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Abstract: In this paper we deal with a generalized multi-period mean-variance portfolio
selection problem with the market parameters subject to Markov random regime switchings.
We present necessary and sufficient conditions for obtaining an optimal control policy for this
Markovian generalized multi-period mean-variance model, based on a recursive procedure. The
analytical solution of our model provides the base for the solution of a great variety of mean-
variance formulations.

1. INTRODUCTION

The mean-variance (MV) portfolio selection problem has
been investigated since the the Markowitz’s seminal work
in (Markowitz [1952]). Nowadays, there are a huge litera-
ture about this subject, with some extensions, see (Fabozzi
et al. [2007]) for an overview of the portfolio selection study
development.

Despite of been vastly researched, until recently the market
uncertainties were still reproduced like the original mod-
els, by a stochastic models in which the key parameters,
expected return and volatility, are deterministic. How-
ever, there has been an increased interest in the study
of financial models in which those key parameters are
modulated by a Markov chain, see for instance (Zhang

[2000]), (Bauerle and Rieder [2004]), (Çakmak and Özekici
[2006]) and (Araujo and Costa [2006]). Such models can
better reflect the market environment, since the overall
assets usually move according to a major trend given by
the state of the underlying economy or by the general
mood of the investors.

The generalized multi-period mean-variance problem with
Markov regime switching (PGMV ) can be seen as an
unrestricted stochastic control problem in which the ob-
jective function is formed by the weighted sum of a linear
combination of three elements: the expected wealth, the
square of the expected wealth and the expected value
of the wealth squared. Several mean-variance models can
be derived from the PGMV model, as the traditional
formulation in which the objective is to maximize the
expected terminal wealth for a given final risk (variance),
or the complex one in which the objective function is to
maximize the weighted sum of the wealth throughout its

⋆ The first author received financial support from CNPq (Brazilian
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investment horizon, with control over maximum wealth
lost.

In this paper we consider a multi-period generalized mean-
variance model with Markov switching in the key mar-
ket parameters. Our main result is to derive necessary
and sufficient conditions for obtaining an optimal control
policy for this multi-period Markovian generalized mean-
variance problem, based on a set of interconnected Riccati
difference equations and some other recursive equations.
It is important to stress that previous papers on this
subject obtained only necessary conditions for optimality
of the control strategy. To our best knowledge, no suffi-
cient condition had been obtained before. Moreover, when
compared with the no jumps case (Zhu et al. [2004]), we
provide a more straight full way to compute the optimal
control strategy for the multi-period generalized mean-
variance problem.

This paper is organized as follows. In section 2 we for-
mulate the model and the problems to be investigated.
In Section 3, an optimal control policy for an auxiliary
problem as well as the expected value and variance of
the investor’s wealth are analytically derived. Our main
results are in section 4, where we provide necessary and
sufficient conditions for the solution of the generalized
mean-variance problem. The paper is concluded in section
5 with some final remarks.

2. DEFINITIONS AND THE FINANCIAL MODEL

Throughout the paper we shall denote by R
n the n-

dimensional Euclidean real space and by R
n×m the Eu-

clidean space of all n × m real matrices. For a sequence
of numbers a1, . . . , am, we shall denote by diag(ai) the
diagonal matrix in R

m×m formed by the element ai at the
ith diagonal, i = 1, . . . ,m. The superscripts ′ will denote
the transpose of a vector or matrix. The variance of a
random variable X will be denoted by V ar(X).
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We will consider a financial market with n+1 risky securi-
ties on a complete filtered probability space (Ω,F , {Ft} ,P).
The assets’ price will be described by the random vector
S̄ (t) = (S0 (t) , . . . ,Sn (t))

′
taking values in R

n+1 with
t = 0, . . . , T . Set R̄ (t) = (R0(t), . . . ,Rn(t))′, with Ri(t) =
Si(t+1)
Si(t)

. We assume that the random vector R̄ (t) satisfies

the following equation:

R̄ (t) = [ē+ µ̄θ(t) (t)] + σ̄θ(t) (t)W (t) , (1)

where ē = (1, e′)
′
, with e ∈ R

n a vector with 1′s in
all its components. Here {θ (t) ; t = 0, . . . , T} is a finite-
state discrete-time Markov chain with state space M =
{1, . . . ,m}, and {W (t); t = 0, . . . , T} is a sequence of
(n+ 1)-dimensional independent random vectors with zero
mean and covariance I (identity matrix). We assume that
{W (t) , θ (t)} are mutually independent. The set M rep-
resents the possible operations mode of the market. P is a
probability measure such that P (θ (t+ 1) = j |θ (t) = i ) =
pij (t), pij (t) ≥ 0 and

