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Abstract: This article presents a novel model predictive control (MPC) scheme that achieves
input-to-state stabilization of constrained discontinuous nonlinear and hybrid systems. Input-to-
state stability (ISS) is guaranteed when an optimal solution of the MPC optimization problem
is attained. Special attention is paid to the effect that sub-optimal solutions have on ISS of
the closed-loop system. This issue is of interest as firstly, the infimum of MPC optimization
problems does not have to be attained and secondly, numerical solvers usually provide only
sub-optimal solutions. An explicit relation is established between the deviation of the predictive
control law from the optimum (called the optimality margin) and the resulting deterioration of
the ISS property of the closed-loop system (called the ISS margin).
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1. INTRODUCTION

Discrete-time discontinuous nonlinear and hybrid systems
form a powerful and general modeling class for the ap-
proximation of hybrid and nonlinear phenomena [Branicky
et al., 1998], which also includes the class of piecewise
affine (PWA) systems [Heemels et al., 2001]. The modeling
capability of the latter class of systems has already been
shown in several applications, including switched power
converters, automotive systems and systems biology, to
mention just a few. As a consequence, there is an increas-
ing interest in developing synthesis techniques for robust
control of discrete-time hybrid systems. The model pre-
dictive control (MPC) methodology [Mayne et al., 2000]
has proven to be one of the most successful frameworks for
this task, see, for example, [Bemporad and Morari, 1999,
Kerrigan and Mayne, 2002, Lazar et al., 2006] and the
references therein.

In this paper we are interested in input-to-state stability
(ISS) [Jiang and Wang, 2001] as a property to charac-
terize robust stability of hybrid systems in closed-loop
with MPC. More precisely, we consider systems that are
piecewise continuous, affected by additive disturbances. It
is known (for example, see [Lazar, 2006] and the references
therein) that for such discontinuous systems most of the re-
sults obtained for predictive control of continuous nonlin-
ear systems [Mayne et al., 2000, Limon et al., 2002, Grimm
et al., 2007] do not necessarily apply. Only the min-max
MPC methodology [Magni et al., 2006, Lazar et al., 2008]
could be an alternative, but the prohibitive computational
complexity of min-max MPC schemes prevents implemen-
tation even for linear systems. As such, computationally
feasible input-to-state stabilizing predictive controllers are
widely unavailable.

In what follows we propose a tightened constraints MPC
scheme for discontinuous systems along with conditions

for ISS of the resulting closed-loop system, assuming that
optimal MPC control sequences are implemented. These
results provide advances with respect to the existing works
on tightened constraints MPC [Limon et al., 2002, Grimm
et al., 2007], where continuity of the system dynamics is as-
sumed, towards discontinuous and hybrid systems. Guar-
anteeing robust stability and feasibility in the presence of
discontinuities is difficult and requires an innovative usage
of tightened constraints, which is conceptually different
from the approaches in [Limon et al., 2002, Grimm et al.,
2007]. Therein tightened constraints are employed for ro-
bust feasibility only. However, by carefully matching the
new tightening approach with the discontinuities in the
system dynamics, we achieve both robust feasibility and ISS
for the optimal case. Another issue that is widely neglected
in MPC for hybrid systems is the effect of sub-optimal
implementations. In particular, an important result was
recently presented in [Spjøtvold et al., 2007], where it was
shown that in the case of optimal control of discontinuous
PWA systems it is not uncommon that there does not even
exist a control law that attains the infimum. Moreover, nu-
merical solvers usually provide only sub-optimal solutions.
Thus, for hybrid systems it is necessary to study if and
how stability results for optimal predictive control change
in the case of sub-optimal implementations, which will be
done in this paper.

To cope with MPC control sequences (obtained by solving
MPC optimization problems) that are not optimal, but
within a margin δ ≥ 0 from the optimum, we introduce
the notion of ε-ISS as a particular case of the input-to-
state practical stability (ISpS) property [Jiang et al., 1996].
Furthermore, we establish an analytic relation between
the optimality margin δ of the solution of the MPC
optimization problem and the ISS margin ε(δ). Revealing
this explicit relation is an important result, as it provides
an a priori bound on the evolution of the closed-loop
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system state and leads to conditions that guarantee ISS
even in the presence of unaccounted sub-optimal solutions.

While the ISS results presented in this paper require
the use of a specific robust MPC problem formulation
(i.e. based on tightened constraints), we also show that
nominal asymptotic stability can be guaranteed for sub-
optimal MPC of hybrid systems without any modification
to the nominal MPC set-up presented in [Mayne et al.,
2000]. Note that the classical way to guarantee stability
of sub-optimal MPC is to explicitly include an additional
stabilization constraint in the original MPC set-up, which
enforces that the MPC cost function is a Lyapunov func-
tion for any feasible input sequence [Scokaert et al., 1999].
The explicit relation between the optimality margin δ and
the ISS margin ε(δ) presented in this paper leads to a
fundamentally different approach, as we do not change the
original MPC set-up.

