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Abstract: In this paper a new adaptive control algorithm is presented for unknown nonlinear
and non-Gaussian stochastic systems. The method combines the minimum entropy control with
an Iterative Learning Control (ILC) framework, where the control horizon is divided into a
number of time-domain intervals called Batches. Within each batch a PI controller is used to
control the plant so as to achieve the required tracking performance, where a neural network is
used to learn the dynamics of the unknown plant. Between any two adjacent batches, a D-type
ILC law is applied to tune the PI control coefficients so that the tracking error entropy for the
closed loop system is reduced batch by batch. The analysis on the ILC convergence is made and
a set of demonstrable experiment results on a test rig are also provided to show the effectiveness
of the obtained adaptive control algorithm.
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1. INTRODUCTION

Since most of practical control systems exhibit stochastic
behaviour, research into stochastic control has been of a
great importance during the past decades. Among var-
ious approaches, the minimum variance control Astrom
(1970) is still one of the key methods in this research
field. More recent works have also considered a variety
of methods ranging from sliding mode control for jump
stochastic systems Shi et al. (2006) to robust fuzzy control
for uncertain Markovian stochastic systems Wu and Cai
(2006). In most of the above methods, the closed loop
tracking error has played a vital role for the control per-
formance assessment, where most of the developed meth-
ods assume that the stochastic systems are subjected to
Gaussian type noises. However, for systems subjected to
non-symmetrically distributed random noises, the spread
area of the noise distribution cannot be described precisely
by using its variance. Therefore, entropy should be used
as a measure of uncertainty in non-Gaussian stochastic
systems. In fact, it is shown that for Gaussian systems,
the minimum entropy control is equivalent to minimum
variance control Wang (2002); Yue and Wang (2003).

Entropy was first introduced as a measure of uncertainty
Shannon (1948). Later on, it was used as the average
information content on randomness for a given Probability
Density Function (PDF) Silverman (1992) which provided
a generalized randomness measure by considering disper-
sion rather than mean or variance. Among the entropy def-
initions, the α− order Renyi’s quadratic entropy (1) which
has advantage of computational efficiency over others will
be used throughout this paper.

H(y) =
1

1 − α
log

(

∑

i

γα
i (y))

)

(1)

where α > 0 and γ stands for the PDF of the concerned
random variable y. The entropy measure has been applied
to some of the control and estimation problems such as ap-
proximation, optimization and adaptive control associated
with the uncertainty for controller design Saridis (1988)
and the minimum entropy control for stochastic systems
Wang (2002) and Yue et al. (2006). However, previous
works have either considered the plant as Gaussian type
or assumed known plants and noise distribution. In this
paper, an ILC-based adaptive method is proposed for the
non-Gaussian systems with unknown nonlinear dynamics.
The key idea is to divide the control horizon into certain
number of batches and control the plant within a batch
and between adjacent batches as summarized as follows.

(1) Approximating the unknown plant Jacobian using a
neural network model (Between batches);

(2) Calculating control signal (Within a batch);
(3) Updating the controller parameters using D-type ILC

law and returning to (1)(Between batches).

This paper is organized as follows. In section 2, the the
ILC-based minimum entropy control is introduced. Section
3 consists of the design details. The ILC convergence is
analyzed in section 4, whilst the application of proposed
method to a test rig is proposed in the section 5. Finally,
concluding remarks are made in section 6.

2. PROBLEM FORMULATION

It is assumed that the unknown stochastic plant can be
expressed as the following NARMAX model.
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yk(i) = fp(yk(i − 1), · · · , yk(i − na), uk(i − nd − 1),

· · · , uk(i − nb − nd + 1), ωk) = fp

(

ρk(i), ωk

)

(2)

where fp is the unknown nonlinear plant which is assumed
continuous, bounded and first order differentiable with
respect to all of its variables. As in Fig. 1, yk(i), uk(i)
are the ith samples of the output and the control signal
within the kth batch, respectively. Also, na, nb, nd are the
dynamical orders of the plant and ωk is a bounded non-
Gaussian random noise.
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Fig. 1. Dividing the control horizon into batches

Denote the set point as rk(i), then the closed loop tracking
error would be ek(i) = rk(i) − yk(i) which is generally
a non-Gaussian random process. The objective is to de-
termine uk(i) so that the entropy of the tracking error
is decreased batch by batch. This means that the control
input design aims at reducing the randomness of the track-
ing error along the progress of batches. Fig. 2 shows the
general scheme of the method proposed.
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Fig. 2. Proposed ILC based minimum entropy control

The objective function to be minimized is expressed as

J = Hk(e) =
1

1 − α
log(VRα(ek)) (3)

where VRα(e) is the Information Potential (IP).The PDF
required by IP is estimated as follows by the Kernel
estimation method as in Silverman (1992).