∑
j∈M pij (t) = 1, for t =

0, . . . , T − 1 and i, j ∈ M. We set for t = 0, . . . , T ,
P (t) = [pij (t)]

m×m
∈ R

m×m, πi (t) = P (θ (t) = i),

π (t) = (π1 (t) , . . . , πm (t))
′
. As in (Costa et al. [2005]), for

z = (z1, . . . , zm)
′
∈ R

m, we define the operator E (z, t) =

(E1 (z, t) , . . . , Em (z, t)) as Ei (z, t) =
m∑

j=1

pij (t) zj , for i ∈

M. For notational simplicity, we shall omit from now on
the variable t in Ei (z, t). The filtration Ft is such that the
random vectors {S̄ (k) ; k = 0, . . . , t} and the Markov chain
{θ (k) ; k = 0, . . . , t} are Ft-measurable.

When the market operation mode is θ(t) = i ∈ M,
µ̄i (t) ∈ R

n+1 represents the vector with the expected
returns of the assets, while σ̄i (t) σ̄i (t)

′
∈ R

(n+1)×(n+1) is
the covariance matrix of the returns. It will be convenient
to decompose µ̄i (t) and σ̄i (t) as µ̄i (t) = (µi0 (t) , µi (t))

′
,

with µi (t) = (µi1 (t) , . . . , µin (t))
′
∈ R

n, and σ̄i (t) =
(σi0 (t) , σi (t))

′
, with σi0 (t) = (σi00 (t) , . . . , σi0n (t)) ∈

R
1×n+1, and σi (t) = [σiℓj (t)] ∈ R

n×n+1. We shall assume

in this paper that E
(
R̄ (t) R̄ (t)

′
|θ(t) = i

)
> 0, for each

t = 0, . . . , T − 1 and i ∈ M.

The set of admissible investment strategies U = {u =
(u (0) , . . . , u (T − 1))} is such that for each t = 0, . . . , T −
1, u (t) = (u1 (t) , . . . , un (t))

′
is a Ft-measurable random

vector with finite second moment taking values in R
n.

We have that u (t) represents the amount of the wealth
allocated among the n securities. Associated to each ad-
missible investment strategy u we have the portfolio’s
value process {V u (t) ; t = 0, . . . , T − 1}, which represents
the investor’s wealth at the end of time t. Note that the
amount of wealth allocated to the asset i = 0 is deter-
mined by V u (t)−e′u(t). For notational simplicity, we shall
suppress the superscript u whenever no confusion may

arise. Define Āθ(t) (t) = 1 + µθ(t)0(t), Ãθ(t)(t) = σθ(t)0(t),

B̄θ(t)(t) = µθ(t)(t) − eµθ(t)0(t), and B̃θ(t)(t) = σθ(t)(t) −
eσθ(t)0(t). Assuming that the initial wealth V (0) = V0 > 0
and that the portfolio is self-financed, the wealth process
is represented by:

V (t+ 1) = Aθ(t) (t)V (t) +Bθ(t) (t)
′
u (t) , (2)

where Aθ(t) (t) = Āθ(t) (t) + Ãθ(t) (t)W (t) and Bθ(t) (t) =

B̄θ(t) (t) + B̃θ(t) (t)W (t).

2.1 The PGMV Model

The generalized multi-period mean-variance problem we
shall consider is described as follows. Consider a set of
numbers α(t) > 0 for t ∈ I := {τ1, . . . , τιf

} with τ0 = 0
and τιf

= T . Consider also a sequence of positive numbers
ρ(t), ν(t), and a sequence of real numbers ℓ(t), for t ∈ I,
with ρ(T ) > 0, ν(T ) > 0, and ℓ(T ) 6= 0. We define the
following problem:

PGMV (ρ, ℓ, ν) : max
u∈U

∑
t∈I

[
ν(t)E (V (t))

2

− ρ (t)E
(
V (t)2

)
+ ℓ(t)E (V (t))

]
. (3)

It will be convenient to extend the definition of α(t), ℓ(t),
ν(t) and ρ(t) for t /∈ I by setting in these cases α(t) = 0,
ℓ(t) = 0, ν(t) = 0 and ρ(t) = 0. It is also be convenient to
set τ0 = 0, ℓ(0) = 0, ν(0) = 0, ρ(0) = 0 and α(0) = 0.