1.1 Notation and basic definitions

Let R, R+, Z and Z+ denote the field of real numbers,
the set of non-negative reals, the set of integer numbers
and the set of non-negative integers, respectively. We use
the notation Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z |
k ≥ c1} and {k ∈ Z | c1 < k ≤ c2}, respectively, for
some c1, c2 ∈ Z. For x ∈ Rn let ‖x‖ denote an arbitrary
Hölder p-norm and for Z ∈ Rm×n, let ‖Z‖ denote the
corresponding induced matrix norm. We will use both
(z(0), z(1), . . .) and {z(l)}l∈Z+ with z(l) ∈ Rn, l ∈ Z+,
to denote a sequence. For a sequence z := {z(l)}l∈Z+ let
‖z‖ := sup{‖z(l)‖ | l ∈ Z+} and let z[k] := {z(l)}l∈Z[0,k] .
For a set S ⊆ Rn, we denote by ∂S the boundary, by int(S)
the interior and by cl(S) the closure of S. For two arbitrary
sets S ⊆ Rn and P ⊆ Rn, let S ∼ P := {x ∈ Rn | x +
P ⊆ S} denote their Pontryagin difference. For any µ > 0
we define Bµ as {x ∈ Rn | ‖x‖ ≤ µ}. A polyhedron (or
a polyhedral set) is a set obtained as the intersection of
a finite number of open and/or closed half-spaces. A real-
valued scalar function ϕ : R+ → R+ belongs to class K if it
is continuous, strictly increasing and ϕ(0) = 0. A function
β : R+ × R+ → R+ belongs to class KL if for each fixed
k ∈ R+, β(·, k) ∈ K and for each fixed s ∈ R+, β(s, ·) is
decreasing and limk→∞ β(s, k) = 0.

2. PRELIMINARIES

In this section we introduce the notion of ε-input-to-state
stability (ε-ISS) for discrete-time systems of the form:

x(k + 1) ∈ G(x(k), w(k)), k ∈ Z+, (1)
where x(k) ∈ Rn is the state, w(k) ∈ W ⊆ Rl is
an unknown input at discrete-time instant k ∈ Z+ and
G : Rn × Rl → 2(Rn) is an arbitrary nonlinear, possibly
discontinuous, set-valued function. For simplicity of nota-
tion, we assume that the origin is an equilibrium in (1) for
zero input, i.e. G(0, 0) = {0}. W ⊆ Rl is assumed to be a
bounded set.
Definition 1. RPI We call a set P ⊆ Rn robustly posi-
tively invariant (RPI) for system (1) with respect to W if
for all x ∈ P and all w ∈ W it holds that G(x, w) ⊆ P.
Definition 2. ε-ISS Let X with 0 ∈ int(X) and W be
subsets of Rn and Rl, respectively. For a given ε ∈ R+,

the perturbed system (1) is called ε-ISS in X for inputs
in W if there exist a KL-function β and a K-function γ
such that, for each x(0) ∈ X and all w = {w(l)}l∈Z+ with
w(l) ∈ W for all l ∈ Z+, it holds that all state trajectories
of (1) with initial state x(0) and input sequence w satisfy
‖x(k)‖ ≤ β(‖x(0)‖, k) + γ(‖w[k−1]‖) + ε, ∀k ∈ Z≥1.

We call system (1) ISS in X for inputs in W if (1) is 0-ISS
in X for disturbances in W.
Definition 3. ε-AS For a given ε ∈ R+, the 0-input
system (1), i.e. x(k + 1) ∈ G(x(k), 0), k ∈ Z+, is called
ε-asymptotically stable (ε-AS) in X if there exists a KL-
function β such that, for each x(0) ∈ X it holds that all
state trajectories with initial state x(0) satisfy ‖x(k)‖ ≤
β(‖x(0)‖, k)+ ε, ∀k ∈ Z≥1. We call the 0-input system (1)
AS in X if it is 0-AS in X.

The ε-ISS property defined above is a regional version
(i.e. for states in X and disturbances in W) of the ISpS
property defined in [Jiang et al., 1996]. However, here ε is
not introduced to cope with persistent disturbances, but it
will be related to sub-optimality of MPC control laws. We
refer to ε by the term ISS (AS) margin.
Theorem 4. Let d1, d2 be non-negative constants, let
a, b, c, λ be positive reals with c ≤ b and let α1(s) := asλ,
α2(s) := bsλ, α3(s) := csλ and σ ∈ K. Furthermore, let
X be a RPI set for system (1) with respect to W and let
V : Rn → R+ be a function such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) + d1, (2a)
V (x+)− V (x) ≤ −α3(‖x‖) + σ(‖w‖) + d2 (2b)

for all x ∈ X, w ∈ W and all x+ ∈ G(x,w). Then the
system (1) is ε-ISS in X for inputs in W with

β(s, k) := α−1
1 (3ρkα2(s)), γ(s) := α−1

1

(
3σ(s)
1− ρ

)
,

ε := α−1
1

(
3

(
d1 +

d2

1− ρ

))
, ρ := 1− c

b
∈ [0, 1). (3)

If the inequalities (2) hold for d1 = d2 = 0, the system (1)
is ISS in X for inputs in W.

