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Abstract: In this paper we investigate the problem of synthesizing a controller that maximizes
the level of robust performance for a plant subject to both complex and real uncertainties. The
technique here developed uses the mixed-µ synthesis approach but, unlike the classical D,G-K
iteration, it maximizes the size of the performance weights that in the H∞ framework capture
desired closed loop performance. This optimization is restricted by the constraint that there
exists an internally stabilizing controller that achieves robust performance with respect to the
maximized weights. Thus, performance weights and a controller that achieves an optimized
level of robust performance are synthesized together in a systematic way. The designer is
only required to specify the plant uncertain set and some frequency dependent functions,
dubbed optimization directionalities, that reflect, in a qualitative way, the desired performance
requirements. It is pointed out that choosing this directionality function is much easier than
choosing the performance weights directly so that the design of good performance weights is
greatly simplified.

1. INTRODUCTION

Over the past decade, modern robust control theory has
revolutionized multi-variable controller design. In partic-
ular, µ-synthesis (Doyle [1985], Balas et al. [1998]) has
been widely applied to design complex multi-input-multi-
output control systems with a guaranteed level of robust
stability and performance. In general, this technique first
requires the specification of weighting functions to reflect
desired performance and robustness requirements. Then
the control synthesis is recast into a weighted optimization
problem to find a controller that attempts to achieve the
level of robust stability and performance required by the
specified weights. The definition of appropriate weighting
functions is by no means a trivial task and it is often a
result of a tedious trial and error procedure (Lanzon and
Cantoni [2003]).

Papers by Lanzon [2005a] and Lanzon and Cantoni [2003]
extend skewed-µ (see Fan and Tits [1992]) ideas to recast
the selection of appropriate weights into an optimization
problem. 1 The optimization technique proposed in Lan-
zon [2005a] and in Lanzon and Cantoni [2003], automat-
ically synthesizes both the weighting functions and the
controller resolving also the possible inconsistency between
the desired specifications. However, this technique has
been developed to handle only complex structured singular
value problems.

1 Related weight optimization work appeared in Lanzon [2005b] in
the H∞ loop-shaping framework.

The main objective of the work here described is to extend
the ideas in Lanzon [2005a] and Lanzon and Cantoni
[2003] to mixed µ problems (see Young [2001]). This will
generalize the robust performance design associated with
the previously developed techniques thus being able to
handle also real parametric uncertainties in addition to
complex perturbations. Note that the proofs are deleted
here for the sake of brevity and will be published elsewhere.

Notation. Let R+ denote the non negative real numbers,
C+ denote the closed right half complex plane and Cm×n

denote complex matrices of dimension m × n. The max-
imum singular value of a matrix A ∈ Cm×n is denoted
by σ(A). AT (resp. A∗) is the transpose (resp. complex
conjugate transpose) of A ∈ Cm×n and ||A||F denotes the
Frobenius norm of the matrix A. The k×k identity matrix
and zero matrix are denoted by Ik, and Ok respectively
and ⊗ denotes the Kronecker product. A real rational
matrix function Σ(s) of a complex variable s is such that
Σ(s) ∈ RH∞ if it is bounded and analytic in the open
complex right half plane. The adjoint system of Σ(s) is
defined by Σ∼(s) = Σ(−s)T . The || · ||∞ norm of a m × n
matrix function Σ(s) is defined by ||Σ||∞ := sup

ω
σ(Σ(jω)).

Finally, diag[A,B] with A ∈ Cm×n and B ∈ Cp×q denotes
the (m + p) × (n + q) block diagonal complex matrix
composed of A and B.