γk(e) ≈ γ̂k(e) =
1

N

N
∑

i=1

Kσ(e − ei) (4)

where Kα is a symmetrical Kernel satisfying K(0) = 1.
Therefore, the IP can be denoted as

VRα(e) =
1

Nα

N
∑

i=1

[

N
∑

j=1

Kσ(ek(i) − ek(j))
]α

(5)

The choice of the Kernel function depends on the level
of required smoothness of the PDF estimation. Since the

selected kernel satisfies K(0) = 1, the minimization of
J would also mean that the tracking error magnitude is
minimized. This ensures that the system output be as close
to rk(i) as possible.

3. ILC-BASED SOLUTION TO THE PROBLEM

Since introduced in 1984 Arimoto et al. (1984), ILC has
become one of the well received methods that have led
to several industrial applications on line manufacturing
systems and chemical batch processes Al-Towaim et al.
(2004),Owens and Hätönen (2005), and Xu and Yan
(2004). In this paper, the PI controller is tuned based on
an ILC scheme to achieve minimum entropy performance.

3.1 Adaptive PI-Controller Design

A generalized PI controller with tuneable coefficients is
considered as the adaptive controller as follows.

uk(i) = Kp(k)ek(i) + Ki(k)ξk(i)

ξk(i) = ξk(i − 1) + Tsek(i − 1)
(6)

where Ts is the sampling time. The ILC-based solution to
(3) involves a nonlinear programming where the objective
function is not necessarily convex. Thus, the following
parameter updating law can only guarantee the local
optimality.

Kp(k + 1) = Kp(k) − λp

∂H

∂Kp

∣

∣

∣

∣

k

Ki(k + 1) = Ki(k) − λi

∂H

∂Ki

∣

∣

∣

∣

k

(7)

In (7), λp, λi are ILC learning rates and Kp(k), Ki(k) are
the PI controller coefficients within the kth batch. Using
the chain rule, the following training rules can be obtained.

∂Hk(e)

∂Kp(k)
=

α

(1 − α)

1

∑N

i=1

[

∑N

j=1
Kσ

(

ek(i) − ek(j)
)

]α

×

N
∑

i=1

{

[ N
∑

j=1

Kσ

(

ek(i) − ek(j)
)

]α−1

×

[ N
∑

j=1

Ḱσ

(

ek(i) − ek(j)
)(

Dp,k(i) − Dp,k(j)
)

]

}

(8)

where

Dp,k(i) =
∂ek(i)

∂Kp(k)
=

∂ek(i)

∂uk(i)
×

∂uk(i)

∂Kp(k)
≃ −

∂ŷk(i)

∂uk(i)
ek(i)

(9)
Calculations corresponding to the integral term are simi-
larly performed to give

Di,k(i) ≃ −
∂ŷk(i)

∂uk(i)
ξk(i) (10)

Thus the ILC parameters tuning law can be summarized
as (7)-(9). The approximations made above are related to
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unknown plant dynamics yet to be determined. Therefore,
the plant will be modeled to approximate Jacobian accord-
ingly. This will be performed by an MLP neural network
model described in the next section.

3.2 A Neural Network Based Nonlinear Plant Identification

Denoting nam, nbm, and ndm as dynamic structural orders
of the model and hm as the number of hidden units, the
neural network model is shown in Fig.3 with the following
model output.

ŷk(i) = fm(y(i − 1), · · · , y(i − nam);u(i − dm), · · · ,

u(i − nbm − ndm + 1), 1) = fm(φm,k)
(11)
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Fig. 3. The dynamic neural network model structure

The modeling error is denoted as em,k(i) = ŷk(i) − yk(i)
which is also a non-Gaussian random process. As such,
mean squared error criteria are not generally suited for
the training of the neural network. Thus, modeling entropy
minimization with the following objective function is used
here.

Jm = Hk(em) =
1

1 − α
log(Vm,Rα(em,k)) (12)

where the PDFs of the modeling error within each batches
are calculated in the same way as those in the controller
design phase. Then, the model parameter updating law
can be formulated as follows.

