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Abstract: The advantages of compactness from logic of state-space model description and
quantitativity from probabilistic knowledge of stochastic disturbances have been exploited to
construct a situational awareness which then provides essential common knowledge to non-
cooperative decision makers about the adverse and dynamic environment within a linear-
quadratic class of nonzero-sum stochastic games. It incorporates the perception of relevant
attributes of the decision problem, comprehension of the meaning of the shared interaction
model in combination with and in relation to various goals of non-cooperative decision makers
so that future projection of higher-order characteristics of the Chi-squared random measures of
performance is obtained with high confidence. New solution concepts, called the multi-cumulant
Nash strategies are proposed to directly influence respective performance distributions and to
effectively guarantee performance robustness for non-cooperative decision makers.
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1. INTRODUCTION

In non-cooperative multi-player differential games, there
may be more than two decision makers who wish to
optimize different utility functions. Each decision maker
manipulates his strategies to a shared interaction process,
described by a stochastic differential equation and chooses
a criterion of performance that reflects his a-prior interest
and finally a strategy is attained via optimization of his
measure of performance. To the best knowledge of the
author, most studies on nonzero-sum differential games
for instance, Basar (1982), Cruz (2001) and references
therein have concentrated on the strategy selection part
of a Nash equilibrium. This equilibrium ensures that no
decision maker has incentives to unilaterally deviate in
order to improve his expected performance with respect
to all realizations of the environmental disturbances. Very
little work, if any, has been published on the subject of
higher-order characteristic performance variability intro-
duced by the process noise stochasticity that involves: 1)
whether it is possible to construct beliefs that reflect gen-
uine uncertainty about the environmental disturbances,
namely Nature’s mixed random realizations, yet are nar-
row enough to permit learning on performance robustness
with respect to variability in the stochastic environment
and 2) the support of beliefs should, on the one hand,
encompass mixed random strategies, reflecting uncertainty
about Nature and, on the other hand, needs to include
strategies that actually are optimal for non-cooperative
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decision makers given the support of their beliefs. In eco-
nomics context, the importance of incorporating aversion
to specification uncertainty has been considered by Hansen
(1999). Rather recently, a new stochastic control theory of
robust design is also already in place wherein the accounts
of Pham (2005, 2007a,b, 2008) have addressed risk aversion
for performance uncertainty in stochastic regulators and
cooperative decision-making. The main contribution of
the research investigation considered here is the exten-
sion of the aforementioned results Pham (2007b, 2008) to
another stochastic class of non-cooperative multi-person
games where all respective measures of performance of
non-cooperative decision makers are viewed as random
variables with Nature’s mixed random realizations. The
action space of Nature regarding all realizations of the
underlying stochastic process is assumed to be common
knowledge, but a realized measure of performance is pri-
vate and known only to that particular decision maker.
Included with the present work are some innovative an-
swers to completely unexplored research areas as such:
i) Non-cooperative decision makers are not reasonably
content with such average measures of performance; ii) An
efficient and tractable procedure that calculates exactly
higher-order characteristics of performance distributions;
and iii) New optimal strategies that guarantee perfor-
mance robustness with something much stronger than a
stochastically averaging measure of performance.

2. PERFORMANCE-MEASURE STATISTICS

A class of stochastic decision problems with N non-
cooperative decision makers, identified as u1, . . . , uN is
considered on a finite horizon [t0, tf ]. The initial decision
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state at time t = t0, x(t0) � x0 ∈ R
n is fixed. It is assumed

that a Nash decision system of uncertainty and robustness
is engaged against Nature in a stationary (stochastic) en-
vironment whose representation w(t) � w(t, ω) : [t0, tf ] ×
Ω �→ R

p is an p-dimensional stationary Wiener process
defined with {Ft}t≥t0>0 being its filtration on a complete
filtered probability space (Ω,F , {F}t≥t0>0,P) over [t0, tf ]
with the correlation of independent increments
E
{
[w(τ) − w(ξ)][w(τ) − w(ξ)]T

}
= W |τ − ξ|, W > 0.

Next, non-cooperative decision makers choose actions in
strategy spaces U i ∈ L2

Ft
(Ω; C([t0, tf ]; Rmi)) and i =

1, . . . , N being the subsets of Hilbert space of R
mi-valued

square integrable processes on [t0, tf ] that are adapted to
the sigma-field Ft generated by w(t). Associated with each
admissible (N+1)-tuple (x(·);u1(·), . . . , uN (·)) is a random
measure of performance J i : R

n × U1 × · · · × UN �→ R
+

J i(x0;u1, . . . , uN ) = xT (tf )Qi
fx(tf ) (1)

+
∫ tf

t0

⎡⎣xT(τ)Qi(τ)x(τ) +
N∑

j=1

(uj)T(τ)Rij(τ)uj(τ)

⎤⎦dτ

for i-th decision maker where states of the interaction pro-
cess, x(t) � x(t, ω) : [t0, tf ]×Ω �→ R

n belong to the Hilbert

space L2
Ft

(Ω; C([t0, tf ]; Rn)) with E
{∫ tf

t0
xT (τ)x(τ)dτ

}
fi-

nite and evolve via the stochastic differential equation

dx(t) =

[
A(t)x(t) +

N∑
i=1

Bi(t)ui(t)

]
dt + G(t)dw(t) ,

x(t0) = x0 (2)

in which A ∈ C([t0, tf ]; Rn×n), Bi ∈ C([t0, tf ]; Rn×mi),
and G ∈ C([t0, tf ]; Rn×p) are deterministic matrix-
valued functions. Design parameters Qi

f ∈ R
n×n, Qi ∈

C([t0, tf ]; Rn×n), and Rij ∈ C([t0, tf ]; Rmi×mi) represent-
ing relative weightings for terminal state, transient state
trajectories, and actions are deterministic and positive
semidefinite with Rii(t) invertible.