2. PROBLEM STATEMENT

Most linear time invariant closed loop systems subject
to perturbations can be redrawn into the form depicted
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in Figure 1(a), where Σ(s), commonly referred to as
the generalized plant, is partitioned consistently with the
interconnection. In Figure 1(a), ∆(s) represents a stable
structured perturbation with r inputs and r outputs. The
structure of the perturbation is defined by the set

∆ := {∆ = diag[In1
⊗ ∆1, .., Ing

⊗ ∆g, Ing+1
⊗ ∆g+1, ..,

Ing+d
⊗ ∆g+d] : ∆i = ∆T

i ∈ Rki×ki ∀i ∈ {1, .., g}

and ∆i ∈ Cki×ki ∀i ∈ {g + 1, .., g + d}}.
(1)

where
∑g+d

i=1 niki = r. ∆(s) is assumed to belong to
the set B∆ := {∆(s) ∈ RH∞ : ∆(s0) ∈ ∆ ∀s0 ∈
C+, ||∆||∞ ≤ 1}. K(s) is a controller with q inputs
and p outputs belonging to the set of controllers that
internally stabilize the generalized plant Σ (denoted by
K). The system is subject to n exogenous disturbances
and the performance is measured in terms of the n error
signals. Note that both the uncertainty blocks and the
performance blocks (see below) can be assumed to be
square without loss of generality, as if they were not
square, one could always make them square by adding
dummy input or output channels to the generalized plant.
The closed loop requirements for the system performances
are included in the design by means of the diagonal
frequency dependent performance weights matrix W ∈
W := {diagn

i=1[wi] : wi ∈ RH∞}. The system achieves
robust performance in the presence of uncertainty if the
following condition, written in terms of the supremum over
frequency of the structured singular value, denoted by µ,
holds

sup
ω

µ∆T
[diag[Ir,W (jω)]Fl(Σ,K)(jω)] < 1, (2)

where ∆T := {∆T = diag(∆,∆p) : ∆p ∈ Cn×n,∆ ∈ ∆}
denotes the augmented uncertainty structure introduced
to consider the robust performance problem (see Figure
1(b)). A classical µ-synthesis problem, with given perfor-
mance and robustness specifications captured via given
weights, involves the search for a controller that minimizes
the left hand side of (2), i.e., a controller that maximizes
the size of the smallest possible perturbation, ∆T ∈ ∆T ,
that causes the loss of robust performance of the system.
Following the idea in Lanzon [2005a] and Lanzon and
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Fig. 1. Generalized block interconnection for synthesis and
analysis.

Cantoni [2003], we will take a different approach to what is
standard practice in robust control literature. In particular

the problem addressed in this paper can be stated in words
as:

Given a generalized plant Σ subject to structured mixed real
and complex uncertainty, maximize in some sense the size
of the performance weights W subject to the requirement
that there exists an internally stabilizing controller K that
achieves robust performance with respect to the maximized
weights.

This statement can be mathematically reformulated as:

max
W∈W

J(W ) subject to

min
K∈K

sup
ω

µ∆T
[diag[Ir,W (jω)]Fl(Σ,K)(jω)] < 1

(3)

for some cost function J(·). In the remainder of the paper
the optimization problem in (3) is manipulated to allow
for the definition of an efficient solution algorithm.

3. TECHNICAL PRELIMINARIES

In this section we recall some important facts about mixed-
µ and we introduce some additional technical results that
will form the theoretical background for the synthesis
algorithm described in the forthcoming sections. The so-
lution to the problem in (3) requires the evaluation of
the mixed structured singular value. However it has been
demonstrated in Braatz et al. [1994] that the computation
of the exact value for the structured singular value is non-
polynomial hard so that for common applications upper
and lower bounds of µ need to be adopted. A convenient
upper bound on µ when both real and complex uncer-
tainties are present is given in Young [2001] in the form
of a convex constraint. Such a constraint involves matrix
scalings G and D allowed to vary in sets D and G that
depend on the structure of the perturbation matrix i.e.:

D = {D = diag[D1 ⊗ Ik1
, ..,Dg ⊗ Ikg

, Dg+1 ⊗ Ikg+1
, ..,

Dg+d ⊗ Ikg+d
] : 0 < Di = D∗

i ∈ Cni×ni}

G = {G = diag[G1 ⊗ Ik1
, .., Gg ⊗ Ikg

, 0, ..., 0] :

