation of the solution of the state ordinary
differential equations, i.e. without any numerical conser-
vatism. Nevertheless, it is not always possible to build the
bracketing systems when the system under study is not
cooperative.

2.2 Correction

In the correction step, a guaranteed enclosure Xj+1/j+1

of the state is reconstructed using the measurement ym
j+1

and intersected with the set Xj+1/j computed in the
prediction. This phase is performed by the inversion of
the measurement ym

j+1 using the equation

x = g−1 (y,p, t) (10)

The inversion of the equation (10) is a set inversion
problem. In the case of a nonlinear measurement equation,
it would not be possible to obtain an explicit solution of
(10). In such a case, a guaranteed outer approximation
should be computed by application of a contractor which
can be, for instance, an extension of Newton method to
intervals Neumaier [1990], Hansen [2004], Jaulin et al.
[2001]. In this paper, contractors will not be recalled, the
interested reader can refer to Hansen [2004] which contains
an extensive study of these tools.

3. INTERVAL OBSERVERS BASED ON
CONTRACTION ANALYSIS

3.1 Contraction theory

The aim of this approach is to ensure the convergence of
the inner and the outer bounds of the state estimate to
the actual state trajectory. The following analysis is based
on the contraction theory Lohmiller and Slotine [1998];
the proofs of the theorems can be found in Lohmiller and
Slotine [1998].

Consider a system described by

ẋ = f(x, t) (11)

where x ∈ R
n is the state vector and f may be nonlinear

but continuously differentiable (at least f ∈ C1(Rn)). The
differentiation of equation (11) yields the exact differential
relation

δẋ =
∂f

∂x
(x, t)δx (12)

where δx is a virtual displacement between two neighbor-
ing trajectories.

If λmax(x, t) is the largest eigenvalue of the symmetric part

of the Jacobien ∂f/∂x (i.e. 1
2

(

∂f
∂x

+ ∂f
∂x

T
)

), then

d

dt
(δxT δx) ≤ 2λmaxδxT x

hence,

‖ δx ‖≤‖ δx0 ‖ e

∫

t

0
λmax(x,t)dt

. (13)

where ‖ . ‖ is a norm on R
n. If λmax(x, t) is uniformly

strictly negative, then, from equation (13), any infinitesi-
mal length ‖ δx ‖ converges exponentially to zero, and the
system is called contracting.

Definition 4. Given the equation (11), a region of the state
space is called a contraction region if the Jacobian ∂f/∂x
is uniformly negative definite in that region.

By ∂f/∂x uniformly negative we mean that:

∃β > 0, ∀x, ∀t ≥ 0,
1

2

(

∂f

∂x
+

∂f

∂x

T
)

≤ −βI < 0 (14)

Theorem 5. Given the equations ẋ = f(x, t), any trajec-
tory, which starts in a ball of constant radius centered
about a given trajectory and contained at all time in
a contraction region, remains in that ball and converges
exponentially to this trajectory.

Furthermore, global exponential convergence to the given
trajectory is guaranteed if the whole state space is a con-
traction region. The proof of this theorem is in Lohmiller
and Slotine [1998].

More generally, contraction can be studied with a coordi-
nate transformation

δz = Θδx (15)

where Θ(x, t) is a uniformly invertible square matrix.

Using the transformation (15) in (12), we obtain

δż =

(

Θ̇ + Θ
∂f

∂x

)

Θ−1δz (16)

Hence, the exponential convergence of ‖ δz ‖ to zero is
guaranteed if the generalized Jacobian matrix

F =

(

Θ̇ + Θ
∂f

∂x

)

Θ−1 (17)

is uniformly negative definite. This implies that all the
solutions of the system (11) converge exponentially to a
single trajectory independently of the initial state in the
contraction domain.

By convention, if the system (11) is contracting, f(x, t) is
called a contracting function. The absolute value of the
largest eigenvalue of the symmetric part of F is called the
system’s contraction rate with respect to the uniformly
positive definite metric M = ΘT Θ. Note that for a globally
contracting autonomuous system, all trajectories converge
exponentially to a unique equilibrium point Lohmiller and
Slotine [1998].