Since the interaction model (2) is linear, it is often argued
that the actions of non-cooperative decision makers should
be a function of the states. The restriction of strategy
spaces to the set of so-called Markov functions can be justi-
fied by the assumption that non-cooperative decision mak-
ers participate in the Nash game where they only have ac-
cess to the current time and state of the interaction. There-
fore, it amounts to considering only those feedback Nash
equilibria which permit a linear feedback synthesis γi :
[t0, tf ] × L2

Ft
(Ω; C([t0, tf ]; Rn)) �→ L2

Ft
(Ω; C([t0, tf ]; Rmi))

ui(t) = γi(t, x(t)) � Ki(t)x(t) (3)

where the admissible feedback gains Ki ∈ C([t0, tf ]; Rmi×n)
will be appropriately defined. In particular, this subclass
of feedback Nash equilibria should satisfy the requirement.
Definition 1. Feedback Nash Equilibrium.
A set of equilibrium actions ui

∗(t) is called strongly time
consistent if, for all t1 ∈ [t0, tf ), these actions constitute
a Nash equilibrium for the truncated decision problem
defined on [t1, tf ] where x(t1) is an arbitrarily chosen state
which is reachable from some initial state at t = t0.

For the given (t0, x0) and subject to the strategies (3), the
dynamics of the interaction process (2) follows

dx(t) =

[
A(t) +

N∑
i=1

Bi(t)Ki(t)

]
x(t)dt + G(t)dw(t) ,

x(t0) = x0 , (4)

and the performance-measure associated with i-th decision
maker becomes

J i(x0;K1, . . . ,KN ) = xT (tf )Qi
fx(tf ) (5)

+
∫ tf

t0

xT(τ)

⎡⎣Qi(τ) +
N∑

j=1

(Kj)T(τ)Rij(τ)Kj(τ)

⎤⎦x(τ)dτ .

In addition, the stochastic interaction system (2) in the
absence of process noises is assumed to be uniformly
exponentially stable. That is, there exist positive constants
η1 and η2 such that the pointwise matrix norm of the
closed-loop state transition matrix satisfies the inequality

||Φ(t, τ)|| ≤ η1e
−η2(t−τ) ∀ t ≥ τ ≥ t0 .

The pair (A(t), [B1(t) . . . BN (t)]) is stabilizable if there
exist bounded matrix-valued functions K1(t), . . . , KN (t)
such that dx(t) =

(
A(t) +

∑N
i=1 Bi(t)Ki(t)

)
x(t)dt is

uniformly exponentially stable.

Within the view of the linear-quadratic structure of the
decision problem, the performance-measure (5) for i-th
decision maker is clearly a random variable with Chi-
squared type. Hence, the uncertainty of performance dis-
tribution must be assessed via a complete set of higher-
order statistics beyond the statistical averaging. It is
therefore necessary to develop a mathematical construct
and support of the beliefs on performance uncertainty to
extract the knowledge in definite terms of performance-
measure statistics for each decision maker. This is done by
adopting the results in Pham (2007b).
Theorem 1. Performance-Measure Statistics.
Let decision makers choose actions ui(t) = Ki(t)x(t), the
pair (A, [B1 . . . BN ]) be uniformly stabilizable on [t0, tf ],
and the multi-person Nash decision system be governed
by (4) and (5). For ki ∈ Z

+ fixed, the ki-th cumulant
associated with i-th decision maker is given by

κi
k(t0, x0) = xT

0 Hi(t0, ki)x0 + Di(t0, ki) (6)

where the cumulant-generating components {Hi(α, r)}ki
r=1

and {Di(α, r)}ki
r=1 evaluated at α = t0 satisfy the support-

ing matrix-valued differential equations (with the depen-
dence of Hi(α, r) and Di(α, r) upon the admissible gains
K1, . . . ,KN suppressed)

d

dα
Hi(α, 1) = −

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj(α)

⎤⎦T

Hi(α, 1)

− Hi(α, 1)

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj(α)

⎤⎦
− Qi(α) −

N∑
j=1

(Kj)T (α)Rij(α)Kj(α) (7)

and, for 2 ≤ r ≤ ki
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d

dα
Hi(α, r) = −

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj(α)

⎤⎦T

Hi(α, r)

− Hi(α, r)

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj(α)

⎤⎦
−

r−1∑
s=1

2r!
s!(r − s)!

