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Abstract:
Single-track hard disk drive (HDD) seek performance is measured by settle time, ts, defined
as the time from the arrival of a seek command until the measured position reaches and stays
within an acceptable distance from the target track. In this paper, we show the effective use
of feedforward dynamic inversion, coupled with an aggressive desired trajectory yd, to achieve
high performance settle times. It is well known that the exact tracking solution for nonminimum
phase (NMP) systems requires noncausal preactuation to maintain bounded internal signals. In
the specific HDD operating modes of interest, anticipation of a seek command is unrealistic,
and thus preactuation adds to the overall computation of settle time. Unlike many dynamic
inversion tracking applications, this negative effect of preactuation leads to interesting trade-offs
between preactuation delay, tracking accuracy, and achievable settle performance. We show that,
surprisingly, very little preactuation is desirable when truncating the exact tracking solution and
applying it to our NMP HDD model. For comparison, we also review the stable Taylor series
approximate inverse, and show that a zero-order series’ settle performance is comparable to
truncated exact inversion while being easier to compute and implement. We experimentally
validate this conclusion on a Servo Track Writer (STW).

Keywords: inverse dynamics control, non-minimum phase systems, settling times, storage
devices, optimal trajectory.

1. INTRODUCTION

Many applications perform rest-to-rest maneuvers with
unsaturated plant inputs, including single-track hard disk
drive (HDD) “seeks”. Disk drives perform single-track
seeks in numerous operating modes, including servo track
writing [Takaishi et al., 2003], [Lee, 1991], sequential data
transfer [Guttmann et al., 2000], and manufacturing scans
to detect media surface defects [Blachek et al., 1999]. Seek
performance is measured by settle time, ts, defined as
the time from the arrival of a seek command until the
measured position reaches and stays within an acceptable
distance from the target track. In these operating modes,
minimizing ts reduces manufacturing time and cost, or
increases data throughput.

While we simplify the focus of this paper to discrete-time,
single-input single-output (SISO), linear time-invariant
(LTI) plant dynamics, there are still many challenges
imposed by the HDD applications. HDD dynamics are
typically characterized by the presence of nonminimum
phase (NMP) zero dynamics. NMP dynamics can arise
when the sensors and actuators are noncollocated [Miu,

⋆ This work has been supported through research grants from
Maxtor Corporation and the National Science Foundation (CMS-
0201459 and CMMI-0700877).

1993], as in HDDs which have the magnetic reader position
sensor and voice-coil actuator on opposite ends of a flexible
actuator arm. NMP zeros in discrete-time systems can
also result from fast sample rates and high relative degree
[Åström et al., 1984]. As we will see, NMP zeros require
special treatment in the application of dynamic inversion
for aggressive rest-to-rest maneuvers.

HDD computational processing power is limited because
high unit volumes dictate the use of low-cost digital signal
processors (DSPs). The DSPs are responsible for much
more than control tasks, further limiting the amount of
processing power available for control. This constrains the
single-track seek control design and necessitates the use of
computationally efficient algorithms.

Finally, the HDD error feedback compensator C is usually
designed for regulation purposes using knowledge of the
plant dynamics P , the disturbance and noise spectra, and
performance metrics on the regulated state. Typically, the
closed-loop natural response is relatively slow to settle,
having limited bandwidth due to stability robustness con-
cerns in the presence of unmodeled dynamics. Further,
any permanent or temporary change to the feedback com-
pensator for settle performance improvements could neg-
atively affect regulation or require complicated switching
to remove transients. Hence, improvements to settle time
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Fig. 1. Block diagram of the feedforward closed-loop in-
verse (FFCLI) architecture.

are best accomplished through exogenous inputs r and uff

which enter the loop as shown in Fig. 1.

In the presence of these complexities and constraints, we
have previously demonstrated the aggressive settle perfor-
mance capability of dynamic inversion together with refer-
ence command generation [Rigney et al., 2006]. In [Rigney
et al., 2008], we show inversion-based settle performance
compares favorably with minimum energy optimal state
transfer techniques [Perez et al., 2003] in our HDD appli-
cation, while being more amenable to future adaptation.
Other researchers have investigated the combined use of
dynamic inversion and reference trajectory generation to
reduce ts [de Gelder et al., 2006], [Piazzi et al., 2000],
but the complex off-line optimization procedures are not
applicable to on-line implementation on low-cost DSPs.
[Rigney et al., 2006] and [Rigney et al., 2008] also discuss
the settle performance benefits of the feedforward closed-
loop inversion (FFCLI) architecture in Fig. 1. FFCLI lim-
its the excitation of the slow closed-loop dynamics and will
be used throughout this paper.