3.2 Set-membership observers

Consider a nonlinear system described by:

S1

{

ẋ(t) = f(x(t), t)
y(t) = g (x(t), t,w(t))
x(t0) ∈ [x0]

(18)

The initial state x0 is assumed to belong to a prior known
ball B0 = {x̂0, R0}.
The proposed observer is based on the classical Luenberger
approach, it is given by:

O1 :

{

˙̂x(t) = f(x̂(t), t) + k(y(t) − g(x̂(t), t))
ŷ(t) = g(x̂(t), t)

(19)
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where the matrix gain k is chosen in order to satisfy the
condition:

∀x ∈ D,

(

∂f

∂x
− k

∂g

∂x

)

< λmaxI < 0 (20)

λmax is the maximum eigenvalue of the symmetric part

of
(

∂f
∂x

− k∂g
∂x

)

. Several studies attempt to compute in

a guaranteed way λmax Oishi [2001]. Here, genetic algo-
rithms techniques are used to solve the above problem, for
which software packages are available Houck et al. [1995].
They are supposed to give global results, but without
any garantee. In a future work, global optimization with
interval analysis will be used.

For the sake of simplicity, in this paper a constant gain k
is used. Nevertheless, the authors of Lohmiller and Slotine
[1998] have proposed a method based on a nonlinear
gain. Nevertheless, the proposed methodology in the latter
paper is applicable for academic systems but appears to
be very complex to be implemented for high dimensional
systems.

The observer (19) permits to compute a punctual estimate
at tj of the center of a ball Bj = {x̂j , Rj} which is guar-
anteed to contain all the state vectors that are consistent
with the measurements available up to tj and with the
uncertainty on the initial state. The radius Rj is computed
by

Rj = R0 exp

∫

tj

t0

λmaxdt
(21)

The uncertainty on each state component xi
j at tj is

obtained by the projection of the ball Bj on the axe i.
Hence, the domain of xi

j is given by the interval

xi
j ∈

[

x̂i
j − Rj , x̂

i
j + Rj

]

(22)

The condition (20) ensures that the uncertainty on the
state vector converges to 0 if there is no uncertainty on the
state and on the measurement equations. The convergence
rate is given by λmax.

Assume now that the measurement error is bounded with
a prior known bound e, hence the domain of the output is
[ym − e,ym + e]. To take into account the uncertainties
on the measured data, we propose to use an extended
observer which makes it possible to compute the bounds
on the state, it is given by:

O2 :















˙̂x(t) = f(x̂(t), t) + k(y(t) − e− g(x̂(t), t))
˙̂
x(t) = f(x̂(t), t) + k(y(t) + e− g(x̂(t), t))
ŷ(t) = g(x̂(t), t)

ŷ(t) = g(x̂(t), t)

(23)

This estimator generates at the time tj two balls Bj =

{x̂j , Rj} and Bj = {x̂j , Rj}. The domain of the ith

component xi
j of the whole state is given by

xi
j ∈

[

x̂i
j − Rj , x̂

i

j + Rj

]

(24)

The width of the state enclosure computed by the observer
(23) does not converge to 0 but depends on e and on the
observer gain k. The observer (23) is illustrated by the
figure 1 for a monodimensional state vector.

3.3 Uncertain systems

Consider a system described by:

S2











ẋ(t) = f(x(t),p, t)
y(t) = g (x(t),p, t,w(t))
x(t0) ∈ [x0]
p ∈ [P0]

(25)

As in the case of cooperative systems, we propose to
bracket the uncertain system described by (25) between
two systems involving no parameter uncertainty. Hence,
some functions flow and fupp satisfying:

flow(x, t) ≤ f(p,x, t) ≤ fupp(x, t) (26)

could be constructed using monotonic properties of the
state equation with respect to the parameters. The same
procedure is applied to the output function g (x,p). The
following deterministic lower and upper dynamical systems
could be obtained.