Hi(α, s)G(α)WGT (α)Hi(α, r − s) (8)

together with 1 ≤ r ≤ ki

d

dα
Di(α, r) = −Tr

{
Hi(α, r)G(α)WGT (α)

}
(9)

where the terminal-value conditions Hi(tf , 1) = Qi
f ,

Hi(tf , r) = 0 for 2 ≤ r ≤ ki and Di(tf , r) = 0 for
1 ≤ r ≤ ki.

Clearly then, the compactness offered by logic from the
state-space model description (4) has been successfully
combined with the quantitativity from a-priori probabilis-
tic knowledge of Nature’s noise characteristics. Thus, the
uncertainty of individual performance (5) can now be
represented in a compact and robust way. Subsequently,
the time-backward differential equations (7)-(9) not only
offer a tractable procedure for the calculation of (6) but
also allow the incorporation of a subclass of linear feed-
back Nash equilibria. Such performance-measure statistics
are therefore, referred as “information” statistics which
are extremely valuable for shaping i-th decision maker’s
performance distribution.

3. PROBLEM STATEMENTS

Suffice it to say here that all the performance-measure
statistics, or equivalently cumulants (6) depend in part
of the known initial condition x(t0). Although different
states x(t) will result in different values for the traditional
“performance-to-come”, the cumulant values are however,
functions of time-backward evolutions of the cumulant-
generating variables Hi(α, r) and Di(α, r) that totally ig-
nore all the values x(t). This fact therefore makes the new
optimization problem as being considered in cumulant-
based control particularly unique as compared with the
more traditional dynamic programming class of investiga-
tions. In other words, the time-backward trajectories (7)-
(9) should be considered as the “new” dynamical equa-
tions from which the resulting Mayer optimization and
associated value function in the framework of dynamic
programming Fleming (1975) thus depend on these “new”
state variables Hi(α, r) and Di(α, r).

For notational simplicity, ki-tuple variables Hi and Di

are introduced as the states of performance uncertainty
for i-th decision maker with Hi(·) �

(
Hi

1(·), . . . ,Hi
ki

(·)
)

and Di(·) �
(
Di

1(·), . . . ,Di
ki

(·)
)

wherein each element
Hi

r ∈ C1([t0, tf ]; Rn×n) of Hi and each element Di
r ∈

C1([t0, tf ]; R) of Di have the representations of Hi
r(·) =

Hi(·, r) and Di
r(·) = Di(·, r), with the right members

satisfying the dynamic equations (7)-(9). The convenient
mappings are defined by
F i

r : [t0, tf ] × (Rn×n)ki × R
m1×n × · · · × R

mN×n �→ R
n×n

Gi
r : [t0, tf ] × (Rn×n)ki �→ R

with the actions

F i
1(α,Hi,K1, . . . ,KN ) �

−

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj(α)

⎤⎦T

Hi
1(α)

−Hi
1(α)

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj(α)

⎤⎦
− Qi(α) −

N∑
j=1

(Kj)T (α)Rij(α)Kj(α) ,

F i
r(α,Hi,K1, . . . ,KN ) �

−

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj(α)

⎤⎦T

Hi
r(α)

−Hi
r(α)

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj(α)

⎤⎦
−

r−1∑
s=1

2r!
s!(r − s)!

Hi
s(α)G(α)WGT(α)Hi

r−s(α), 2 ≤ r ≤ ki

Gi
r(α,Hi) � −Tr

{
Hi

r(α)G(α)WGT (α)
}

, 1 ≤ r ≤ ki.

Now it is straightforward to establish the product map-
pings F i

1 × · · · × F i
ki

: [t0, tf ] × (Rn×n)ki × R
m1×n ×

· · · × R
mN×n �→ (Rn×n)ki and Gi

1 × · · · × Gi
ki

: [t0, tf ] ×
(Rn×n)ki �→ R

ki along with the corresponding notations
F i � F i

1 × · · · × F i
ki

and Gi � Gi
1 × · · · × Gi

ki
. Thus, the

dynamic equations of performance uncertainty (7)-(9) can
be rewritten as

d

dα
Hi(α) = F i(α,Hi(α),K1(α), . . . , KN (α)) , (10)

d

dα
Di(α) = Gi(α,Hi(α)) (11)

where the terminal-value conditions Hi(tf ) � Hi
f =

(Qi
f , 0, . . . , 0) and Di(tf ) � Di

f = (0, . . . , 0).

Note Hi = Hi(·,K1, . . . ,KN ) and Di = Di(·,K1, . . . ,KN ).
The performance index for the multi-person stochastic
decision problem can be formulated in K1, . . . ,KN .
Definition 2. Performance Index.
Fix ki ∈ Z

+, the sequence μi = {μi
r ≥ 0}ki

r=1 with
μi

1 > 0. Then for the given initial condition (t0, x0), the
i-th decision maker minimizes his own performance index

φi
0 : {t0} × (Rn×n)ki × R

ki �→ R
+

over a finite optimization horizon is defined as
φi

0

(
t0,Hi(t0,K1, . . . ,KN ),Di(t0,K1, . . . ,KN )

)
�

ki∑
r=1

μi
rκ

i
r(K

1, . . . ,KN ) , (12)

=
ki∑

r=1

μi
r

[
xT

0 Hi
r(t0,K

1, . . . ,KN )x0+ Di
r(t0,K

1, . . . ,KN )
]

where parametric design freedom μi
r chosen by i-th de-

cision maker represent different levels of influence as they
deem important to his performance distribution. Solutions
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{Hi
r(α,K1, . . . ,KN )}ki

r=1 and {Di
r(α,K1, . . . ,KN )}ki

r=1
when evaluated at α = t0 satisfy the dynamic equa-
tions (10)-(11) with the terminal-value conditions Hi

f =
(Qi

f , 0, . . . , 0), and Di
f = (0, . . . , 0).