The proof of Theorem 4 is similar in nature to the proof
given in [Lazar, 2006] by replacing the difference equation
by a difference inclusion as in (1) and is omitted here.
We call a function V (·) that satisfies the hypothesis of
Theorem 4 an ε-ISS function.

3. MPC SCHEME SET-UP

In this section we present an MPC scheme for discrete-time
piecewise continuous (PWC) nonlinear systems

x(k + 1) = g(x(k), u(k), w(k)) := gj(x(k), u(k)) + w(k)
if x(k) ∈ Ωj , k ∈ Z+, (4)

where each gj : Ωj × U → Rn, j ∈ S, is a continuous
function in x and S := {1, 2, . . . , s} is a finite set of indices.
We assume that the state x and the input u are constrained
in some sets X ⊆ Rn and U ⊆ Rm that contain the origin in
their interior. The collection {Ωj ⊆ Rn | j ∈ S} defines a
partition of X, meaning that ∪j∈SΩj = X and Ωi∩Ωj = ∅,
with the sets Ωj not necessarily closed. We also assume
that the disturbance w takes values in the set W := Bµ

with µ ∈ R>0 sufficiently small to be determined.

Consider now the following assumption on system (4).
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Assumption 5. For each fixed j ∈ S, gj(·, ·) satisfies a
continuity condition in the first argument in the sense that
there exists a K-function ηj such that
‖gj(x, u)− gj(y, u)‖ ≤ ηj(‖x− y‖), ∀x, y ∈ Ωj , ∀u ∈ U,

and ∃j0 ∈ S such that 0 ∈ int(Ωj0) and gj0(0, 0) = 0.

Note that we allow g(·, ·, ·) to be discontinuous in x
over the switching boundaries, which makes discontinuous
PWA systems a sub-class of PWC systems of the form (4).

For a fixed N ∈ Z≥1, let (φ(1), . . . , φ(N)) denote a state
sequence generated by the unperturbed system correspond-
ing to (4), i.e.
φ(i + 1) := gj(φ(i), u(i)) if φ(i) ∈ Ωj , i = 0, . . . , N − 1,

(5)
from initial condition φ(0) := x(k) and by applying an
input sequence u[N−1] = (u(0), . . . , u(N−1)) ∈ UN := U×
. . . × U. Let XT ⊆ X denote a set with 0 ∈ int(XT ).
Define η(s) := maxj∈S ηj(s) and let η[p](s) denote the p-
times function composition with η[0](s) := s and η[k](s) =
η(η[k−1](s)) for k ∈ Z≥1. As the maximum of a finite
number of K-functions is also a K-function, η ∈ K. For
any µ > 0 and i ∈ Z≥1, define

Li
µ :=

{
ζ ∈ Rn

∣∣∣∣‖ζ‖ ≤ i−1∑
p=0

η[p](µ)

}
.

Define the set of admissible input sequences for x ∈ X as:
UN (x) := {u[N−1] ∈ UN |φ(i) ∈ Xi, i = 1, . . . , N − 1,

φ(0) = x, φ(N) ∈ XT }, (6)
where Xi := ∪j∈S{Ωj ∼ Li

µ} ⊂ X, ∀i = 1, . . . , N − 1.

The purpose of the above set of input sequences will be
made clear in Lemma 11. For a given N ∈ Z≥1, notice that
µ > 0 has to be sufficiently small so that 0 ∈ int(Ωj0 ∼
LN−1

µ ). Let F : Rn → R+ and L : Rn × Rm → R+ with
F (0) = L(0, 0) = 0 be arbitrary nonlinear mappings.
Problem 6. MPC optimization problem Let XT ⊆ X
and N ∈ Z≥1 be given. At time k ∈ Z+ let x(k) ∈ X be
given and infimize the cost J(x(k),u[N−1]) := F (φ(N)) +∑N−1

i=0 L(φ(i), u(i)) over all sequences u[N−1] in UN (x(k)).