Gi = G∗
i ∈ Cni×ni}

(4)
Then the following lemma from Zhou and Doyle [1999]
defines an upper bound on the structured singular value:

Lemma 1. Zhou and Doyle [1999] Let M ∈ Cr×r and
∆ ∈ ∆. Then

µ∆(M) ≤

inf
D∈D,G∈G

min
β

{β : M∗DM + j(GM − M∗G) − β2D ≤ 0}

(5)

The following lemma introduces an alternative charac-
terization of the upper bound on the mixed structured
singular value.

Lemma 2. Given a complex matrix M ∈ Cr×r, D ∈ D,
G ∈ G, β > 0 and γ ∈ [0, 1], then

σ

((

DMD−1

β
− jG

)

(

I + G2
)− 1

2

)

≤ γ (6)

if and only if
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Ω(M, Ĝ, D̂, β, γ) :=
[

M∗D̂M + j(ĜM − M∗Ĝ) − (βγ)2D̂
√

1 − γ2Ĝ
√

1 − γ2Ĝ −D̂

]

≤ 0

(7)

where D̂ = D∗D ∈ D and Ĝ = βD∗GD ∈ G.

Note that the inequality in (7) is quasi-convex in D̂, Ĝ
and γ2 (or β2). The following corollary, part of which
has first appeared in Zhou and Doyle [1999], provides a
relation between β and γ and an upper bound on the mixed
structured singular value.

Corollary 3. Given M ∈ Cr×r and ∆ ∈ ∆. Then
µ∆(M) ≤ inf

D∈D,G∈G
min
β>0

{β : Ω(M,G, D, β, 1) ≤ 0}. Fur-

thermore, if ∃D ∈ D, G ∈ G , β > 0 and γ ∈ [0, 1] such
that Ω(M,G, D, β, γ) ≤ 0, then µ∆(M) ≤ γβ.

The following lemma will be useful in the remainder of this
paper.

Lemma 4. Given M ∈ Cr×r, D ∈ D and G ∈ G, let

β∗ = min
β>0

{β : Ω(M,G, D, β, 1) ≤ 0}. (8)

Given also ǫ ≥ 0, let

γ∗ = min
γ∈R+

{γ : Ω(M,G, D, β∗(1 + ǫ), γ) ≤ 0}.

Then γ∗ ∈ [ 1
1+ǫ , 1].

Note that if ǫ is chosen as ǫ = 0, then γ∗ must equal
unity. Consequently if β is optimal at β∗, no additional
minimization is gained by minimizing γ as it cannot reduce
below γ∗ = 1, of course unless β is increased above β∗ in
which case γ∗ will be less than unity.

4. PERFORMANCE WEIGHT AND CONTROLLER
OPTIMIZATION

In this section, we manipulate the optimization problem
in (3) to make it computationally feasible. In particular,
first the structure of the objective function J(W ) is defined
in a way such that it will be possible for the designer to
introduce preferences about the closed loop behavior of
the system in the optimization. Then we manipulate the
constraint in (3) to define the search space in a convenient
way.

4.1 Objective Function Definition

The objective function in (3) must be able to capture
the performance preferences of the design that in com-
mon practice are reflected as gain requirements on the
closed loop transfer functions. These gain requirements are
usually handled by penalizing each output of the closed
loop system with a weight, wi(jω), whose magnitude re-
flects the inverse of the desired specification. The objective
function in (3) shall then represent a cumulative measure
across frequency that reflects qualitatively the desired in-
verse performance weights shape.