Remark 1. The performance index (12) associated with i-
th decision maker is a weighted summation of some infor-
mation statistics with μi

r representing multiple degrees of
shaping the probability density function of (5). If all the
cumulants of (5) remain bounded as (5) arbitrarily closes
to 0, the first cumulant dominates the summation and the
cumulant-based optimization problem reduces to the clas-
sical Linear-Quadratic-Gaussian (LQG) control problem.

For the given (tf ,Hi
f ,Di

f ), the class Ki
tf ,Hi

f
,Di

f
;μi of admis-

sible feedback gains is then defined.
Definition 3. Admissible Feedback Gain.
Let a compact subset K

i ⊂ R
mi×n be the set of allowable

gain values chosen by i-th decision maker. For the given
ki ∈ Z

+, μi = {μi
r ≥ 0}ki

r=1 with μi
1 > 0, the sets of admis-

sible feedback gain strategies Ki
tf ,Hi

f
,Di

f
;μi is assumed to be

the class of C([t0, tf ]; Rmi×n) with values Ki(·) ∈ K
i

for
which solutions to the dynamic equations (10)-(11) exist
on the finite horizon [t0, tf ].

Since cooperation can not be enforced in the multi-person
decision problem with multi-criteria objectives, a Nash
equilibrium solution concept ensures that no decision mak-
ers have incentive to unilaterally deviate from the equilib-
rium decision laws in order to further reduce their perfor-
mance indices. Thus, the Nash game-theoretic framework
is suitable to capture the nature of conflicts as actions of
a decision maker are tightly coupled with those of other
remaining decision makers.
Definition 4. Nash Equilibrium Solution.
Let φi

0

(
t0,Hi

(
t0,K

1, . . . ,Ki−1,Ki,Ki+1, . . . ,KN
)
,

Di
(
t0,K

1, . . . ,Ki−1,Ki,Ki+1,KN
) )

associate with i-th
decision maker. Then, the N-tuple of admissible feedback
gains

(
K1

∗ , . . . ,KN
∗
)

provides a Nash equilibrium solution,

if φi
0

(
t0,Hi

(
t0,K

1
∗ , . . . ,Ki−1

∗ ,Ki
∗,K

i+1
∗ , . . . ,KN

∗
)
,

Di
(
t0,K

1
∗ , . . . ,Ki−1

∗ ,Ki
∗,K

i+1
∗ , . . . ,KN

∗
) )

is at most equal

to φi
0

(
t0,Hi

(
t0,K

1
∗ , . . . ,Ki−1

∗ ,Ki,Ki+1
∗ , . . . ,KN

∗
)
,

Di(t0,K1
∗ , . . . ,Ki−1

∗ ,Ki,Ki+1
∗ , . . . ,KN

∗ )
)

where Ki is any
admissible feedback gain of i-th decision maker.

When solving for a Nash equilibrium solution, it is very
important to realize that N decision makers have different
performance indices to minimize. A standard approach
for a potential solution from the set of N inequalities as
stated above is to solve jointly N optimal control problems
defined by these inequalities, each of which depends struc-
turally on the other decision maker’s decision laws. How-
ever, a Nash equilibrium solution even under the feedback
information structure to this class of problems can not be
unique due to informational nonuniqueness as indicated
in Basar (1982). Therein, problems with informational
nonuniqueness under the feedback information pattern
and the need for more satisfactory resolution have been
addressed via the requirement of the Nash equilibrium

solution to have the additional property that its restriction
on the interval [t0, α] is a Nash solution to the truncated
version of the original problem, defined on [t0, α]. With
such a restriction so defined, the solution is now termed
as a feedback Nash equilibrium solution which is now
free of any informational nonuniqueness, and thus whose
derivation allows a dynamic programming type argument,
as proposed in the sequel development.
Definition 5. Feedback Nash Equilibrium Solution.
Let N -tuple

(
K1

∗ , . . . ,KN
∗
)

be feedback Nash equilibrium
in ×N

r=1Kr
tf ,Hr

f
,Dr

f
;μr and (Hi

∗,Di
∗) the corresponding tra-

jectory solutions of the dynamic equations associated with
i-th decision maker

d

dα
Hi(α) = F i

(
α,Hi(α),K1(α), . . . , KN (α)

)
d

dα
Di(α) = Gi

(
α,Hi(α)

)
.

Then, the N -tuple of feedback gains
(
K1

∗ , . . . ,KN
∗
)

when
restricted to the interval [t0, α] is still a feedback Nash
equilibrium solution for the optimal control problem with
the appropriate terminal-value condition

(
α,Hi

∗(α),Di
∗(α)

)
for all α ∈ [t0, tf ].