We call a state x ∈ X feasible if UN (x) 6= ∅. Problem 6
is said to be feasible for x ∈ X if UN (x) 6= ∅. Let
Xf (N) ⊆ X denote the set of feasible states for Problem 6.
Let V ∗(x) := infu[N−1]∈UN (x) J(x,u[N−1]). Since J(·, ·) is
lower bounded by 0, the infimum exists. As such, V ∗(x)
is well defined for all x ∈ Xf (N). However, the infimum
is not necessarily attainable, meaning that the infimum is
not necessarily a minimum. Indeed, in [Spjøtvold et al.,
2007] it was shown that the non-closedness of the regions
Ωj in the partition may lead to optimization problems for
which there does not exist a control law that attains the
infimum. Hence, only sub-optimal (though arbitrarily close
to the optimum) solutions can be found. This phenomenon
together with the fact that numerical solvers usually
provide sub-optimal solutions only, motivates the need for
results that guarantee robustness of predictive control laws
in the case of sub-optimal implementations. As such, in
this article we will consider the following set of sub-optimal
control sequences. For any x ∈ Xf (N) and δ ≥ 0, we define

Πδ(x) := {u[N−1] ∈ UN (x) | J(x,u[N−1]) ≤ V ∗(x) + δ}

and πδ(x) := {u(0) ∈ Rm | u[N−1] ∈ Πδ(x)}. We will
refer to δ by the term optimality margin 1 . For example,
an optimality margin δ can be guaranteed a priori by
using the sub-optimal mixed integer linear programming
(MILP) solver proposed in [Spjøtvold et al., 2007]. Fur-
thermore, quadratic programming (QP) and linear pro-
gramming (LP) solvers that are employed by existing
MIQP and MILP solvers [Holmström, 1999] usually allow
the specification of a tolerance with respect to achieving
the optimum. Therefore, the tolerance parameter can be
used to set a desired optimality margin.

In the next section we will establish ε(δ)-ISS and ISS
results for the sub-optimal MPC closed-loop system corre-
sponding to (4), which is given by the difference inclusion

x(k + 1) ∈ Φδ(x(k), w(k)) :=
{g(x(k), u, w(k)) | u ∈ πδ(x(k))}, k ∈ Z+. (7)

To simplify the exposition we will make use of the following
commonly adopted assumptions in tightened constraints
MPC [Limon et al., 2002, Grimm et al., 2007].
Assumption 7. There exist K-functions αL, αF := τsλ,
α1(s) := asλ and α2(s) := bsλ, τ, a, b, λ ∈ R>0, such that
(i) L(x, u) ≥ α1(‖x‖), ∀x ∈ X, ∀u ∈ U;
(ii) |L(x, u)− L(y, u)| ≤ αL(‖x− y‖), ∀x, y ∈ X, ∀u ∈ U;
(iii) |F (x)− F (y)| ≤ αF (‖x− y‖), ∀x, y ∈ Ωj0 ∩ LN−1

µ ;
(iv) V ∗(x) ≤ α2(‖x‖), ∀x ∈ Xf (N).

Assumption 8. There exist N ∈ Z≥1, θ > θ1 > 0, µ > 0
and a mapping h(·) such that
(i) αF (η[N−1](µ)) ≤ θ − θ1;
(ii) Fθ := {x ∈ Rn | F (x) ≤ θ} ⊆ (Ωj0 ∼ LN−1

µ ) ∩ XU and
gj0(x, h(x)) ∈ Fθ1 for all x ∈ Fθ;
(iii) F (gj0(x, h(x)))− F (x) + L(x, h(x)) ≤ 0, ∀x ∈ Fθ.

Note that the hypotheses in Assumption 7-(i),(ii),(iii)
usually hold by definition of L(·, ·) and F (·), e.g. when
these cost functions are defined via quadratic forms or
1,∞-norms. Also, it can be shown that the hypothesis
of Assumption 7-(iv) holds, even for discontinuous value
functions. For details and for techniques for computing
a terminal cost and how to choose N and µ such that
the hypotheses in Assumption 8-(i),(ii),(iii) are satisfied
we refer the interested reader to [Lazar, 2006].

4. INPUT-TO-STATE STABILITY RESULTS

Let h : Rn → Rm denote a terminal control law and define
XU := {x ∈ X | h(x) ∈ U}.
Theorem 9. Let δ ∈ R>0 be given, suppose that Assump-
tion 5, Assumption 7 and Assumption 8 hold for the non-
linear hybrid system (4) and Problem 6, and set XT = Fθ1 .
Then:

(i) If Problem 6 is feasible at time k ∈ Z+ for state
x(k) ∈ X, then Problem 6 is feasible at time k + 1 for
any state x(k + 1) ∈ Φδ(x(k), w(k)) and all w(k) ∈ Bµ.
Moreover, XT ⊆ Xf (N);

(ii) The closed-loop system x(k + 1) ∈ Φδ(x(k), w(k))
is ε(δ)-ISS in Xf (N) for inputs in Bµ with ISS margin

ε(δ) :=
(

3b
a2 δ

) 1
λ .