As pointed out in (Li and Ng [2000]), the stochastic
problem PGMV (ρ, ℓ, ν) is non separable in the sense
of dynamic programming, since it involves a non-linear
function of a expectation term (E(V (t))2). Therefore it
cannot be directly solved by dynamic programming. A
solution procedure based on a tractable auxiliary problem
is proposed in (Zhu et al. [2004]) to seek an optimal
dynamic portfolio policy for problem PGMV (ρ, ℓ, ν). We
will adopt the same procedure in this paper, considering a
similar auxiliary problem. Let λ(t), for t = 1, . . . , T , be a
set of real numbers, with λ (t) = 0 for t /∈ I. The auxiliary
problem is defined as follows:

A (λ, ρ) : min
u∈U

T∑

t=1

E
{
ρ(t)V (t)

2
− λ(t)V (t)

}
. (4)

The solution of problem A (λ, ρ) will be presented in Sec-
tion 3 while an explicit solution of problem PGMV (ρ, ℓ, ν)
will be presented in Section 4, based on the necessary and
sufficient conditions for optimality that will be derived.

2.2 MV Problems Derived From PGMV

Several mean-variance problems can be derived from the
PGMV model, with a convenient definition of the coeffi-
cients ρ(t), ν(t) and ℓ(t). We show next one example.

Consider a multi-period MV problem, similar to the one
presented in (Zhu et al. [2004]), in which the objective
function is formed by the weighted sum of the expected
wealth along the time, with restriction over the the proba-
bility (̺ (t)) of the wealth falling bellow a minimum value
ψ(t). This problem can be formally posed as:

PBC (̺, ψ) : max
u∈U

∑

t∈T

α(t)E (V (t))

s.t.: V ar (V (t)) ≤ ̺ (t) [E (V (t) − ψ (t))]2 , for t ∈ T .

By introducing in PBC (̺, ψ) the nonnegative Lagrange
multipliers (ω(t), t ∈ T ) a Lagrangian maximization prob-
lem LPBC (ω, ̺, ψ) formed by attaching the constraints
to the objective function can be written as follows:
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LPBC (ω, ̺, ψ) : max
u∈U

∑

t∈T

(α(t) − 2ω (t) ̺ (t)ψ (t))

·E (V (t)) −
∑

t∈T

ω (t)E
(
V (t)

2
)

+
∑

t∈T

ω (t) (1 + ̺ (t))

·E (V (t))
2

+
∑

t∈T

ω (t) ̺ (t)ψ (t)
2
.

We can establish a relationship between LPBC (ω, ̺, ψ)
and (3) by taking for t ∈ T : ρ (t) = ω (t), ν (t) =
ρ (t) (1 + ̺ (t)) and ℓ (t) = α(t) − 2ρ (t) ̺ (t)ψ (t).

The problem PBC (̺, ψ) can be transformed into the
original MV problem, presented in (Markowitz [1952]),
just considering for that T = {T } and the right side of
the inequality as a constant like σ2, which represents the
desired level of final risk. Other combinations also could
be done, giving rise to other MV formulations like the one
in (Çakmak and Özekici [2006]).

In Section 4 we present an analytical solution of (3) in
terms of ρ, ℓ and ν. With this solution a numerical pro-
cedure would be necessary to find the Lagrange multi-
pliers which attend to the respective restrictions, as for
PBC (̺, ψ). However, there are some situations in which
an exact solution can be derived analytically, as the cases
in which there is a restriction only on the final time T as
the one presented in (Çakmak and Özekici [2006]).

3. OPTIMAL CONTROL POLICY FOR THE
AUXILIARY PROBLEM

In this section we obtain an explicit expression for the
value function and optimal control policy for the auxiliary
problem A (λ, ρ) by applying dynamic programming. We
also obtain closed expressions for the expected value and
variance of the wealth. As in the classical stochastic
linear quadratic problem, this optimal control law depends
on the solution of a set of recursive coupled Riccati
difference equations (see (5) below). Before going to the
main result, let us define some intermediate problems.
The value function for the auxiliary problem at time
k ∈ {0, . . . , T − 1} is defined by: J (V (k) , θ (k) , k) =

min
uk∈Uk

∑T

t=k E
{
ρ(t)V (t)

2
− λ(t)V (t)

∣∣∣Fk

}
, where Uk =

{uk = (u (k) , . . . , u (T − 1)) ;u (t) is Ft measurable for
each t = k, . . . , T − 1}. We shall need the following
definitions. For each i ∈ M and t = 0, . . . , T , set:

φi (t) = E
(
Bi (t)Bi (t)

′)
= B̄i (t) B̄i (t)

′
+ B̃i (t) B̃i (t)

′
,

ϕi (t)
′
= E

(
Ai (t)Bi (t)