Next, one may state the corresponding cumulant-based
control optimization problems for which the set of static
Nash problems needs to be solved for a feedback Nash
equilibrium solution and satisfies the already mentioned
Nash inequalities. The optimization problem for the multi-
person stochastic Nash decision problem is then stated.
Definition 6. Optimization Problem.
Suppose that ki ∈ Z

+ is fixed. Under the memoryless
perfect-state information pattern, the optimization for i-th
decision maker in the multi-person stochastic Nash deci-
sion problem over a finite horizon is given by the minimiza-
tion of φi

0

(
t0,Hi(t0,K1, . . . ,KN ),Di(t0,K1, . . . ,KN )

)
over all Ki(·) ∈ Ki

tf ,Hi
f
,Di

f
;μi , μi = {μi

r ≥ 0}ki
r=1 with

μi
1 > 0, and subject to (10)-(11) for α ∈ [t0, tf ].

Since a direct dynamic programming approach is taken,
it is therefore necessary to introduce the value function
Vi(ε,Yi,Zi) for i-th decision maker starting at (ε,Yi,Zi).
Definition 7. Value Function.
The value function Vi : [t0, tf ] × (Rn×n)ki × R

ki �→
R

+ ∪ {+∞} associated with i-th decision maker is de-
fined as Vi

(
ε,Yi,Zi

)
equal to the minimization of

φi
0

(
t0,Hi(t0,K1, . . . ,KN ),Di(t0,K1, . . . ,KN )

)
for all

Ki(·) ∈ Ki
ε,Yi,Zi;μi and (ε,Yi,Zi) ∈ [t0, tf ] × (Rn×n)ki ×

R
ki .

Note that the value function Vi
(
ε,Yi,Zi

)
for i = 1, . . . , N

is supposed to be continuously differentiable in
(
ε,Yi,Zi

)
.

Definition 8. Actionable Sets.
Let a non-empty actionable set associated with i-th
decision maker be defined by the expression Qi �{(

ε,Yi,Zi
)
∈ [t0, tf ] × (Rn×n)ki × R

ki : Ki
ε,Yi,Zi;μi �= 0

}
.

When i-th decision maker is confident that other N − 1
decision makers choose their Nash equilibrium strategies,
i.e., (K1

∗ , . . . ,Ki−1
∗ ,Ki+1

∗ , . . . ,KN
∗ ). He then uses his Nash

strategy, Ki
∗. Thus, the definition of Nash equilibrium
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is used in an obvious extension of the usual dynamic
programming argument. As the result, the value function
Vi
(
ε,Yi,Zi

)
satisfies the following necessary condition.

Theorem 2. HJB Equation-Mayer Problem.
Let

(
ε,Yi,Zi

)
be any interior point of the actionable set

Qi for i-th decision maker at which the value function
Vi
(
ε,Yi,Zi

)
is differentiable. If there exist a Nash equilib-

rium strategy set (K1
∗ , . . . ,KN

∗ ) ∈ ×N
r=1Kr

ε,Yr,Zr;μr , then
the partial differential equation of dynamic programming

0 = min
Ki∈K

i

{
∂

∂ε
Vi
(
ε,Yi,Zi

)
+

∂

∂ vec(Zi)
Vi
(
ε,Yi,Zi

)
· vec

(
Gi
(
ε,Yi

))
+

∂

∂ vec(Yi)
Vi
(
ε,Yi,Zi

)
·

vec
(
F i
(
ε,Yi,K1

∗ , . . . ,Ki−1
∗ ,Ki,Ki+1

∗ , . . . ,KN
∗
))}

(13)

is satisfied where Vi
(
t0,Hi

0,Di
0

)
= φi

0

(
t0,Hi

0,Di
0

)
.

Finally, the sufficient condition used to verify the Nash
strategy of i-th decision maker is given in the sequel.
Theorem 3. Verification Theorem.
Fix ki ∈ Z

+ and let Wi(ε,Yi,Zi) be continuously differ-
entiable solution of the HJB equation (13) which satisfies
the boundary condition

Wi(t0,Hi
0,Di

0) = φi
0

(
t0,Hi

0,Di
0

)
. (14)

Let 3-tuple
(
tf ,Hi

f ,Di
f

)
be point of Qi; strategy set

(K1
∗ , . . . ,Ki−1

∗ ,Ki,Ki+1
∗ , . . . ,KN

∗ ) in ×N
r=1Kr

tf ,Hr
f
,Dr

f
;μr ;

and the i-th decision maker corresponding solutions
(Hi,Di) of the equations (10)-(11). Wi

(
α,Hi(α),Di(α)

)
is then a time-backward increasing function of α.

If (K1
∗ , . . . ,Ki−1

∗ ,Ki
∗,K

i+1
∗ , . . . ,KN

∗ ) is a set of strategies
in ×N

r=1Kr
tf ,Hr

f
,Dr

f
;μr defined on [t0, tf ] with corresponding

i-th decision maker solutions,
(
Hi

∗,Di
∗
)

of the preceding
equations such that for α ∈ [t0, tf ]

0 =
∂

∂ε
Wi
(
α,Hi

∗(α),Di
∗(α)

)
(15)

+
∂

∂ vec(Yi)
Wi
(
α,Hi

∗(α),Di
∗(α)

)
·

vec
(
F i
(
α,Hi

∗(α),K1
∗(α), . . . , KN

∗ (α)
))

+
∂

∂ vec(Zi)
Wi
(
α,Hi

∗(α),Di
∗(α)

)
vec
(
Gi
(
α,Hi

∗(α)
))

then Ki
∗ is the Nash strategy in Ki

tf ,Hi
f
,Di

f
;μi and

Wi
(
ε,Yi,Zi

)
= Vi

(
ε,Yi,Zi

)
(16)

where Vi
(
ε,Yi,Zi

)
is the value function associated with

i-th decision maker.