Following the work in Lanzon [2005a], let [ωL, ωH ] be a
synthesis frequency range and υi(jω) be n given stable
minimum phase transfer functions. Let us define

J(W ) =
1

∫ log ωH

log ωL

∑n
i=1

1
|wi(jω)/vi(jω)|2 d(log ω)

. (9)

The direction of steepest ascent in maximizing the function
in (9) over any one weight wi(jω) at any one frequency ω in
the frequency interval [ωL, ωH ] corresponds to the smallest
ratio |wi(jω)/υi(jω)|. Consequently, the functions υi(jω)
are called optimization directionalities because they can be
specified so that they qualitatively direct the maximization
where desired. Therefore |υi(jω)| should be set at a large
value (resp. small) at frequencies and in channel directions
where the magnitude of the performance weight wi(jω) is
required to be large (resp. small) in order to capture the
desired performance objectives. Defining an optimization
directionality matrix as Υ(jω) := diag(υ1(jω), .., υn(jω)),
then (similar to Lanzon [2005a]) the cost function in (3)
can be defined as:

J(W ) =
1

||ΥW−1||2[ωL,ωH ]

,

where

||X||[ωL,ωH ] :=

√

∫ log10 ωH

log10 ωL

||X(jω)||2F d(log ω).

Note that only the argument of the optimization is of
interest. Therefore the maximization of the cost can be
replaced by the minimization of the reciprocal of J(W ) as
will be seen in the next subsection.

4.2 Search Space Definition

In every optimization problem a crucial issue is the def-
inition of the search space. First of all note that, since
µ∆(M) = µ∆(MT ), the optimization problem in (3) can
be equivalently rewritten in terms of the dual system

min
W∈W

||ΥW−1||2[ωL,ωH ] subject to

min
K∈K

sup
ω

µ∆T

[

Fl(Σ,K)(jω)T diag[Ir,W (jω)]
]

< 1
(10)

so that the inverses of the performance weights will appear
in subsequent manipulations independently to form a
convex constraint.

Now, in order to define an efficient solution algorithm, the
robust performance constraint written in terms of µ∆T

will be replaced with a convex upper bound as the one
defined in (5) and in (7). Note that by adding the fictitious
uncertainty block ∆p ∈ Cn×n to handle robust perfor-
mance problems, the scaling matrices associated to the
augmented uncertainty structure ∆T are diag[D, In], D ∈
D and diag[G, 0n], G ∈ G where the last entry in the
D−scales has been normalized to unity. The following
lemma provides an equivalent reformulation of the upper
bound on µ∆T

[

Fl(Σ,K)(jω)T diag[Ir,W (jω)]
]

.

Lemma 5. Given a closed loop system Fl(Σ,K) ∈ RH∞

and performance weights W ∈ W. Then, ∀ ω ∃ Dω ∈
D, Gω ∈ G, γω ∈ [0, 1] and βω > 0 such that

Ω(Fl(Σ,K)(jω)T diag[Ir,W (jω)],diag[Gω, 0n],

diag[Dω, In], βω, γω) ≤ 0
(11)

if and only if ∀ ω ∃ Dω ∈ D, Gω ∈ G, γω ∈ [0, 1] and βω > 0
such that

Ω(Fl(Σ,K)(jω)T ,diag[Gω, 0n],diag[Dω, In], βω, γω) ≤

diag[0r, (βωγω)2(Wω − In), 0r+n]

where Wω = [W (jω)∗W (jω)]−1.
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With the result from lemma 5, and using the aforemen-
tioned upper bound of µ, the optimization problem in (3)
is replaced by the following one:

min
W∈W

||ΥW−1||2[ωL,ωH ] such that

∀ ω ∃Dω ∈ D, Gω ∈ G and βω ∈ (0, 1) satisfying

Ω(Fl(Σ,K)(jω)T ,diag[Gω, 0n],diag[Dω, In], βω, 1) ≤

diag[0r, β
2
ω(Wω − In), 0r+n].

(12)
Note that, when K is held fixed, the search space in (12)
is characterized by a set of LMI constraints, uncoupled at
each ω, and simultaneously quasi-convex in Dω, Gω, Wω

and βω. Hence, with K fixed in the inequality constraint,
the minimization of the integral appearing in the cost
function in (12) is equivalent to the minimization of the
integrand on the continuum of frequencies. Therefore, un-
der these assumptions, the cost function in (12) can be re-
placed at each ω by ||Υ(jω)W (jω)−1||2F = trace(ΥωWω),
where we define the diagonal positive matrix Υω :=
Υ(jω)∗Υ(jω)

ω noting that the division by ω is necessary to
take account of the logarithmic scale appearing in the cost
function.