θm(k + 1, p) = θm(p, k) − λm

∂Hk(em)

∂θm(p, k)
(13)

together with

∂Hk(em)

∂θm(p, k)
=

−α

(1 − α)

1

∑N

i=1

[

∑N

j=1
Kσ

(

em(i) − em(j)
)

]α

×

N
∑

i=1

{

[ N
∑

j=1

Kσ

(

em(i) − em(j)
)

]α−1

[ N
∑

j=1

Ḱσ

(

em(i) − em(j)
)( ∂ŷ(i)

∂θm(p)
−

∂ŷ(j)

∂θm(p)

)

]

}

(14)

where p = 1, 2, · · · , Pm and λm is the model learning rate.
Choosing hyperbolic tangent activation functions for the
neural network, it can be verified that the plant Jacobian
can be calculated as follows

∂ŷk(i)

∂uk(i)
= W2m ×W1m ×

(

1− tanh2(W1m ×φm,k)

)

(15)

Therefore, the design procedure is summarized as follows.

(1) Use yk−1(i) and uk−1(i) and form em,k−1(i);
(2) Update θm(p, k) by (12)-(14) and extract W1m, W2m;
(3) Use W1m,W2m and (15) to calculate Jacobian;
(4) Calculate Kp(k) and Ki(k) using (7)-(9) and (10);
(5) Calculate the control signal and apply it to the plant

and return to (1).

An important issue in the above ILC-based design is to
ensure that the chosen learning parameters guarantee the
ILC convergence. This issue will be addressed in the next
section.

4. ILC CONVERGENCE ANALYSIS

For simplicity, we only discuss the sufficient convergence
conditions of the controller ILC algorithm. Similar condi-
tions can also be formulated for the modeling phase. The
key issue is that the convergence would mean a batch-wise
decrease of (3) giving

Hk+1(e(i)) ≤ Hk(e(i)) (16)

Since α > 0 and IP is non-negative, then inequality (16)
would mean

∆VRα,k+1 = VRα(ek) − VRα(ek+1) ≤ 0 (17)

Using (3), the following approximation can be made.

∆VRα,k ≈ ∆

[

1

Nα

N
∑

i=1

[ N
∑

j=1

Kσ

(

ek(i) − ek(j)
)

]α
]

=
1

Nα

N
∑

i=1

{

[ N
∑

j=1

Kσ

(

ek(i) − ek(j)
)

]α−1

[ N
∑

j=1

Ḱσ

(

ek(i) − ek(j)
)

∆
(

ek(i) − ek(j)
)

]

}

(18)

where

∆ek(i) ≈
∂ŷk

∂uk(i)
×

[

ek(i)∆Kp + ξk(i)∆Ki

]

(19)

∆Kp = Kp(k + 1) − Kp(k)

∆Ki = Ki(k + 1) − Ki(k)
(20)

As such, the for the ILC algorithm to converge, the
learning parameters λp and λi must be chosen so that the
(17)-(20) are satisfied.
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5. PRACTICAL IMPLEMENTATION

The proposed method has been successfully implemented
on a Process Control Unit (PCU) to be described in this
section.

5.1 Process Description

The PCU is based on a fluid flow process, where fluid flow
and/or temperature can be controlled. The PCU diagram
is shown in Fig. 4, which is comprised of a sump, a pump,
some solenoidal valves, a cooler fan and a process tank.
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Fig. 4. PCU Piping and Instrumentation (P&I) Diagram

The water is pumped around by a 12 V DC centrifugal
pump with a computer controlled variable flow rate rang-
ing from 0 to 2.0 lpm. The flow in P-2 pipe can be diverted
to either pathes P-3 through the cooling fan, or P-5. Then
it passes through an impeller type flow meter FIT-001 on
P-6 before it is directed to the process tank. The process
values are the flow rate FIT-001 and the temperature TIT-
002 and the manipulated variables are the pump speed
FY-001 and the heater power TIC-002. However, only the
flow control will be considered here.

5.2 Modifications to Original System

All physical process signals are firstly converted to 0-
5 V DC and then 8-bit digital signals in a so called
Computer Control Module (CCM). These signals are then
transferred to PC I/O interface card SI − 8255 IBM
PC/XT/AT compatible, this restricts the programming to
QBasic. To develop the control algorithm in an MATLAB
environment the existing I/O module was replaced by a
National Instruments (NI) PCI-DIO-96, 96 channel digital
I/O module and all relevant wiring designs were modified
accordingly NI (2007).

5.3 Experimental Results

The Ts is set to 100 msec. The system runs under 60
batches for each N = 50. Also, α = 3 and the Kσ are

K0.25(x) = 1√
2π

exp( x2

2×0.252 )

Furthermore, the set point is supposed to change after
30 batches from r = 1.3 lpm to r = 0.6 lpm. Also
a disturbance is applied at k = 20 and k = 40. Such
disturbance is realized by opening the pump bypass valve,
recycling a portion of water to be sump. The model NN is
selected as nam = 6, nbm = 3, ndm = 1 with hm = 5. In
addition, Kp(1) = 2.0, Ki(1) = 16 and λILC

p = λILC
i = 1.