4. NON-COOPERATIVE DECISION STRATEGIES

Recall that the optimization problem being considered
herein is in “Mayer form” and can be solved by applying
an adaptation of the Mayer form verification theorem of
dynamic programming given in Fleming (1975). In the
framework of dynamic programming, the i-th decision

maker is often required to denote the terminal time and
states of a family of optimization problems as (ε,Yi,Zi)
rather than (tf ,Hi

f ,Di
f ). That is, for ε ∈ [t0, tf ] and

1 ≤ l ≤ ki, the states of the system (10)-(11) defined
on the interval [t0, ε] have the terminal values denoted by
Hi(ε) ≡ Yi and Di(ε) ≡ Zi. Since the performance index
(12) is quadratic affine in terms of arbitrarily fixed x0, this
observation suggests a solution to the HJB equation (13)
is of the form as follows.
Theorem 4. Candidate Value-Function.
Fix ki ∈ Z

+ and let (ε,Yi,Zi) be any interior point of the
actionable set Qi at which the real-valued function

Wi(ε,Yi,Zi) =

xT
0

ki∑
l=1

μi
l

(
Yi

l + E i
l (ε)

)
x0 +

ki∑
l=1

μi
l

(
Zi

l + T i
l (ε)

)
(17)

is differentiable. The parametric functions of time E i
l ∈

C1([t0, tf ]; Rn×n) and T i
l ∈ C1([t0, tf ]; R) are yet to be

determined for i-th decision maker. Furthermore, the time
derivative of Wi(ε,Yi,Zi) is given by

d

dε
Wi(ε,Yi,Zi) =

ki∑
l=1

μi
l

(
Gi

l (ε,Yi) +
d

dε
T i

l (ε)
)

+ xT
0

ki∑
l=1

μi
l

(
F i

l (ε,Yi,K1, . . . ,KN ) +
d

dε
E i

l (ε)
)

x0. (18)

The substitution of this hypothesized solution (17) into
the Hamilton-Jacobi-Bellman (HJB) equation (13) and
making use of the result (18) yields the necessary condition

0 ≡ min
Ki∈K

i

{
xT

0

(
ki∑

l=1

μi
l

d

dε
E i

l (ε)

)
x0

+
ki∑

l=1

μi
l

d

dε
T i

l (ε) +
ki∑

l=1

μi
lGi

l (ε,Yi)

+ xT
0

(
ki∑

l=1

μi
lF i

l (ε,Yi,K1, . . . ,KN )

)
x0

}
. (19)

Differentiating the expression within the bracket of (19)
with respect to Ki yields the necessary condition for an
extremum of (12) on [t0, ε],

−2(Bi)T (ε)
ki∑

l=1

μi
lYi

l M0 − 2μi
1R

ii(ε)KiM0 = 0.

Clearly, the matrix M0 � x0x
T
0 is arbitrarily rank-one, it

must be true that

Ki(ε,Yi,Zi) = −(Rii)−1(ε)(Bi)T (ε)
ki∑

r=1

μ̂i
rYi

r (20)

where μ̂i
r � μi

l/μi
1 for μi

1 > 0. Substituting the gain ex-
pressions (20) into the right member of the HJB equation
(13) yields the value of the minimum
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xT
0

{
ki∑

l=1

μi
l

d

dε
E i

l (ε) − AT (ε)
ki∑

l=1

μi
lYi

l −
ki∑

l=1

μi
lYi

l A(ε)

+

[
N∑

j=1

kj∑
r=1

μ̂j
rYj

rBj(ε)(Rjj)−1(ε)(Bj)T (ε)

]
ki∑

l=1

μi
lYi

l

+
ki∑

l=1

μi
lYi

l

[
N∑

j=1

Bj(ε)(Rjj)−1(ε)(Bj)T (ε)
kj∑

s=1

μ̂j
sYj

s

]

− μi
1Q

i(ε) − μ1

N∑
j=1

[
kj∑

r=1

μ̂j
rYj

rBj(ε)(Rjj)−1(ε)·

Rij(ε)(Rjj)−1(ε)(Bj)T (ε)
kj∑

s=1

μ̂j
sYj

s

]

−
ki∑

l=2

μi
l

l−1∑
q=1

2l!
q!(l − q)!

Yi
qG(ε)WGT (ε)Yi

l−q

}
x0

+
ki∑

l=1

μi
l

d

dε
T i

l (ε) −
ki∑

l=1

μi
lTr
{
Yi

l G(ε)WGT (ε)
}

. (21)

It is now necessary to exhibit
{
E i

p(·)
}ki

p=1
and

{
T i

p (·)
}ki

p=1

which render the left side of (21) equal to zero for ε ∈
[t0, tf ], when {Yi

p}ki
p=1 are evaluated along the solution

trajectories.