5. SOLUTION ALGORITHM

In this section, we describe an algorithm which we will
introduce to search for optimized values of K∗, Dω∗ , Gω∗ ,
Wω∗ that solve optimization problem (12). In particular
we exploit the fact that with K fixed the search space and
the cost function are convex in the decision variables, to
propose an iterative solution algorithm.

Inputs to the algorithm:

• Generalized plant Σ partitioned consistently with
Figure 1 i.e.

Σ(s) =







A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

C3 D31 D32 D33







with (A,B3) stabilizable, (A,C3) detectable and
D33 = 0 (without loss of generality),

• Optimization directionality matrix Υ(jω).

Algorithm:

• Step 0: First design a robustly stabilizing controller
K0 for the truncated generalized system which corre-
sponds to deleted performance channels and deleted
exogenous disturbances in Σ(s), i.e.:

Σ̂(s) =





A B1 B3

C1 D11 D13

C3 D31 D33





Choose β0 ∈ [sup
ω

µ∆(Fl(Σ̂,K0)(jω)), 1) which repre-

sents an achieved level of robust stability. Fix the min-
imum number of iterations desired for convergence as
N . Define

ǫ :=

(

1

β0

)
1
N

− 1. (13)

• Step 1: Set i = i + 1 and solve the following con-
vex optimization problem at each frequency ω on a
frequency grid:

min
Wω

trace(ΥωWω) such that

∃Dω ∈ D, Gω ∈ G satisfying

Ω(Fl(Σ,Ki−1)(jω)T ,diag[Gω, 0n],diag[Dω, In],

βi−1, 1) ≤ diag[0r, β
2
i−1(Wω − In), 0r+n].

Set the resulting minimizing argument to Wω∗ .
• Step 2: If i < N , set βi = (1 + ǫ)βi−1 else set

βi = 1. Then compute optimal pointwise Dω and Gω

scaling matrices by solving the following quasi-convex
optimization problem at each frequency ω:

min
Dω∈D,Gω∈G

γω subject to

Ω(Fl(Σ,Ki−1)(jω)T ,diag[Gω, 0n],diag[Dω, In],

βi, γω) ≤ diag[0r, (βiγω)2(Wω∗ − In), 0r+n].
(14)

By virtue of lemma 4 the solution to the above
problem can be efficiently computed by means of a
bisection search on γω in the interval [ 1

1+ǫ , 1]. Let the
pointwise minimizing arguments and the pointwise
solution to (14) be Dω∗ , Gω∗ and γω∗ respectively.
An upper bound on µ∆T

(Fl(Σ,Ki−1)
T diag[Ir,W ])

associated with Dω∗ , Gω∗ and Wω∗ is then βiγω∗ .
• Step 3: Find stable minimum phase transfer function

matrices W (s) and D(s) so that W (jω)∼W (jω) ≈
W−1

ω∗ and D(jω)∼D(jω) ≈ Dω∗ . Furthermore find
a transfer function matrix G(s) such that G(jω) ≈
j 1

βi
D(jω)−∗Gω∗D(jω)−1. Then, following Zhou and

Doyle [1999], find right coprime factors of G(s), i.e.
find GN and GM satisfying

G(s) = GNG−1
M , GN , GM ∈ RH∞

and
G∼

M (s)GM (s) + G∼
N (s)GN (s) = Ir.

Finally build the augmented generalized plant:

ΣDGW =

diag[D(s),W (s), Ip]
Σ(s)

βi
diag[D−1(s)GM (s), In+q]+

−diag[GN (s), 0n+q].