The purpose of this paper is the design of the closed-
loop dynamic inverse system H̃−1

CL in Fig. 1 for a settle
performance objective. This design is complicated by the
presence of NMP zeros in the closed-loop dynamics. It
is well known that the exact tracking solution for NMP
systems requires noncausal preactuation of the closed-
loop system to maintain bounded internal signals [Devasia
et al., 1996], [Hunt et al., 1996], [Marconi et al., 2001].
Unlike the tracking applications discussed in these refer-
ences, anticipation of a seek command is unrealistic in the
specific HDD operating modes of interest. Thus preactu-
ation adds to the overall computation of settle time and
leads to interesting trade-offs between preactuation delay,
tracking accuracy, and the achievable settle performance.
After precisely defining ts and describing the experimen-
tally identified example model in Sections 2 and 3, we
review the bounded exact inversion technique from an
initial condition preload perspective in Section 4. Here,
we explore multiple preactuation strategies to preload the
initial conditions and evaluate their settle performance.
Section 5 reviews an alternative strategy for creating H̃−1

CL:
stable approximation using a noncausal Taylor series. This
technique is capable of producing similar settle perfor-
mance as the exact inversion algorithms, while being com-
putationally simpler and more amenable to future adaptive
inversion approaches. Finally, Section 6 summarizes the
conclusions of the paper.

2. SETTLE PERFORMANCE MEASURE

Dynamic inversion algorithms are typically applied to
output tracking problems, with performance metrics on
the tracking error yd − y, where y is the measured plant
output. For settle performance, accurate tracking of a

particular yd is not the objective. In this section, we
explicitly define our measure of settle time and present a
computationally efficient yd generation technique suitable
for on-line implementation and future adaptation.

2.1 Settle Time Measurement

Settle time ts is defined as the time from the arrival of
a seek command until the measured position reaches and
stays within the settle boundary surrounding the desired
set-point, as shown in Fig. 2. The settle time, as expressed
in number of samples, is ks, where ts = ksT and T is
the sample period. In HDD single-track seek applications,
there is no penalty on overshoot or undershoot in the plant
output y; settle time is the only performance measure
of interest, with typical settle boundaries set at ±5% of
a track. Further, we do not consider any constraints on
plant input magnitude or spectral content. High frequency
excitation is of no concern in our application unless it
lengthens settle time. 1

Preactuation, a change in the closed-loop input r before
the seek command arrives, and postactuation, a change
in r after the seek has settled, are common side-effects of
using dynamic inversion algorithms. The example seek in
Fig. 2 clearly shows both artifacts, although the postac-
tuation is truncated to save space. As we will discuss
in Section 4, both preactuation and postactuation are
ultimately a function of the zero dynamics of the system
to be inverted. Preactuation requires anticipation of the
incoming seek command, which we assume we do not know
in the HDD application. While this is not true for all HDD
operating modes, we focus on the more generic application
which has a wider appeal. Therefore, ts is lengthened by
tp in order to accommodate the preactuation sequence.
Similar to settle time, the preactuation time tp, expressed

1 In reality, the acoustical signature of HDD seeks is a concern.
While we do not treat this constraint in this work, it would be
possible to combine a weighted frequency-domain measure of the
plant input u with ts to form a modified settle performance cost
function.

Fig. 2. Example closed-loop input and output trajectories
for a single-track seek, with preactuation, postactua-
tion, and total settle time clearly noted.
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in number of samples, is kp, where tp = kpT . The parti-
tioning of kp into k0 and p samples will be fully explained
in Section 4. The ts definition can now be explicitly stated
as the time from the initial change in r until y reaches and
stays within the settle boundary. Unlike many dynamic
inversion tracking applications, this negative effect of pre-
actuation will be critical in the settle performance analysis
of NMP inversion algorithms in Sections 4 and 5.