′)
= Āi (t) B̄i (t)

′
+ Ãi (t) B̃i (t)

′
,

βi (t) = B̄i (t)
′
φi (t)

−1
B̄i (t) ,

Qi (t) = E
(
Ai (t)

2
)
− ϕi (t)

′
φi (t)

−1
ϕi (t) ,

Ri (t) = Āi (t) − B̄i (t)
′
φi (t)

−1
ϕi (t) ,

with Q (t) = diag(Qi(t)), R (t) = diag(Ri(t)). Notice that
from the hypothesis that E(R̄ (t) R̄ (t)

′
| θ(t) = i > 0),

the inverse of φi (t) is well defined and Qi (t) > 0. We
compute backwards the m dimensional vectors K (t) =
(K1 (t) , . . . , Km (t))′, Z (t) = (Z1 (t) , . . . , Zm (t))′ and
D (t) = (D1 (t) , . . . , Dm (t))

′
, with Ki (t), Zi (t) and Di (t)

as follows: For t = T − 1, . . . , 0 and i ∈M :





Ki (t) = ρ(t) +Qi (t) Ei [K (t+ 1)] ,
Zi (t) = −λ(t) +Ri (t) Ei [Z (t+ 1)] ,

Di (t) = −
Ei [Z (t+ 1)]2

4Ei [K (t+ 1)]
βi (t) + Ei [D (t+ 1)] ,

(5)

with Ki (T ) = ρ(T ), Zi (T ) = −λ(T ) and Di (T ) = 0.
It will be convenient to define for s, t = 0, . . . , T and
s ≤ t, Q(t, s) ∈ R

m×m, R(t, s) ∈ R
m×m K(t, s) ∈ R

m

and Z(t, s) ∈ R
m as follows: Q(t, s) =

∏t−1
k=s[Q (k)P (k)],

K(t, s) = Q(t, s)e, K(s) = K(T, s), R(t, s) =
∏t−1

k=s[R (k)
·P (k)], Z(t, s) = R(t, s)e, Z(s) = Z(T, s), where
Q(s, s) = I and R(s, s) = I. From (5) we have that

K (t) =
∑T

s=t ρ(s)K(s, t) and Z (t) = −
∑T

s=t λ(s)Z(s, t).
We have the following theorem.

Theorem 1. The optimal control law for problem (4) is
given by

u (t) =−φθ(t) (t)
−1
ϕθ(t) (t)V (t)

−
Eθ(t) [Z (t+ 1)]

2Eθ(t) [K (t+ 1)]
φθ(t) (t)

−1
B̄θ(t) (t) . (6)

Furthermore, the value function for the intermediate prob-
lem is given by

J (V (t) , θ (t) , t) = Kθ(t) (t)V (t)
2

+ Zθ(t) (t) V (t)

+Dθ(t) (t) . (7)

Proof. Let us apply induction on t. For t = T we have that
J (V (T ) , θ (T ) , T ) = α(T )ρ(T )V (T )2−α(T )λ(T )V (T ) =

Kθ(T ) (T )V (T )
2

+ Zθ(T ) (T )V (T ) + Dθ(T ) (T ), in agree-
ment with Theorem 1. Suppose the result holds for t = k+
1. We show next that the solution also holds for t = k. For
θ(k) = i ∈ M and V (k) = v we have from the Bellman’s
principle of optimality that

J (v, i, k) = min
u(k)

E {J (V (k + 1) , θ (k + 1) , k + 1)| Fk}

+ (ρ(k)v2 − λ(k)v)

= min
u(k)

{Ei [K (k + 1)]
[
E
(
Ai (k)

2
)
v2 + 2ϕi (k)

′
u (k) v

+ u (k)′ φi (k)u (k)
]
+ Ei [Z (k + 1)] Āi (k) v

+ Ei [Z (k + 1)] B̄i (k)′ u (k) +Ei [D (k + 1)]}

+ (ρ(k)v2 − λ(k)v). (8)

Taking the derivative of (8) over u (k) and making the
result equal to zero yields (6). Substituting (6) into (8)
yields the value function expressed in (7), providing the
desired result.