Slow

{

ẋlow = flow(xlow, t)
ylow = glow (xlow, t,w)
xlow(t0) ∈ [x0]

(27)

Supp







ẋupp = fupp(xupp, t)
yupp = gupp (xupp, t,w)
xupp(t0) ∈ [x0]

(28)

The observer (23) is used for both systems (27) and (28),
but only the first equation of (23) is taken into account for
(27) and only the second equation could be used for (28).
Enclosures of the state of the brackting systems are given
by:

xlow ∈ [xlow,xlow] ; xupp ∈
[

xupp,xupp

]

(29)

Hence, the state of the whole system described by (25) is
given by:

x ∈
[

min(xlow,xupp), sup(xlow,xupp)
]

(30)

Remark 2. For cooperative systems, initial ordered state
leads to ordered state at any time tj . Thus, for such
systems, the state of the whole system is given by:

x ∈ [xlow, xupp] (31)

4. NUMERICAL EXAMPLES

Example 1. The observer (23) is illustrated on a hydraulic
laboratory system (Fig.2) which is modelled by the equa-
tions (32) under the the condition h1 > h3 > h2 for all
times.

[xlow]

[xupp]

x

t

x(t)

Fig. 1. Bounds of the state with bounded measurement
uncertainty
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T1 T2T3

Q1 Q2

h1

h2

h3

a13 a32

a10 a20
a30

Fig. 2. Three-tanks system

S3 :















































































ẋ1(t) = −a13

Sc

√

x1(t) − x3(t)

+
1

Sc
u1(t) + v1(t)

ẋ2(t) =
a32

Sc

√

x3(t) − x2(t)

− a20

Sc

√

x2(t) +
1

Sc
u2(t) + v2(t)

ẋ3(t) =
a13

Sc

√

x1(t) − x3(t)

− a32

Sc

√

x3(t) − x2(t)) + v3(t)

y(t) = (x1(t), x2(t))
T

+ (w1(t), w2(t))
T

(32)

where x = (x1, x2, x3)
T = (h1, h2, h3)

T represents the
state vector, u = (u1, u2)

T = (Q1, Q2)
T is the con-

trol vector, v = (v1, v2, v3)
T represents the state noise,

w = (w1, w2)
T is the measurement noise and p =

(a13, a32, a20)
T

represents the parameter vector. The nom-
inal parameters values are a13 = az13Sn

√
2g, a32 =

az32Sn

√
2g and a20 = az20Sn

√
2g (where az13 = 0.6,

az32 = 0.6, az20 = 0.8, Sn = 5.10−5[m2], S = 0.0154[m2],
g = 9.81[n/m2]). The nominal value of the parameter
vector is pT

0 = (13.28, 13.28, 17.72).10−5.

t [s]

x
1

0 62 125 187 250
0.3

0.6

t [s]

x
2

0 62 125 187 2500

0.3

t [s]

x
3

0 62 125 187 250

0.3

Fig. 3. State Bounds estimated by observer O2

The observer (23) is used with a gain k chosen such that
the conditions of contraction (20) hold, hence

(
∂f

∂x
− k

∂g

∂x
) =

(

J11 − k11 −k12 −J11

−k21 J22 − k22 J23

−J11 − k31 J23 − k32 J11 − J23

)

is uniformly negative definite, where J = {Jij} = ∂f/∂x.

In this example, the noise corrupting the measurements is
assumed to belong to the interval [±0.01m] and the initial
state to ([0.3, 0.5], [0.05, 0.25], [0.2, 0.4])T . The results of
the state estimation are depicted in figure 3. The actual
state belongs to the enclosure computed by the proposed
observer. In addition, the width of the enclosure decreases
which permits to obtain a significant reduction of the
uncertainty on the state.

Example 2. Consider the same system described by the
equations (32), but assume that the parameter vector

p = (a13, a32, a20)
T is not exactly known but belongs to

[p] = [p0 − 20%,p0 + 20%]. The results of the simulation
based on the equations (25)-(30) are displayed on figure
(4). It is shown that the overestimation is well controlled.
The width of the domain of the state decreases and
converges to the actual values although the parameters
are uncertain.

t [s]

x
3

0 62 125 187 250

0.3

Fig. 4. State estimation for the uncertain nonlinear system
(32) using observer O2

5. CONCLUSION

In this paper, an observer based on contraction theory
is proposed. It permits guaranteed state estimation for
a large class of nonlinear continuous time systems. This
estimator is extended to deal with the cases where some
parameters are not exactly known. The presented example
clearly shows that the overestimation is well controlled
even when the uncertainty on the parameters is large. Fur-
ther investigations are necessary to extend this methodol-
ogy to deals with joint parameter and state estimation.
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