Postactuation is of less concern for all the HDD operating
modes of interest. Servo track writing, manufacturing
defect scans, and sequential data transfer typically dwell
at each track set-point for at least one revolution of the
disk. This dwell time is then dependent on the spin speed
of the disk, but can be a factor of 10 greater than the settle
time. As long as the postactuation is complete within this
dwell period, it will not affect performance.

2.2 yd generation

Motivated by the solution to the time optimal control
problem for a rigid body, we derive a family of yd tra-
jectories generated from the double integral of a bang-
bang acceleration pulse, as shown in Fig. 3. The bang-bang
acceleration signal has the following Z-transform:

Accel(z) =
(z − 1)

d2T 2

(
d−1∑

i=0

zi

)2

z2d−1
, (1)

where T is the sample period and 2d is the total duration
of both the Accel signal and yd. The Z-transform of yd can
then be written as

YD(z) =
1

2d2

(z + 1)

(z − 1)

(
d−1∑

i=0

zi

)2

z2d−1
. (2)

This simple parameterization provides a single scalar
value, d, that can select the aggressiveness of the seek,
while also being extremely computationally efficient. Al-
though our future work will adaptively select d on-line for
each unit in a population of HDDs [Rigney et al., 2008],
this paper uses a fixed extremely aggressive yd. By fixing
yd, we can focus on the settle performance advantages of
the various NMP dynamic inversion algorithms. The anal-
ysis in Sections 4 and 5 uses a yd with duration 0.136 ms,
formed from setting d = 1 in (2).

Fig. 3. Desired output trajectory yd is generated from
a bang-bang acceleration pulse. The duration and
aggressiveness of yd is parameterized by d.

3. EXPERIMENTAL SYSTEM IDENTIFICATION

We require a model of the closed-loop system HCL for
both the simulation and experimental settle performance
analysis in Sections 4 and 5. Our experimental testbed con-
sists of a Servo Track Writer (STW) [Lee, 1991], provided
by Maxtor Corporation, and we focus the identification
procedure on the STW’s closed-loop dynamics. The Servo
Track Writer is used to magnetically encode the initial
servo position information on the magnetic media during
HDD manufacturing. The STW has its own voice-coil
motor (VCM) and precision encoder that mechanically
interface with the HDD actuator arm and HDD VCM
through an opening in the HDD baseplate. Traditionally,
the STW moves the HDD actuator one track, magneti-
cally encodes one revolution of servo position information,
and repeats this process until all tracks are written. The
single-track seek distance is determined by the HDD track
density; we use a single-track step size of 1 µrad as a
representative angular track width for a modern HDD. The
STW has an encoder sensor resolution of 0.5 nanorad, and
a compensator sample time of T = 68 µs.

We experimentally identify the STW closed-loop dynamics
by injecting a pseudo-random sinusoidal sequence as the
reference input r in Fig. 1. The input sequence’s sinusoidal
amplitudes are designed to give adequate signal-to-noise
ratio over a wide frequency band of interest, and the fre-
quencies are selected such that each sinusoid has an integer
number of periods within the sequence. The frequency-
domain weighting vector and model order were selected
through trial-and-error to produce a reasonable matching
of the experimental step response, shown in Fig. 4. The
weighted least squares model for HCL is

HCL (z) =
0.10988(z + 0.4947)

(z − 0.1541)(z2 − 1.859z + 0.8695)

×
(z2

− 1.874z + 0.8807)(z2 + 2.389z + 1.574)

(z2 − 1.24z + 0.4409)(z2 + 1.233z + 0.878)
, (3)

which matches the step response well. This 7th-order
model has a closed-loop bandwidth near 1 kHz, unity DC
gain, a relative degree of 2, a high frequency structural
mode near 5.3 kHz, and 2 NMP zeros outside the unit
circle at z = − 1.1946 ± j0.3838.

The step response with 5% settle boundaries in Fig. 4 also
highlights requirements for improved settle performance.
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Fig. 4. Experimental and modeled step responses of the
STW closed-loop system.
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The ts for the step response of the HCL model is 1.6 ms.
While there is some evidence of small high frequency
oscillations in the measured output, the step response
settle time is dominated by the lower frequency closed-loop
dynamics. Any enhancement to settle performance must
account for these lower frequency dynamics to produce
settle times much shorter than 1.6 ms.