Next we analytically derive expressions for the expected
value and variance of the wealth, for τκ ∈ I, under the
optimal control law (6). First, let for k = 0, . . . , T − 1,
κ = 0, . . . , ιf − 1 and i ∈ M:

B(k) = P (k)′diag

(
πi(k)βi(k)

Ei(K(k + 1))

)
P (k), (9)

B (τκ) =
∑τκ+1−1

k=τκ

R(τκ+1, k + 1)′B(k)R(τκ+1, k + 1),

(10)

C (τκ) =
∑τκ+1−1

k=τκ

Q(τκ+1, k + 1)′P (k)′·
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diag

(
βi (k)

(
Ei [Z(k + 1)]

Ei [K(k + 1)]

)2
)
π (k) (11)

{
q (t) = (q1 (t) , ..., qm (t))

′
,

qi (t) = E(V (t) 1{θ(t)=i})
(12)

{
g (t) = (g1 (t) , ..., gm (t))

′
,

gi (t) = E(V (t)2 1{θ(t)=i}).
(13)

Theorem 2. Under the optimal control law (6), the ex-
pected value and variance the wealth, for each τκ ∈ I
are given by, respectively:

E (V (τκ)) = q (0)′ Z (τκ,0) −
1

2

κ−1∑

k=0

Z (τk+1)
′ B (τk)′ e

(14)
and

V ar (V (τκ)) = g (0)
′
K (τκ, 0) +

1

4

κ−1∑

k=0

C (k)
′
e

−
(
q (τκ)′ e

)2
. (15)

Proof. Using the control law (6) into (2), from Proposition
3.35 in (Costa et al. [2005]) and from (12) it follows that

qj (t+ 1) =
m∑

i=1

pij(t)Ri (t) qi (t)

−
1

2

m∑

i=1

pij(t)πi (t)
Ei [Z (t+ 1)]

Ei [K (t+ 1)]
βi (t) .(16)

Now taking square on both sides of (2), using the control
law (6) in it, from Proposition 3.35 in (Costa et al. [2005])
and from (13) we have that

gj (t+ 1) =

m∑

i=1

pij(t)Qi (t) gi (t)

+
1

4

m∑

i=1

pij(t)πi (t)

(
Ei [Z (t+ 1)]

Ei [K (t+ 1)]

)2

βi (t) . (17)

Recalling that λ(t) = 0 for t /∈ I it follows from (5) that
for τκ ≤ k ≤ τκ+1 − 1

Z (k + 1) = R(τκ+1, k + 1)Z (τκ+1) (18)

and
Z (τκ) = −α(τκ)λ(τκ)e+ A′

κZ (τκ+1) . (19)

It is easy to see that using (10) and (18) in (16), we get:

q (τκ+1) = R(τκ+1, τκ)′q (τκ) −
1

2
B (τκ)Z(τκ+1), (20)

and, from (11) and (18) in (17), it yields:

g (τκ+1) = Q (τκ+1, τκ)′ g (τκ) +
1

4
C (τκ) . (21)

Recording that E (V (t)) = q (t)
′
e and V ar (V (T )) =

g (t)′ e − E (V (t))2, from (20) and (21) we have (14) and
(15).

4. SOLUTION OF THE GENERALIZED MEAN
VARIANCE PROBLEM

We solve in this section the generalized mean-variance
problem PGMV (ρ, ℓ, ν). We will represent the set of

optimal solutions for problemsA(λ, ρ) and PGMV (ρ, ℓ, ν)
by Π(A(λ, ρ)) and Π(PGMV (ρ, ℓ, ν)) respectively. In Sub-
section 4.1 we present a necessary condition for u ∈
PGMV (ρ, ℓ, ν), while in Sub-section 4.2 we derive a
sufficient condition.

4.1 Necessary condition

We present first a necessary condition for the optimal
control law u ∈ Π(PGMV (ρ, ℓ, ν)). We have the following
result.

Proposition 1. If u ∈ Π(PGMV (ρ, ℓ, ν)) then u ∈
Π(A(λ, ρ)) with, for t ∈ I,

λ(t) = ℓ(t) + 2ν(t)E(V u(t)). (22)

Proof. See Theorem 1 in Zhu et al. [2004].

It follows from Proposition 1 that to obtain u ∈
Π(PGMV (ρ, ℓ, ν)) we must have u ∈ Π(A(λ, ρ)) given by
(6) with λ(t) such that (22) holds. Set for κ = 0, . . . , ιf −1,
Aκ = R(τκ+1, τκ)′. In order to obtain Z(t) such that (22)
is satisfied, we evaluate recursively for κ = ιf − 1, . . . , 0
the following matrices Gκ ∈ R

m×m and vectors Sκ ∈ R
m,





Gκ = −2ν(τκ)ee′ + A′
κ

(
I +

1

2
Gκ+1Bκ

)−1

Gκ+1Aκ,

Gιf
= −2ν(T )ee′,

(23)



Sκ = −ℓ(τκ)e+ A′

κ

(
I +

1

2
Gκ+1Bκ

)−1

Sκ+1,

Sιf
= −ℓ(T )e,

(24)

where we are assuming that for each κ = ιf − 1, . . . , 0, the
inverse of

(
I + 1

2Gκ+1Bκ

)
exists. We have the following

proposition.