1 Note that δ = 0 and Πδ(x) 6= ∅ corresponds to the situation when
the global optimum is attained in Problem 6.
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To prove Theorem 9 we will make use of the following
technical lemmas (see the appendix for the proofs).
Lemma 10. Let x ∈ Ωj ∼ Li+1

µ for some j ∈ S, i ∈ Z+,
and let y ∈ Rn. If ‖y − x‖ ≤ η[i](µ), then y ∈ Ωj ∼ Li

µ.

Lemma 11. Let (φ(1), . . . , φ(N)) be a state sequence of
the unperturbed system (5), obtained from initial state
φ(0) := x(k) ∈ X and by applying an input se-
quence u[N−1] = (u(0), . . . , u(N − 1)) ∈ UN (x(k)). Let
(j1, . . . , jN−1) ∈ SN−1 be the corresponding mode se-
quence in the sense that φ(i) ∈ Ωji ∼ Li

µ ⊂ Ωji ,
i = 1, . . . , N − 1. Let (φ̄(1), . . . , φ̄(N)) be also a state
sequence of the unperturbed system (5), obtained from
the initial state φ̄(0) := x(k + 1) = φ(1) + w(k) for some
w(k) ∈ Bµ and by applying the shifted input sequence
ū[N−1] := (u(1), . . . , u(N − 1), h(φ̄(N − 1))).

Then, it holds that
(φ̄(i), φ(i + 1)) ∈ Ωji+1 × Ωji+1 for i = 0, . . . , N − 2,

(8a)

‖φ̄(i)− φ(i + 1)‖ ≤ η[i](‖w(k)‖) for i = 0, . . . , N − 1.
(8b)

Proof. (Proof of Theorem 9)
(i) We will show that ū[N−1], as defined in Lemma 11,
is a feasible sequence of inputs at time k + 1. Let
(j1, . . . , jN−1) ∈ SN−1 be such that φ(i) ∈ Ωji ∼ Li

µ ⊂
Ωji

, i = 1, . . . , N − 1. Then, due to property (8b) and
φ(i + 1) ∈ Ωji+1 ∼ Li+1

µ , it follows from Lemma 10 that
φ̄(i) ∈ Ωji+1 ∼ Li

µ ⊂ Xi for i = 1, . . . , N − 2. From

‖φ̄(N − 1)− φ(N)‖ ≤ η[N−1](‖w(k)‖) ≤ η[N−1](µ)
and Assumption 7-(iii) it follows that

F (φ̄(N − 1))− F (φ(N)) ≤ αF (η[N−1](µ)),

which implies F (φ̄(N − 1)) ≤ θ1 + αF (η[N−1](µ)) ≤ θ due
to φ(N) ∈ XT = Fθ1 and αF (η[N−1](µ)) ≤ θ − θ1. Hence
φ̄(N − 1) ∈ Fθ ⊂ XU ∩ (Ωj0 ∼ LN−1

µ ) ⊂ XU ∩ XN−1, so
that h(φ̄(N − 1)) ∈ U and φ̄(N) ∈ Fθ1 = XT . Thus, the
sequence ū[N−1] is feasible at time k + 1, which proves
the first part of (i). Moreover, since gj0(x, h(x)) ∈ Fθ1 for
all x ∈ Fθ and Fθ1 ⊂ Fθ it follows that Fθ1 is a positively
invariant set for system x(k+1) = gj0(x, h(x(k))), k ∈ Z+.
Then, since Fθ1 ⊂ Fθ ⊆ (Ωj0 ∼ LN−1

µ ) ∩ XU ⊂ Xi ∩ XU
for all i = 1, . . . , N − 1 and XT = Fθ1 , the sequence
(h(φ(0)), . . . , h(φ(N − 1))) is feasible for Problem 6 for
all φ(0) := x(k) ∈ Fθ1 , k ∈ Z+. Therefore, XT = Fθ1 ⊆
Xf (N), which concludes the proof of (i).

(ii) The result of part (i) implies that Xf (N) is an RPI set
for the closed-loop system x(k + 1) ∈ Φδ(x(k), w(k)), k ∈
Z+. Moreover, 0 ∈ int(XT ) implies that 0 ∈ int(Xf (N)).
We will now prove that V ∗(·) is an ε-ISS function for
the closed-loop system (7). Since for any x ∈ X and
u[N−1] ∈ UN (x) it holds that J(x,u[N−1]) ≥ L(x, u(0)),
from Assumption 7-(i) it follows that V ∗(x) ≥ α1(‖x‖)
for all x ∈ Xf (N), with α1(s) = asλ. Furthermore,
by Assumption 7-(iv), for all x ∈ Xf (N) we have that
V ∗(x) ≤ α2(‖x‖), α2(s) = bsλ. Hence, V ∗(·) satisfies
inequality (2a) with d1 = 0 for all x ∈ Xf (N).