Studying the expression (21) reveals that E i
p(·) and T i

p (·)
for 1 ≤ p ≤ ki satisfying the differential equations

d

dε
E i
1(ε) = AT (ε)Hi

1(ε) + Hi
1(ε)A(ε) + Qi(ε)

−Hi
1(ε)

⎡⎣ N∑
j=1

Bj(ε)(Rjj)−1(ε)(Bj)T (ε)
kj∑

s=1

μ̂j
sHj

s(ε)

⎤⎦
−

⎡⎣ N∑
j=1

kj∑
r=1

μ̂j
rHj

r(ε)B
j(ε)(Rjj)−1(ε)(Bj)T (ε)

⎤⎦Hi
1(ε)

+
N∑

j=1

[
kj∑

r=1

μ̂j
rHj

r(ε)B
j(ε)(Rjj)−1(ε)·

Rij(ε)(Rjj)−1(ε)(Bj)T (ε)
kj∑

s=1

μ̂j
sHj

s(ε)

]
(22)

and, for 2 ≤ p ≤ ki

d

dε
Ep(ε) = AT (ε)Hi

p(ε) + Hi
p(ε)A(ε)

−Hi
p(ε)

⎡⎣ N∑
j=1

Bj(ε)(Rjj)−1(ε)(Bj)T (ε)
kj∑

s=1

μ̂j
sHj

s(ε)

⎤⎦
−

⎡⎣ N∑
j=1

kj∑
r=1

μ̂j
rHj

r(ε)B
j(ε)(Rjj)−1(ε)(Bj)T (ε)

⎤⎦Hi
p(ε)

+
p−1∑
q=1

2p!
q!(p − q)!

Hi
q(ε)G(ε)WGT (ε)Hi

p−q(ε) , (23)

together with, for 1 ≤ p ≤ ki

d

dε
T i

p (ε) = Tr
{
Hi

p(ε)G(ε)WGT (ε)
}

(24)

will work. Furthermore, at the boundary condition, it is
necessary to have Wi

(
t0,Hi

0,Di
0

)
= φi

0

(
t0,Hi

0,Di
0

)
. Or

equivalently, it yields

xT
0

ki∑
l=1

μl(Hi
l0 + E i

l (t0))x0 +
ki∑

l=1

μi
l(Di

l0 + T i
l (t0)) =

xT
0

ki∑
l=1

μi
lHi

l0x0 +
ki∑

l=1

μi
lDi

l0 .

Thus, matching the boundary condition yields the corre-
sponding initial value conditions Ep(t0) = 0 and Tp(t0) = 0
for the equations (22)-(24). Applying the feedback gains
specified in (20) along the solution trajectories of the equa-
tions (10)-(11), these equations become the time-backward
Riccati-type differential equations

d

dε
Hi

1(ε) = −AT (ε)Hi
1(ε) −Hi

1(ε)A(ε) − Qi(ε)

+ Hi
1(ε)

⎡⎣ N∑
j=1

Bj(ε)(Rjj)−1(ε)(Bj)T (ε)
kj∑

s=1

μ̂j
sHj

s(ε)

⎤⎦
+

⎡⎣ N∑
j=1

kj∑
r=1

μ̂j
rHj

r(ε)B
j(ε)(Rjj)−1(ε)(Bj)T (ε)

⎤⎦Hi
1(ε)

−
N∑

j=1

[
kj∑

r=1

μ̂j
rHj

r(ε)B
j(ε)(Rjj)−1(ε)·

Rij(ε)(Rjj)−1(ε)(Bj)T (ε)
kj∑

s=1

μ̂j
sHj

s(ε)

]
(25)

and, for 2 ≤ p ≤ ki

d

dε
Hi

p(ε) = −AT (ε)Hi
p(ε) −Hi

p(ε)A(ε)

+ Hi
p(ε)

⎡⎣ N∑
j=1

Bj(ε)(Rjj)−1(ε)(Bj)T (ε)
kj∑

s=1

μ̂j
sHj

s(ε)

⎤⎦
+

⎡⎣ N∑
j=1

kj∑
r=1

μ̂j
rHj

r(ε)B
j(ε)(Rjj)−1(ε)(Bj)T (ε)

⎤⎦Hi
p(ε)

−
p−1∑
q=1

2p!
q!(p − q)!

Hi
q(ε)G(ε)WGT (ε)Hi

p−q(ε) , (26)

together with, for 1 ≤ p ≤ ki

d

dε
Di

p(ε) = −Tr
{
Hi

p(ε)G(ε)WGT (ε)
}

(27)

where the terminal-value conditions Hi
1(tf ) = Qi

f , Hi
p(tf ) =

0 for 2 ≤ p ≤ ki and Di
p(tf ) = 0 for 1 ≤ p ≤ ki.