Proposition 2. Suppose that u, as defined in (6), is applied
to equation (4). If (22) holds then for each κ = ιf , . . . , 1,

Z(τκ) = Sκ + Gκq(τκ). (25)

Proof. By induction, for κ = ιf we have that Z(T ) =
−λ(T )e = −(ℓ(T ) + 2ν(T )e′q(T ))e and the result follows.
Suppose it holds for κ + 1. From (20) and the induction
hypothesis, we get that, for κ = 0, . . . , ιf − 1,

q (τκ+1) =

(
I +

1

2
BκGκ+1

)−1

A′
κq (τκ)

−
1

2

(
I +

1

2
BκGκ+1

)−1

BκSκ+1, (26)

with q̄(0) = q(0). From (19),

Z (τκ) =−α(τκ)(ℓ(τκ) + 2ν(τκ)e′q(τκ))e

+A′
κ (Sκ+1 + Gκ+1q(τκ+1)) . (27)

Replacing (26) into (27) and after some algebraic manip-
ulations using the inverse matrix lemma, we obtain (25).

Finally we have the following theorem.

Theorem 3. If u ∈ Π(PGMV (ρ, ℓ, ν)) then u is as in (6)
with λ(τκ) = ℓ(τκ)+2ν(τκ)e′q (τκ) in (5), and q (τκ) given
by (26).
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Proof. The proof follows from Propositions 1 and 2.

From Theorem 3 we have the following necessary condition
algorithm to determine the optimal control strategy for the
generalized mean-variance portfolio optimization problem.
Step i): Evaluate recursively the matrices Gκ and Sκ as
in (23) and (24) for κ = ιf , . . . , 0. Step ii): Evaluate
recursively q (τκ) given by (26) for κ = 0, . . . , ιf . Step
iii): Set λ(τκ) = ℓ(τκ) + 2ν(τκ)e′q (τκ) for κ = 0, . . . , ιf ,
0 otherwise. Step iv): Calculate recursively K(t) and Z(t)
as in (5) for t = T, . . . , 0. Step v): The optimal strategy is
given by (6).

4.2 Sufficient condition

In this sub-section we establish a sufficient condition for
the existence of a solution u ∈ Π(PGMV (ρ, ℓ, ν)). We
show first that it is enough to search for the optimal control
law of (3) in the form

uM (t) =−φθ(t) (t)
−1
ϕθ(t) (t)V (t)

−
Eθ(t) [M (t+ 1)]

2Eθ(t) [K (t+ 1)]
φθ(t) (t)−1 B̄θ(t) (t) . (28)

where M = (M(1), . . . ,M(T )), M(t) ∈ R
m. Let us denote

by U∗ ⊂ U the set of admissible controls uM written as in
(28) for some M . For any u ∈ U set

J (u) =
∑

t∈I

ρ(t)E
(
V u(t)2

)
−ℓ(t)E(V u (t))−ν(t)E(V u(t))2.

(29)

Proposition 3. If ûM ∈ U∗ is such that J (ûM ) =
min

uM∈U∗

J (uM ) then:

ûM ∈ Π(PGMV (ρ, ℓ, ν)).

Proof. We will show that for any u ∈ U we can find M
as above such that uM ∈ U∗ and J (uM ) ≤ J (u). Indeed
take M(t) = Z(t), with Z(t) as in (5) and λ(t) = ℓ(t) +
2ν(t)E(V u(t)), for t ∈ I, zero otherwise, and define uM as
in (28). From the fact that uM ∈ Π(A(λ, ρ)) we have that

∑

t∈I

(
ρ(t)E(V uM

(t)2) − λ(t)E(V uM

(t))
)

≤
∑

t∈I

(
ρ(t)E(V u(t)2) − λ(t)E(V u(t))

)
. (30)

Using λ(t) as above in (29) and after some manipulations
it is easy to see from (30) that

J (uM ) ≤ J (uM )+
∑

t∈I

ν(t)E
(
V u(t) − V uM

(t)
)2

≤ J (u),

showing the desired result.