4. EXACT NMP DYNAMIC INVERSION

Dynamic inversion is complicated by the presence of NMP
zeros. The NMP zeros of the original system become unsta-
ble poles in the inverse system. For the HDD application
using the FFCLI architecture, this causes the system in
Fig. 1 to exactly track yd (with possible delay) while
r grows unbounded. Many techniques exist to compute
exact and approximate solutions for the inverse dynamics,
H̃−1

CL, with bounded input signal r. We first investigate
the exact inversion procedure and review techniques that
use the initial condition responses of H̃−1

CL and HCL to
maintain bounded r while exactly tracking yd with delay.
In Section 5, we turn our attention to the most applicable
approximation method for the HDD applications.

In order to analyze the exact inverse of the closed-loop
system, it is helpful to first partition the plant into
minimum phase (MP) and nonminimum phase (NMP)
zero polynomials

P (z) =
Bm(z)Bn(z)

A(z)
, (4)

where Bm is the numerator polynomial including all plant
MP zeros, Bn contains all plant NMP zeros, and A is
the plant denominator polynomial. The closed-loop system
can then be expressed as

HCL(z) =
BmCL

(z)Bn(z)

ACL(z)
, (5)

ACL(z) = CD(z)A(z) + CN (z)Bm(z)Bn(z) , (6)

BmCL
(z) = CN (z)Bm(z) , (7)

where CN and CD are the Hurwitz numerator and de-
nominator polynomials of the compensator C, which is
assumed stable, exactly proper, and minimum phase. The
exact causal closed-loop inverse can now be stated as

H̃−1
CL(z) =

ACL(z)

zpBmCL
(z)Bn(z)

, (8)

where p is the relative degree of HCL. Given our definition
of ts and the inability of our HDD applications to preactu-
ate, we must incorporate p unit delays in H̃−1

CL to maintain
causality. Using this exact inverse in a FFCLI architecture
produces delayed exact tracking

Y (z) = HCL(z)H̃−1
CL(z)Yd(z) =

1

zp

N(z)

D(z)
, (9)

where the Z-transform of yd has been written as the ratio
of two polynomials, N and D.

As previously noted, the system in (9) is internally un-
stable when HCL is NMP, and the r input signal grows
without bound. Many exact inversion algorithms use the
initial condition responses of H̃−1

CL and HCL at k0 (referred
to in Fig. 2) to maintain bounded r while still achieving
delayed exact tracking. The authors of [Devasia et al.,

1996], [Hunt et al., 1996], and [Marconi et al., 2001] de-
rive additional preactuation sequences of length k0 that
preload the required initial conditions of HCL. In this
case, the total preactuation is kp = k0 + p. Similar in
spirit to [Marconi et al., 2001], we review a discrete-time
polynomial development of the required initial conditions,
simplified for SISO LTI system dynamics.

We begin by writing the Z-transform of the closed-loop
input r, including both the forced and initial condition
responses

R(z) =
ACL(z)

zpBmCL
(z)Bn(z)

N(z)

D(z)

+
ĨC(z)

zpBn(z)BmCL
(z)

. (10)

Here, ĨC is the numerator polynomial of the initial
condition response of H̃−1

CL, with the ~ modifier used
to refer to the inverse system. By choosing to describe
H̃−1

CL with an observable canonical state-space realization

(Ãobs , b̃obs , c̃obs , d̃obs ), the initial condition response
numerator polynomial simplifies to

ĨC(z) = z c̃obs adj(zI − Ãobs )x̃(k0) , (11)

=
[
zn zn−1

· · · z
]

x̃(k0) , (12)

where n is the order of ACL and the identity used in (12)
can be found in [Kailath, 1980]. In order to compute the
initial state vector x̃(k0) required to cancel the unstable
modes in the forced response, we must isolate Bn in (10)

R(z) =
U1(z)

zpBmCL
(z)D(z)

+
U2(z)

Bn(z)

+
ĨC(z)

zpBn(z)BmCL
(z)

. (13)

The polynomials U1 and U2 result from the partial fraction
expansion of the forced response and must satisfy

U1(z)Bn(z) + U2(z)zpBmCL
(z)D(z)

= ACL(z)N(z) . (14)

Hence, if x̃(k0) satisfies the following equation

[
zn zn−1

· · · z
]

x̃(k0)

= zpBmCL
(z) (γBn(z) − U2(z)) , (15)

where γ is an unknown scalar constant, then the r response
is bounded and has the following Z-transform

R(z) =
U1(z)

zpBmCL
(z)D(z)

+ γ . (16)

We postpone discussion of the existence of x̃(k0) and the
computation of γ in (15) until we develop the required
initial conditions on HCL.