As mentioned, ILC trains the weights of the neural network
model so that the entropy of modeling error is decreased
along with the progress of the batches. This trend is shown
in Fig. 5.
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Fig. 5. Hk(em(i)) changes along with the batches

Minimizing the error entropy measure should make the
PDF of the closed loop modeling error to approach a Gaus-
sian alike and narrowly shaped PDF batch-by-batch. This
means that the randomness of the modeling error within
the closed loop control system is minimized. This can be
examined through a comparison between the modeling
error PDF (γm,k(em)) at the first batch (i.e., k = 1) and
the modelling error PDF at the final batch when k = 60
as shown in Fig.6, which confirms such a change in the
modeling error PDF shape.

The updated model parameters are used to provide the
controller with the approximated plant Jacobian as de-
scribed before. In addition, the closed loop tracking per-
formance should lead to a batch-wise improvement at the
same time. Fig. 7 illustrates the controlled flow rate during
the first 30 batches where the set point is r = 1.3 lpm.
The figure confirms the improved trend in the closed-loop
tracking performance.

The bypass valve of the pump is opened during the 20th

batch, resulting in an output drift within the 21st batch.
However, the tuning algorithm starts to minimize the
tracking error, or in other words, to reject the disturbance.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12233



−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Modeling Error, em,k (i)

← γ
m,1

(e)

γ
m,60

(e)→

M
o
d
el

E
rr

o
r

P
D

F
,
γ

m
,k

(e
m

(i
))

Initial Modeling Error PDF
Final Modeling Error PDF

Fig. 6. The modeling error PDF γm,k(em) from k = 1 to
k = 60

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time, sec

O
u
tp

u
t

V
a
lu

e
y
k
(i

),
S
et

P
o
in

t
=

1
.3

li
t

m
in

k=2   (Initial Batches)

k=10 (Normal Operation)

k=21 (disturbance occurred)

k=25 (Normal Operation)

Fig. 7. The closed loop set point tracking through ILC for
r = 1.3 lpm

At shown in Fig.8, the set point is changed to 0.6 lpm at
30th batch. The set point tracking performance is achieved
after 5 seconds. However, the pump bypass valve is opened
again at beginning of the 40th batch. The disturbance
is successfully rejected by the adaptive system after 6
seconds into the 41st batch.

It would be interesting to study PI controller coefficients
along with the batches as illustrated in Fig. 9. The tuning
algorithm tunes controller to Kp(20) = 6 and Ki(20) =
15.5 in order to minimize the entropy. Opening the pump
bypass valve at k = 21 will decrease the volume of the
water flowing through the P − 5 pipe, thus increasing
the tracking error and making slight increase to KP .
Meanwhile, Ki increases more to eliminate the increase
in the tracking error mean value. Then the set point is
changed to r = 0.6 lpm at k = 30th. The same disturbance,
yet lasting for a short period of time, occurs at the 40th

batch and the tuning algorithm acts to maintain the
desired performance.
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r = 0.6 lpm
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The tuning algorithm should lead to minimization of the
closed loop tracking error entropy along with the progress
of batches. Fig.10 suggests that in spite of disturbances
and set point changes, the entropy minimization has been
effectively achieved.

The control tuning algorithm should result in a narrowly-
shaped PDF of the tracking error. Fig. 11 suggests that
in spite of the disturbances and changes in the operating
point, γk(ek(i)) will be shaped as a Gaussian-alike distri-
bution at the end of the final batch.

Finally, Fig. 12 illustrates the dynamic variations in a
3D mesh representation of the closed loop tracking error
distribution. This figure confirm that such a batch-by-
batch dynamic change in the tracking error PDF has led
to a Gaussian-alike PDF shape in the end.

6. CONCLUSIONS

An ILC based adaptive minimum entropy control method
has been proposed for unknown nonlinear and non-
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Fig. 12. The 3D mesh of the tracking error through ILC

Gaussian stochastic systems. The key idea is to divide the
control horizon into a certain number of batches within
which the control signal is applied to the plant, and be-
tween adjacent batches the ILC-based minimum entropy
tuning law is employed to update both plant model and

controller parameters. Since the modeling and tracking er-
ror signals are non-Gaussian, the mean square of error min-
imization are not suited to characterize the randomness in
the modeling and control phases. Thus, the goal of the
optimization technique is to update model and controller
parameters in such a way that the entropy of modeling
and tracking errors are minimized along with the progress
of batches. In this regard, the neural network model plays
a vital role in terms of providing the controller with the
plant Jacobian. The proposed algorithm has bee applied
to a test rig where experimental results have confirmed the
effectiveness of the proposed method.
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