Next, we prove that V ∗(·) satisfies inequality (2b). Let
x(k + 1) ∈ Φδ(x(k), w(k)) for some arbitrary w(k) ∈ Bµ.

Furthermore, for any u[N−1] ∈ UN (x(k)) let ū[N−1] be
defined as in Lemma 11. Notice that J(x(k), ū[N−1]) ≤
V ∗(x(k)) + δ implies −V ∗(x(k)) ≤ −J(x(k), ū[N−1]) + δ.
Using Assumption 8-(iii), i.e.

F (gj0(x, h(x)))− F (x) + L(x, h(x)) ≤ 0, ∀x ∈ Fθ,

property (8a), Assumption 7-(ii),(iii) and φ̄(N − 1) ∈ XT ,
it follows that:

V ∗(x(k + 1))− V ∗(x(k))
≤ J(x(k + 1), ū[N−1])− J(x(k),u[N−1]) + δ

= −L(φ(0), u(0)) + F (φ̄(N)) + δ

+
[
−F (φ̄(N − 1)) + F (φ̄(N − 1))

]
− F (φ(N)) + L(φ̄(N − 1), h(φ̄(N − 1)))

+
N−2∑
i=0

[
L(φ̄(i), u(i + 1))− L(φ(i + 1), u(i + 1))

]
≤ −L(φ(0), u(0)) + F (φ̄(N))− F (φ̄(N − 1))

+ L(φ̄(N − 1), h(φ̄(N − 1)))

+ αF (η[N−1](‖w(k)‖)) +
N−2∑
i=0

αL(η[i](‖w(k)‖)) + δ

≤ −α3(‖x(k)‖) + σ(‖w(k)‖) + δ,

with σ(s) := αF (η[N−1](s)) +
∑N−2

i=0 αL(η[i](s)) and
α3(s) := α1(s) = asλ. Notice that σ ∈ K due to
αF , αL, η ∈ K. The statement then follows from Theo-
rem 4. Moreover, from (3) it follows that the ε-ISS prop-

erty of Definition 2 holds with ε(δ) =
(

3b
a2 δ

) 1
λ . 2

Theorem 9 enables the proper selection of an optimality
margin δ in the numerical solver by choosing a desirable
ISS margin ε(δ) and finding the corresponding value of δ.
Also, Theorem 9 recovers as a particular case the following
result for the optimal case published in [Lazar et al., 2005],
where only PWA systems were considered.
Corollary 12. Suppose that the hypothesis of Theorem 9 is
satisfied and the global optimum is attained in Problem 6
for all k ∈ Z+. Then, the closed-loop system x(k + 1) ∈
Φ0(x(k), w(k)) is ISS in Xf (N) for inputs in Bµ.
Remark 13. The result of Corollary 12 recovers the result
in [Limon et al., 2002] as the following particular case:
X = Ωj0 , S = {j0} and gj0(·, ·) is Lipschitz continuous
in X. In this case, the set of admissible input sequences
UN (x) only plays a role in guaranteeing recursive feasibility
of Problem 6, while ISS can be established directly from
Lipschitz continuity of the dynamics, see [Limon et al.,
2002] for details. See also [Grimm et al., 2007] where
the Lipschitz continuity of system dynamics is relaxed to
basic continuity. Corollary 12 also relaxes the Lipschitz
continuity requirement to a kind of uniform continuity in
the region Ωj0 and furthermore, allows for discontinuous
nonlinear dynamics, while the assumptions on the MPC
cost, prediction horizon and disturbance bound µ > 0
are not stronger than the ones employed in [Limon et al.,
2002].

Next, we present a modification to the set of δ sub-optimal
MPC controllers that will enable to guarantee ISS of the
closed-loop system a priori, even for non-zero optimality
margins. For any x ∈ Xf (N) and δ ≥ 0 let
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Πδ(x) :=

{u[N−1] ∈ UN (x) | J(x,u[N−1]) ≤ V ∗(x) + δ‖x‖λ}
and πδ(x) := {u(0) ∈ Rm | u[N−1] ∈ Πδ(x)}. The MPC
closed-loop system corresponding to (4) is now given by

x(k + 1) ∈ Φδ(x(k), w(k)) :=
{g(x(k), u, w(k)) | u ∈ πδ(x(k))}, k ∈ Z+.