An unfortunate consequence of removing the unstable
components from r is that we no longer achieve delayed
exact tracking. The Z-transform of the output y, again
including both forced and initial condition responses, is
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Y (z) =
Bn(z)

ACL(z)

U1(z)

zpD(z)

+γ
BmCL

(z)Bn(z)

ACL(z)
+

IC(z)

ACL(z)
, (17)

where IC(z) is the numerator polynomial of the initial con-
dition response of HCL. Similar to the inverse dynamics,
an observable canonical state-space realization for HCL,
(Aobs, bobs, cobs,dobs), leads to

IC(z) =
[
zn zn−1

· · · z
]

x(k0) , (18)

with x(k0) representing the initial condition vector of HCL.
Through the use of (14), we can isolate the delayed exact
tracking portion of the forced response in (17)

Y (z) =
N(z)

zpD(z)
−

U2(z)BmCL
(z)

ACL(z)

+γ
BmCL

(z)Bn(z)

ACL(z)
+

IC(z)

ACL(z)
. (19)

We can then use x(k0) to cancel the unwanted components

[
zn zn−1

· · · z
]

x(k0)

= BmCL
(z) (−γBn(z) + U2(z)) . (20)

Equations (15) and (20) have solutions x̃(k0) and x(k0),
respectively, if

(1) The order of the right-hand side (RHS) of each
equation is less than or equal to n. By definition, the
order of zpBmCL

Bn is n and the order of zpBmCL
U2 is

less than or equal to n. Therefore the order constraint
is easily satisfied.

(2) The RHS of each equation has at least one root at
z = 0. If BmCL

does not have a root at z = 0, then γ
must satisfy

γ =
U2(0)

Bn(0)
, (21)

where Bn(0) is nonzero by definition.

The unstable mode cancellation in the inverse system
can be analytically computed and exactly enforced in the
feedforward controller software, i.e., by only implementing
(16); precisely setting the initial conditions of the physical
closed-loop HCL system is much more difficult. We discuss
three techniques to address this difficulty.

4.1 HCL State Transfer to Desired x(k0)

As a byproduct of discrete-time controllability, there exists
a sequence r(k) that transfers the state of HCL from 0
to x(k0) in at most n samples [Kailath, 1980]. While it
may be possible to control the state of HCL from 0 to
x(k0) in ℓ samples, where ℓ < n, this requires the very
restrictive condition that x(k0) lies in the range space of
the ℓ-step input-to-state map. For our example HCL in
(3) and the required x(k0), this does not apply and we are
left with kp = n + p = 9 samples of preactuation. This
method of preloading initial conditions is not typically
used in standard dynamic inversion tracking applications
because y is non-zero during preactuation and causes
increased tracking errors. In contrast, it is a perfectly
legitimate technique in this settle time application where
preactuation is already included in ts. Unfortunately, as
we will see, 9 samples of preactuation is a very long delay
compared to other techniques.

4.2 Infinite Preactuation

The authors of [Devasia et al., 1996] and [Hunt et al., 1996]
derive a continuous-time noncausal input r(t) over the
preactuation interval t ∈ (−∞, t0] which drives the state
of HCL from rest to the required x(t0) while maintaining
y(t) = 0. A similar procedure is detailed in [Marconi et al.,
2001] for a noncausal input r(k) in discrete-time, which
we briefly review here. Consider (13), without the initial

condition response of H̃−1
CL included

R(z) =
U1(z)

zpBmCL
(z)D(z)

+
U2(z)

Bn(z)
. (22)

In order to compute a bounded r(k) from R(z), we use
the standard right-sided inverse Z-transform for the stable
first term in (22) and a left-sided inverse Z-transform
for the unstable second term [Haykin et al., 2003]. The

left-sided inverse transform for U2(z)
Bn(z) has a region of con-

vergence (ROC) that includes the unit circle and pro-
duces a bounded noncausal sequence which is nonzero on
k ∈ (−∞, k0 − 1]. This noncausal portion of r(k) drives
the state of HCL to the required initial conditions x(k0)
such that the undesired forced response terms in (19) are
cancelled and y achieves delayed exact tracking. A portion
of the r(k) preactuation sequence for the example system
was previously shown in Fig. 2. An infinite kp causes an
obviously unrealistic infinite ts, and we thus investigate
truncation strategies.