If the fitting is accurate enough to ensure that
||Fl(ΣDGW ,Ki−1)||∞ ≤ 1, the existence of a con-
troller that achieves robust performance with respect
to the optimal performance weights in the next Step
4 is guaranteed. Note that “space” for fitting was
created in Step 2 when βi−1 was increased by (1 + ǫ)
and when γω was minimized to be less than unity in
(14).

• Step 4: Find the controller Ki that minimizes
||Fl(ΣDGW ,Ki)||∞ via H∞ synthesis. The new closed
loop system is such that ||Fl(ΣDGW ,Ki)||∞ ≤ γ. If
γ < (1−tolerance), then, according to corollary 3, the
peak of the structured singular value over frequency is
strictly reduced so that, in the next iteration, a higher
level of performance (through performance weight
maximization) can be achieved. Then return to Step
1. If γ � (1 − tolerance), then exit.

Outputs from the algorithm:

• Pointwise in frequency magnitudes of the inverses of
the performance weights in Wω,

• Pointwise in frequency magnitudes of D and G scal-
ings in Dω and Gω,
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• Internally stabilizing controller that achieves robust
performance with respect to the synthesized weights
in Ki−1.

In the procedure described above a scaled µ problem is
solved in Step 1 of each iteration (i.e. for i < N , we choose
β = βi−1 < 1). We consequently ask ourselves at Step 1
what is the highest robust performance level given a fixed
controller Ki−1 and a fixed upper bound on µ given by
βi−1. By virtue of lemma 4 with ǫ = 0, at the end of
Step 1 it is not possible to further decrease γω. In order
to account for the approximations that will be introduced
by the fitting, we relax the µ upper bound from βi−1 to
βi = (1+ǫ)βi−1. Then, following Young [2001], in Step 2 we
solve the optimization problem in (14) to evaluate Dω and
Gω scaling matrices which minimize a (scaled) singular
value with β = βi fixed across frequency. These optimal
pointwise Dω and Gω then are continuous functions of
ω that focus γω to the frequency region where Ki has
to put most work. Note that the parameter ǫ is also an
indicator of the level of accuracy required for the fitting
to be done in Step 3, i.e. the larger is the parameter ǫ the
smaller can be the order of the transfer function used to
fit the scaling matrices. However, by the relation in (13), a
high value of ǫ implies a low number of desired iterations
for convergence. Then, the scalings and the weights are
absorbed in the generalized plant and an optimal controller
is designed via H∞ synthesis techniques. Note that, at each
iteration, a new controller is synthesized that achieves a
level of performance that is certainly no worse than the
previous controller.

6. NUMERICAL EXAMPLE

In this section, we present a simple numerical example to
illustrate the algorithm proposed in section 5. The example
comprises two different test cases that highlight how the
design algorithm is capable to resolve the possible inconsis-
tencies between the closed loop specifications in different
situations of interest. Let us consider the uncertain plant
set

P =
κ(s − z)

s2
(15)

where we set κ = 5(1 + 0.5δ), δ ∈ [−1, 1]. The loca-
tion of the right half plane zero z is set alternatively to
z = 10 rad/sec and to z = 0.8 rad/sec in the two different
test cases. We consider as design set up the typical S/T

Q

SWTW

KDW

G

Fig. 2. Design set up.

mixed shaping scheme shown in Figure 2 (where Q is
the generalized plant obtained after the real parametric
uncertainty is extracted from the plant in (15)) with an
additional input (associated to input weight WD) to fulfill

the assumptions needed for the H∞ design. WS and WT

denote the weighting functions that shape the sensitiv-
ity and complementary sensitivity functions respectively.
These weighting functions will be automatically designed
by the algorithm together with an internally stabilizing
controller. WD is chosen as static and small so that it
does not affect the H∞ norm of the whole system. The
optimization directionalities chosen in this example are
shown in Figure 3. We require the optimization algorithm
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e Directionality for W

S

Directionality for W
T

Fig. 3. Desired directionality Υ for the optimization.

to maximize with the same preference the magnitude of
WS at low frequencies and the magnitude of WT at high
frequencies. Moreover both the directionality functions
present a reduction of one order of magnitude with respect
to their maximum values at the frequency of 1 rad/sec that
can therefore be considered as the desired bandwidth of
the closed loop system. We set N = 4 so that convergence
of the algorithm is attained at least after 4 iterations in
both the two test cases.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
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10
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10
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Frequency (rad/sec)

M
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n
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u
d
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Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Fig. 4. Inverse performance weights |WS(jω)|−1 and
|WT (jω)|−1 for z = 10 rad/sec at each iteration.