Note that for the above set of δ sub-optimal MPC control
actions it holds that πδ(0) ≡ π0(0) for all δ > 0. Hence,
compared to the absolute δ sub-optimal MPC control laws,
now δ is a relative optimality margin that varies with the
size of the state norm. The closer the state gets to the
origin, the better the approximation of the optimal MPC
control law has to be. This is a realistic assumption, as
there exists a sufficiently small neighborhood of the origin
where all constraints in Problem 6 become inactive and
there is no more switching in the predicted trajectory
and as such the numerical problem to be solved becomes
significantly simpler.
Theorem 14. Suppose that the hypotheses of Theorem 9
are satisfied with the K-function α1(s) := asλ, a, λ ∈ R>0,
as introduced in Assumption 7. Let δ ∈ R>0 be given such
that 0 < δ < a. Then:

(i) If Problem 6 is feasible at time k ∈ Z+ for state
x(k) ∈ X, then Problem 6 is feasible at time k + 1 for
any state x(k + 1) ∈ Φδ(x(k), w(k)) and all w(k) ∈ Bµ.
Moreover, XT ⊆ Xf (N);

(ii) The closed-loop system x(k + 1) ∈ Φδ(x(k), w(k)) is
ISS in Xf (N) for inputs in Bµ.

Proof. The proof of Theorem 14 readily follows by ap-
plying the reasoning used in the proof of Theorem 9.
The modified set of sub-optimal control laws πδ(x)
makes a difference only in the proof of statement (ii),
where J(x(k), ū[N−1]) ≤ V ∗(x(k)) + δ‖x(k)‖λ implies
−V ∗(x(k)) ≤ −J(x(k), ū[N−1]) + δ‖x(k)‖λ and thus,

V ∗(x(k + 1))− V ∗(x(k)) ≤ . . .

≤ −α1(‖φ(0)‖) + σ(‖w(k)‖) + δ‖x(k)‖λ

= −α3(‖x(k)‖) + σ(‖w(k)‖),

with σ(s) := αF (η[N−1](s)) +
∑N−2

i=0 αL(η[i](s)) and
α3(s) := (a− δ)sλ. Note that α3 ∈ K as a− δ > 0. 2

Remark 15. In the particular case when system (4) is
PWA, X, U, Ωj , j ∈ S are polyhedral sets and the MPC
cost function is defined using 1,∞-norms, Problem 6 can
be formulated as a MILP problem, which is standard in
hybrid MPC [Bemporad and Morari, 1999]. For methods
to compute a terminal cost and control law h(·) that satisfy
Assumption 7, Assumption 8 and for illustrative examples
we refer the interested reader to [Lazar et al., 2005, 2006].

5. ASYMPTOTIC STABILITY RESULTS

Sufficient conditions for asymptotic stability of discrete-
time PWA systems in closed-loop with MPC controllers
were presented in [Lazar et al., 2006], under the standing
assumption of global optimality for the MPC control law.
As already mentioned in the introduction, it is important
to analyze if and how the stability results of [Lazar et al.,
2006] change in the case of sub-optimal implementations.

For this purpose, we employ the ε-asymptotic stability
property introduced in Section 2 and we consider the more
general class of PWC nonlinear systems, i.e.
x(k + 1) = ξ(x(k), u(k)) := gj(x(k), u(k)) if x(k) ∈ Ωj ,

(9)
where the notation is similar to the one in Section 3. We
still assume that each gj(·, ·), j ∈ S, satisfies a continuity
condition as was defined in Assumption 5. However, we do
not require anymore that the origin lies in the interior
of one of the regions Ωj in the state-space partition.
The MPC problem set-up remains the same as the one
described by Problem 6, with the only difference that the
set of admissible input sequences for an initial condition
x ∈ X is now defined as:
UN (x) := {u[N−1] ∈ UN |φ(i) ∈ X, i = 1, . . . , N − 1,

φ(0) = x, φ(N) ∈ XT }. (10)
All the definitions introduced in Section 3 and Section 4
remain the same (e.g., Xf (N), V ∗(·), Πδ(·), πδ(·), Πδ(·),
πδ(·), etc.) with the observation that set of admissible
input sequences defined in (6) is replaced everywhere with
the set defined in (10). We will use

Ξδ(x(k)) := {ξ(x(k), u) | u ∈ πδ(x(k))}
and

Ξδ(x(k)) := {ξ(x(k), u) | u ∈ πδ(x(k))}.
Theorem 16. Let δ ∈ R>0 be given and suppose that
Assumption 7 holds for system (9) and Problem 6. Take
N ∈ Z≥1, XT with 0 ∈ int(XT ) as a positively invariant
set for system (9) in closed-loop with u(k) = h(x(k)),
k ∈ Z+. Furthermore, suppose F (ξ(x, h(x))) − F (x) +
L(x, h(x)) ≤ 0 for all x ∈ XT .