4.3 Truncated Preactuation

The example system’s r(k) in Fig. 2 converges quickly to
zero as k → −∞, allowing for practical implementation
through truncation. While truncated preactuation is no
longer an exact inversion approach, it is directly motivated
by the exact inversion development and we thus include
it with the other exact algorithms. The authors of [Zou
et al., 1999] and [Marconi et al., 2001] discuss truncation
strategies when yd is only known over a finite window
ahead of the current sample. Instead, we take advantage of
full knowledge of yd in our application, which allows for the
partition in (22). We then use the first k0 samples of the
left-sided inverse Z-transform of the unstable second term
in (22) as the truncated preactuation sequence applied on
k ∈ [0, k0 − 1]. Large values for k0, and consequently tp,
result in small errors in x(k0), very little tracking error
(disregarding delay), but large offsets in the calculation
of ts. There is thus an interesting trade-off between the
length of tp and the achievable settle performance, ex-
plored further for the example system in Fig. 5. Unlike
tracking performance, which generally deteriorates as kp

decreases, settle performance improves for smaller kp until
kp = 8. At this point, the tracking errors induced by the
unwanted forced response terms in (19) cause excursions
in y that exceed the settle boundary. The tracking error
is dependent on the size of the undesired terms in the y
response, which in turn is determined by the degree to
which the closed-loop dynamics HCL are excited by the
desired reference trajectory yd. For our example system, as
shown in Fig. 5, kp = 3 yields the best trade-off between
x(k0) accuracy and kp delay, and achieves a ts of 0.476 ms.

We further explore the results of Fig. 5 by plotting the y
output responses for the kp = 3 truncated preactuation
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Fig. 5. Settle time ts versus number of preactuation sam-
ples kp for exact inversion with truncated preactua-
tion and noncausal Taylor series approximation.
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Fig. 6. Output y response comparison between HCL state
transfer technique to preload x(k0) and truncated
preactuation with kp = 3.

method and the HCL state transfer technique for our
example system in Fig. 6. While the HCL state transfer
method exactly tracks a delayed version of yd, the kp = 9
samples of preactuation yield a very slow ts = 0.680 ms.
Alternatively, while high frequency resonance and slow
closed-loop mode excitation in y initially cause excursions
outside the settle boundary, the kp = 3 truncated pre-
actuation method’s achievable settle time is significantly
faster: ts = 0.476 ms. Although the truncated preactuation
technique with kp = 3 achieves a faster ts, the response
in Fig. 6 is of concern considering the HDD population
has large unstructured uncertainty at high frequency. Also,
even after ts, the y trajectory is close to exceeding the set-
tle boundary. Disturbances and sensor noise on y can lead
to very inconsistent ts’s for a given yd with this truncated
preactuation technique. The next section discusses an
alternative stable approximate NMP inversion technique
that is capable of producing better settle performance than
these exact techniques with less high frequency excitation.

5. NONCAUSAL TAYLOR SERIES STABLE
APPROXIMATION

The noncausal Taylor series approximation seeks to ap-
proximate 1

Bn
with a noncausal polynomial of chosen order

[Gross et al., 1994]. We review the algorithm by first
starting with the NMP zero polynomial

Bn(z) = bmn
zmn + bmn−1z

mn−1 + · · · + b0 , (23)

where mn is the number of NMP zeros. The resulting H̃−1
CL

system with the Taylor series approximation is then

H̃−1
CL(z)

∣∣∣
Taylor

=
ACL

zp+mT +mnBmCL

mT∑

i=0

αiz
i

Bn(1)

mT∑

i=0

αi

, (24)

where mT is the order of the series approximation and
the αi sequence is derived from the Taylor series ex-
pansion of 1

Bn
, as in [Gross et al., 1994]. In this case,

kp = p + mT + mn samples of delay have been incorpo-

rated into H̃−1
CL to maintain causality. The denominator

gain Bn(1)

mT∑

i=0

αi ensures the resulting FFCLI system from

yd to y has unity DC gain

Y (z)