From Proposition 3 and equations (16), (17) we can re-
write the stochastic problem PGMV (ρ, ℓ, ν) as a deter-
ministic one as follows:

min
M

∑

t∈I

ρ(t)e′gM (t) − ℓ(t)e′qM (t) − ν(t)(e′qM (t))2, (31)

with

qM (t+ 1) = R(t+ 1, t)′qM (t) − h (M,K, t) (32)

gM (t+ 1) = Q(t+ 1, t)′gM (t) + r (M,K, t) , (33)

with h(M,K, t) = (h1(M,K, t), . . . , hm(M,K, t)′ and
r (M,K, t) = (r1(M,K, t), . . . , rm(M,K, t))′ as to vectors

in R
m, with hj (M,K, t) = 1

2

∑m

i=1 pij(t)πi (t) Ei[M(t+1)]
Ei[K(t+1)]

·βi (t) and rj (M,K, t) = 1
4

∑m

i=1 pij(t)πi (t)
(

Ei[M(t+1)]
Ei[K(t+1)]

)2

·βi (t), for i, j ∈ M, and where M = (M(1), . . . ,M(T )),
M(t) ∈ R

m is the control variable. We can apply dynamic
programming to solve problem (31). For this we define, for
k = T − 1, . . . , 0, the intermediate problems

V(gk, qk, k) = min
Mk

∑

t∈I

ρ(t)e′gMk

(t) − ℓ(t)e′qMk

(t)

−ν(t)(e′qMk

(t))2. (34)

where Mk = (M(k + 1), . . . ,M(T )), M(t) ∈ R
m, and

gMk

(t), qMk

(t) are given by (32), (33) with initial condi-
tion g(k) = gk, q(k) = qk. In what follows, recall the defini-
tion of B(k) ≥ 0 in (9), and that (see, for instance, Saberi
et al. [1995], page 12-13)) for any matrix S ∈ R

m×m, the
generalized inverse of S (or Moore-Penrose inverse of S),
denoted by S† ∈ R

m×m is such that: i) SS†S = S, ii)
S†SS† = S†, iii) (SS†)′ = SS†, and iv) (S†S)′ = S†S.
Define recursively for k = T−1, . . . , 0 the symmetricm×m
matrices Λ(k), Ψ(k), the m-dimensional vectors L(k), and
real numbers ε(k) as follows:

Ψ(k) = B(k) + B(k)Λ(k + 1)B(k), (35)



Λ(k) = −ν(k)ee′ + (R(k + 1, k) (I − Λ(k + 1)
· B(k)Ψ(k)†B(k)

))
Λ(k + 1)R(k + 1, k)′,

Λ(T ) = −ν(T )ee′,
(36)





L(k) = −ℓ(k)e+ R(k + 1, k) (I − Λ(k + 1)
· B(k)Ψ(k)†B(k)

)
L(k + 1),

L(T ) = −ℓ(T )e,
(37)





ε(k) = −
1

4
L(k + 1)′B(k)Ψ(k)†B(k)L(k + 1)

+ ε(k + 1),
ε(T ) = 0.

(38)

We have the following theorem that establishes a suf-
ficient condition for the existence of a solution u ∈
Π(PGMV (ρ, ℓ, ν)). In what follows we denote by Im(S)
the range of a matrix S ∈ R

m×m.

Theorem 4. If for each k = T − 1, . . . , 0 we have that
Ψ(k) ≥ 0 and, for any q ∈ R

m,

B(k)

(
1

2
L(k + 1) + Λ(k + 1)R(k + 1, k)′q

)
∈ Im(Ψ(k))

(39)
then

V(gk, qk, k) = K(k)′gk + L(k)′qk + q′kΛ(k)qk + ε(k) (40)

and an optimal solution for problem (31) is given, for
k = 0, . . . , T − 1, by

M∗(k + 1) = Ψ(k)†B(k) (L(k + 1)

+ 2Λ(k + 1)R(k + 1, k)′q(k)) . (41)

Proof. By induction, we have from (36), (37), (38) that (40)
holds for k = T . Suppose that (40) holds for k+1. From the
Bellman’s principle of optimality, and noticing that K(k+
1)′r(M,K, k) = 1

4M
′B(k)M, and L(k + 1)′h(M,K, k) =

1
2M

′B(k)L(k + 1), we have that
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V(gk, qk, k) = α(k)ρ(k)e′gk − α(k)ℓ(k)e′qk

− α(k)ν(k)q′kee
′qk +K(k + 1)′Q(k + 1, k)′gk

+ L(k + 1)′R(k + 1, k)′qk + q′kR(k + 1, k)Λ(k + 1)

· R(k + 1, k)′qk + ε(k + 1)

+ min
M∈Rm

[
1

4
M′ (B(k) + B(k)′Λ(k + 1)B(k))M

− M′B(k)

(
1

2
L(k + 1) + Λ(k + 1)R(k + 1, k)′qk

)]
.