In Figure 4, we show |WS(jω)−1| and |WT (jω)−1| com-
puted after every iteration for the test case with z =
10 rad/sec. In this example the algorithm converged after
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5 iterations. Figure 4 shows how the algorithm reduces
the magnitude of the inverse performance weights in the
appropriate frequency regions as iterations proceed. In

10
−3

10
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10
−1

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

10
4

Frequency (Hz)

M
a

g
n

it
u

d
e

W
S
−1 (z=0.8 rad/sec)

W
T
−1 (z=0.8 rad/sec)

W
T
−1 (z=10 rad/sec)

W
S
−1 (z=10 rad/sec)

Fig. 5. Optimal inverse performance weights |WS(jω)|−1

and |WT (jω)|−1 for z = 0.8 rad/sec (light lines) and
z = 10 rad/sec (bold lines).

Figure 5 the performance weights in output to the syn-
thesis algorithm for both the two test cases are shown.
In both cases at the end of the iterations the mixed µ
computed for the closed loop system assumes a constant
value of 1 across frequency, i.e. the sensitivity and comple-
mentary sensitivity of any plant in the uncertain plant set
in (15) are below |WS(jω)|−1 and |WT (jω)|−1 respectively.
With z = 10 rad/sec the open loop zero imposes no
limitation upon the sensitivity properties of the system
and, as expected, the desired bandwidth of 1 rad/sec is
achieved (bold lines in Figure 5). On the other hand with
z = 0.8 rad/sec the right half plane zero of the plant lies
within the required closed loop bandwidth that, therefore,
may not be achievable. Hence, a trade off must be per-
formed between desired bandwidth and limitation due to
the plant dynamic. This is automatically accounted for by
the algorithm being the optimal closed loop bandwidth
approximately 0.2 rad/sec (light lines in Figure 5). As a
final remark note that the complex µ at the end of the
iterations assumes the values of 1.43 and 1.67 for the two
test cases. This shows that the algorithm takes advantage
of the additional information about the real nature of the
uncertainty to improve the robust performance of the sys-
tem. In Figure 6 tracking and disturbance time responses
to a step, for various δ ∈ [−1, 1], are presented. The
system with z = 0.8 rad/sec presents a slower response
and a degradation in terms of worst case overshoot with
respect to the system with z = 10 rad/sec. However, this
confirms the results displayed in Figure 5 that show how,
for the system with z = 10 rad/sec, a higher closed loop
bandwidth and lower peaks over frequency of |W−1

S | and

|W−1
T | can be achieved.

7. CONCLUSION

In this paper we present a control synthesis technique that
automatically performs an optimized trade off between
achievable performance and limitations due to uncertainty
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Fig. 6. Step responses for the closed loop uncertain sys-
tems. (First column system with z = 10 rad/sec,
second column system with z = 0.8 rad/sec)

or plant dynamics for plants subject to mixed real and
complex uncertainty. The proposed technique involves the
optimization of the so-called performance weights that
reflect the closed loop performance requirements of the
system. This optimization is constrained by the fact that
there must exist a controller that achieves robust per-
formance with respect to the maximized weights in the
presence of mixed complex and real uncertainties. The per-
formance of the design algorithm has been tested through
a numerical example that showed how the proposed syn-
thesis technique simplifies the direct design of appropriate
performance weights and provides an indication of the
achievable performance for a given uncertain plant set.
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