Yd(z)

∣∣∣∣
Taylor

=

Bn(z)

mT∑

i=0

αiz
i

zp+mT +mnBn(1)

mT∑

i=0

αi

. (25)

Surprisingly, the yd to y system has a finite impulse re-
sponse (FIR). This has significant settle performance ad-
vantages because y perfectly achieves the desired set-point
after a fixed number of samples. Unfortunately, the FIR
order is kp = p + mn + mT and can be large for high-order
series approximations. Similar to the trade-offs between
settle performance and tracking accuracy with the trun-
cated preactuation method, increasing mT improves the
approximation to 1

Bn
and yields better tracking accuracy,

while limiting the achievable settle performance. Referring
back to Fig. 5, we plot ts over a range of series orders,
from 0 to 11. This yields a kp range from 4 to 15 for
our system in (3) due to the extra delay in (25) from the
relative degree p and NMP polynomial order of Bn(z). In
this case, the shortest series, a zero-order approximation,
provides the best settle performance. A zero-order series
is the equivalent of ignoring the NMP zeros in HCL and
assuming Bn(z) = 1. The tracking improvements that
come from higher-order approximations are negated by the
accompanying delay in the calculation of ts.

We further explore the settle performance of the zero-order
series approximation by plotting the y output response
in Fig. 7. While the simulated response does not achieve
delayed exact tracking, it does exactly reach the set-point
kp samples after yd, with ts = 0.34 ms or 6 samples.
Due to our definition of ts in Section 2.1, we count
k = 0 as the first sample because the r input changes
at this instant. This is 2 samples faster than the truncated
preactuation exact method, and 1 sample faster than
the minimum energy optimal state transfer techniques
which are limited by the order of the system [Rigney
et al., 2008]. Further, there is no evidence of the high-
frequency excitation present in the truncated preactuation
output response. The zero-order series inverse also requires
less computational complexity than the exact inversion
methods, and is more amenable to future adaptive inverse
approaches.

Fig. 7 also plots the average of 100 experimental seeks
using the zero-order Taylor series approximation to vali-
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Fig. 7. Simulated and average experimental output y re-
sponses for the zero-order Taylor series stable approx-
imate inversion algorithm.

date the simulation results. The average experimental ts
is 0.404 ms, which is 1 sample slower than the simulated
response. The average experimental y trajectory shows
increased undershoot and phase lag relative to the simula-
tion results. This is indicative of lower frequency modeling
errors in the identified model for HCL, rather than excita-
tion of high frequency resonance dynamics. Conceivably,
these lower frequency parametric errors in HCL could be
adaptively identified on-line to further improve the settle
performance.

6. CONCLUSIONS

Dynamic inversion, coupled with reference trajectory gen-
eration, is an effective and practical means to achieve
high performance settle times. Unlike many NMP dynamic
inversion tracking applications, which freely use noncausal
preactuation to minimize the yd − y tracking error, preac-
tuation in the HDD settle application adds to the overall
settle time. This leads to interesting trade-offs between the
amount of preactuation delay, tracking accuracy, and the
achievable settle performance.

In this paper, we review the development of the noncausal
exact tracking solution in discrete-time and investigate
truncation strategies for implementation. We use simula-
tion analysis for an example HDD system to show that
the adverse effects of preactuation on settle time over-
shadow improvements in yd tracking performance. While
our example system performs best with kp = 3 samples of
preactuation, the measured output y has increased high
frequency content. There are implementation concerns
with this method because the plant dynamics are not well
known at high frequency.

For comparison, we also review a stable approximate NMP
inversion algorithm using noncausal Taylor series approx-
imations. The noncausal series order is a design variable,
and can be selected to match the NMP dynamics with
desired accuracy. Because the noncausal approximation
adds to the computation of settle time, the best settle
performance comes from a zero-order approximation. This
approximate inversion technique is capable of producing
better settle performance than the truncated exact in-
version method, with the added benefits of being com-
putationally simpler to implement and producing a finite
impulse response (FIR) between yd and the measured

output y. We experimentally validate this conclusion by
implementing the approximate inversion technique on an
STW. Future work will attempt to address the experimen-
tal performance degradation through the use of adaptive
inverse systems.
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