(42)

From Lemma 4.2 in (Rami et al. [2002]) we have that if
(39) holds then

B(k)

(
1

2
L(k + 1) + Λ(k + 1)R(k + 1, k)′q(k)

)
=

Ψ(k)†Ψ(k)B(k)

(
1

2
L(k + 1) + Λ(k + 1)R(k + 1, k)′q(k)

)

and thus we have that
1

4
M′Ψ(k)M − M′B(k)

(1

2
L(k + 1)

+ Λ(k + 1)R(k + 1, k)′qk

)
=

1

4

(
(M −M∗(k + 1))′

Ψ(k)(M −M∗(k + 1)) −M∗(k + 1)′Ψ(k)M∗(k + 1)
)
.

(43)

If Ψ(k) ≥ 0 then clearly from (43) the minimum in (42) is
reached for M = M∗(k + 1). By making M = M∗(k + 1)
in (42) and after some algebraic manipulations we obtain
(40), completing the proof.

Remark 1. If for each k = T − 1, . . . , 0 we have that
Ψ(k) > 0 then clearly (39) is satisfied, Ψ(k)† = Ψ(k)−1,
and the optimal solution (41) is unique. If I+Λ(k+1)B(k)
is non-singular then since Ψ(k) = B(k)(I + Λ(k + 1)B(k))
it follows that Im(Ψ(k)) = Im(B(k)) and clearly (39) is
satisfied.

From Theorem 4 we have the following sufficient condition
algorithm to determine the optimal control strategy for the
generalized mean-variance portfolio optimization problem.
Step i): Evaluate recursively the matrices Λ(k) and Ψ(k)
and vectors L(k) as in (36)-(37) for k = T − 1, . . . , 0.

Step ii): Evaluate recursively qM∗

(k) given by (32) for the
strategy M∗ as in (41) for k = 0, . . . , T . Step iii): The
optimal strategy is given by (28) with M = M∗.

Remark 2. From Theorem 3 the solution obtained from
the sufficient condition algorithm must coincide with the
solution obtained from the necessary condition algorithm
presented in the previous subsection.

Remark 3. We show next that when α(t) = 0 for t =
1, . . . , T − 1 and α(T ) = 1, ℓ(T ) = 1, ρ(T ) = ν(T ) = ν
(so that ιf = 1) our results reduce to those in (Çakmak

and Özekici [2006]). Indeed, we have that K(k) = νK(k)

and A0 = R(T, 0)′, B0 =
∑T−1

k=0 R(T, k+ 1)′B(k)R(T, k+

1), G1 = −2νee′, S1 = −e. Thus,
(
I + 1

2B0G1

)
=

(I − νB0ee
′) and e′ (I − νB0ee

′)
−1

= (I − νe′B0eI)
−1
e′ =

1
1−νe′B0e

e′. Defining a = q (0)
′
Z(0), c = g (0)

′
K(0), b =

∑T−1
k=0 h (Z,K, k)′ Z(k + 1), we get, after some algebraic

manipulations, that νe′B0e = 2b. Clearly the condition
for existence of a inverse of the matrix

(
I + 1

2G1B0

)
=

(I − νee′B0) is that b 6= 1
2 (indeed, by contradiction,

if b 6= 1
2 and there exists x ∈ R

m, x 6= 0 such that
x′ (I − νee′B0) = 0 then x′ (I − νee′B0) e = x′e(1−2b) = 0
so that x′e = 0 but in this case 0 = x′ (I − νee′B0) =
x′ which is a contradiction). From (26) and recalling
that e′q(T ) = E(V u(T )), e′A0 = Z(0)′ we get that
E(V u(T )) = 1

1−2b
a+ b

ν(1−2b) = aν+b
ν(1−2b) . Thus λ(T ) = 1 +

νE(V u(T )) = 1+2νa
1−2b

, in agreement with Çakmak and

Özekici [2006].

5. CONCLUSION

In this paper we studied a discrete-time generalized mean-
variance portfolio selection problem subject to Markovian
jumps in the parameters. We analytically derived a closed
form expression for an optimal investment strategy and
showed that this optimal policy depends upon a set of
interconnected Riccati difference equations presented in
(5) and other recursive equations. We also provided a
necessary condition algorithm and a sufficient condition
algorithm for determining this optimal strategy. Finally,
we showed that our results coincide with the special case
presented in (Çakmak and Özekici [2006]), for the multi-
period mean-variance portfolio selection problem subject
to Markovian jumps in the parameters when the objective
function and constraints consider only the final value of
the expected value or the variance of the wealth.
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