(i) If Problem 6 is feasible at time k ∈ Z+ for state
x(k) ∈ X, then Problem 6 is feasible at time k + 1 for
any state x(k + 1) ∈ Ξδ(x(k)). Moreover, XT ⊆ Xf (N);

(ii) The closed-loop system x(k +1) ∈ Ξδ(x(k)) is ε-AS in

Xf (N) with ε(δ) :=
(

2b
a2 δ

) 1
λ ;

(iii) Suppose that δ ∈ R>0 satisfies 0 < δ < a, where
a ∈ R>0 is the gain of the K-function α1(s) := asλ,
introduced in Assumption 7. Then, the closed-loop system
x(k + 1) ∈ Ξδ(x(k)) is AS in Xf (N).

The proof of the above theorem can be obtained mutatis
mutandis by combining the reasoning used in the proof
of Theorem III.2 in [Lazar et al., 2006] (see also [Lazar,
2006]), and Theorem 4 for the case when σ(s) ≡ 0.
Remark 17. The result of Theorem 16, statement (ii),
establishes that δ sub-optimal nonsmooth MPC is ε(δ)-AS
without requiring any additional assumption, other than
the ones needed for AS of optimal smooth MPC [Mayne
et al., 2000]. Furthermore, the result of Theorem 16,
statement (iii), introduces a slightly stronger condition,
under which even AS can be guaranteed a priori for a
specific class of sub-optimal predictive control laws. In
contrast with the results in [Scokaert et al., 1999] this
is achieved without introducing additional stabilization
constraints in the original MPC problem set-up.

6. CONCLUSION

In this paper we have considered hybrid systems in closed-
loop with predictive control laws. We presented conditions
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for ε-ISS and ε-AS of the resulting closed-loop systems.
These conditions do not require continuity of the system
dynamics nor optimality of the predictive control law. The
latter is especially important as firstly, the infimum in an
MPC optimization problem does not have to be attained
and secondly, numerical solvers usually provide only sub-
optimal solutions. An explicit relation was established
between the deviation of the MPC control action from
the optimum (the so-called optimality margin δ) and the
resulting deterioration of the ISS (AS) property of the
closed-loop system in terms of the so-called ISS (AS)
margin ε(δ). The link between the optimality margin of
the MPC control action and the ISS (AS) margin of the
closed-loop system was further exploited to derive stronger
conditions that yield sub-optimal MPC controllers with an
ISS (AS) guarantee, without adding additional constraints
to the MPC optimization problem.
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Appendix A. PROOF OF LEMMA 10

Consider y ∈ Rn with ‖y − x‖ ≤ η[i](µ). Let ζ ∈ Li
µ and

define z := y − x + ζ. Then it holds that

‖z‖ ≤ ‖y − x‖+ ‖ζ‖ ≤ η[i](µ) +
i−1∑
p=0

η[p](µ) =
i∑

p=0

η[p](µ)

and thus, z ∈ Li+1
µ . Together with x ∈ Ωj ∼ Li+1

µ this
yields x+ z ∈ Ωj . Hence, y + ζ = x+ z ∈ Ωj . Since ζ ∈ Li

µ

was arbitrary, we have y ∈ Ωj ∼ Li
µ. 2

Appendix B. PROOF OF LEMMA 11

Property (8a) obviously holds for i = 0, since φ̄(0) =
φ(1) + w(k), w(k) ∈ Bµ = L1

µ and φ(1) ∈ Ωj1 ∼ L1
µ.

Property (8b) holds for i = 0 as ‖φ̄(0)−φ(1)‖ = ‖w(k)‖ =
η[0](‖w(k)‖).
We proceed by induction. Suppose that both (8a) and (8b)
hold for 0 ≤ i− 1 < N − 2. Then, since φ(i− 1) ∈ Ωji and
‖φ̄(i− 1)− φ(i)‖ ≤ η[i−1](‖w(k)‖), it follows that:
‖φ̄(i)− φ(i + 1)‖ = ‖gji

(φ̄(i− 1), u(i))− gji
(φ(i), u(i))‖

≤ ηji
(‖φ̄(i− 1)− φ(i)‖) ≤ η(‖φ̄(i− 1)− φ(i)‖)

≤ η(η[i−1](‖w(k)‖)) = η[i](‖w(k)‖), (B.1)

and thus, (8b) holds for i. Next, as η[i](‖w(k)‖) ≤ η[i](µ) ≤∑i
p=0 η[p](µ), it follows that φ̄(i)− φ(i + 1) ∈ Li+1

µ . Then,
since φ(i + 1) ∈ Ωji+1 ∼ Li+1

µ , we have that

φ(i + 1) + (φ̄(i)− φ(i + 1)) = φ̄(i) ∈ Ωji+1 .

Hence, (8a) holds for i. Therefore, we have proven that (8a)
holds for i = 0, . . . , N−2 and (8b) holds for i = 0, . . . , N−
2. Finally, (8a) and (8b) with index i = N − 2 imply (8b)
with index i = N − 1 via the reasoning used in (B.1). 2
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