Thus, whenever these equations (25)-(27) admit solu-
tions {Hi

p(·)}ki
p=1 and {Di

p(·)}ki
p=1, then the existence of

{Ep(·)}ki
p=1 and {T i

p (·)}ki
p=1 satisfying the equations (22)-

(24) are assured. By comparing equations (22)-(24) to
those of (25)-(27), one may recognize that these sets
of equations are related to one another by d

dεE i
p(ε) =

− d
dεHi

p(ε) and d
dεT i

p (ε) = − d
dεDi

p(ε) for 1 ≤ p ≤ ki.
Enforcing the initial value conditions of E i

p(t0) = 0 and
T i

p (t0) = 0 uniquely implies that E i
p(ε) = Hi

p(t0) − Hi
p(ε)

and T i
p (ε) = Di

p(t0) − Di
p(ε) for all ε ∈ [t0, tf ] and yields
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a value function Wi(ε,Yi,Zi) = xT
0

∑ki

l=1 μi
lHi

l(t0)x0 +∑ki

l=1 μi
lDi

l(t0) for which the sufficient condition (15) of
the verification theorem is satisfied. Therefore, the decision
laws (20) minimizing (12) become optimal

Ki
∗(ε) = −(Rii)−1(ε)(Bi)T (ε)

ki∑
r=1

μ̂i
rHi

r∗(ε). (28)

Theorem 5. Multi-Cumulant Nash Decision Strategies.
Consider the stochastic Nash game (4)-(5) against Nature
whose (A, [B1 . . . BN ]) is uniformly stabilizable on [t0, tf ].
Let ki ∈ Z

+ and the sequence μi = {μi
r ≥ 0}ki

r=1 with
μi

1 > 0. Then the optimal decision law associated with
i-th decision maker is given by

Ki
∗(α) = −(Rii)−1(α)(Bi)T (α)

ki∑
r=1

μ̂i
rHi

r∗(α) (29)

where μ̂i
r � μi

l/μi
1 are mutually chosen by i-th decision

maker for different levels of robustness on his own per-
formance and {Hi

r∗(α)}ki
r=1 are optimal solutions of the

time-backward differential equations

d

dα
Hi

1∗(α) = −

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj
∗(α)

⎤⎦T

Hi
1∗(α)

−Hi
1∗(α)

⎡⎣A(α) +
N∑

j=1

Bj(α)Ki
∗(α)

⎤⎦
− Qi(α) −

N∑
j=1

(Kj
∗)

T (α)Rij(α)Kj
∗(α) , (30)

and, for 2 ≤ r ≤ ki

d

dα
Hi

r∗(α) = −

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj
∗(α)

⎤⎦T

Hi
r∗(α)

−Hi
r∗(α)

⎡⎣A(α) +
N∑

j=1

Bj(α)Kj
∗(α)

⎤⎦
−

r−1∑
s=1

2r!
s!(r − s)!

Hi
s∗(α)G(α)WGT (α)Hi

r−s,∗(α) (31)

with the terminal-value conditions Hi
1∗(tf ) = Qi

f , and
Hi

r∗(tf ) = 0 when 2 ≤ r ≤ ki.
Remark 2. It is observed that to have the Nash strategy
(29) of i-th decision maker be defined and continuous for
all α ∈ [t0, tf ], the solutions Hi

r∗(α) to the equations
(30)-(31) when evaluated at α = t0 must also exist.
Therefore, it is necessary that Hi

r∗(α) are finite for all
α ∈ [t0, tf ). Moreover, the solutions of (30)-(31) exist and
are continuously differentiable in a neighborhood of tf .
Applying a result from Dieudonne (1960), these solutions
can further be extended to the left of tf as long as
Hi

r∗(α) remain finite. Hence, the existences of unique and
continuously differentiable solutions to the equations (30)-
(31) are certain if Hi

r∗(α) are bounded for all α ∈ [t0, tf ).
As the result, the candidate value functions Wi(α,Hi,Di)
are continuously differentiable as well.
Theorem 6. Necessary and Sufficient Conditions.(
K1

∗
(
α,H1

∗
)
, . . . ,KN

∗
(
α,HN

∗
))

is a Nash equilibrium strat-

egy set if and only if
(
H1

∗(α), . . . ,HN
∗ (α)

)
is bounded for

all α ∈ [t0, tf ).

5. CONCLUSIONS

This research article presents a new innovative and gen-
eralized solution concept to address multiple resolutions
of performance robustness often seen as unresolved issues
in stochastic control and Linear-Quadratic (LQ) decision
problems. Within the cumulant-based control framework
for decision-making, rational decision makers have ability
to maintain preferable shapes of realized performance in-
dices with respect to Nature’s mixed random realizations
via multi-cumulant based actions that now have access
to the current time and interaction states. These decen-
tralized feedback Nash gains (29) operate dynamically on
the time-backward histories of the cumulant-supporting
equations (30)-(31) from the final to the current time.
Interestingly enough, it is noted that these cumulant-
supporting equations also depend on Nature’s a-priori
probabilistic characteristics. Thus, non-cooperative deci-
sion makers employing optimal decision gains (29) have
purposely traded the property of the certainty equivalence
principle as they would obtain from the special case of LQ
decision problems, for the adaptability to deal with uncer-
tain environments. Future work will be a next attainment
of cumulant-based solutions in multi-person decision prob-
lems for complex situations: (i) performance robustness via
a desired statistical description, (ii) non-cooperative deci-
sion selection via output feedback information patterns,
and (iii) confrontations among rational decision makers.
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