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Abstract: Traditional Model Predictive Controllers make use of computation expensive opti-
mization methods. The challenge of this research is to take advantage of properties of MPC
and use a hybrid gradient descent method to replace the on-line optimization by a simple set of
differential equations. Continuous- and discrete-time controllers are presented. Promising results
are provided for the control of linear systems with smooth convex constraints with different
controller tunings. This technique, even if slightly suboptimal, has a clear interpretation, is
efficient and is suitable for implementation on limited embedded microcontrollers.

1. INTRODUCTION

A very interesting modern control method is Model Pre-
dictive Control (MPC), see Camacho and Bordons [1995],
Bemporad [2006] and Qina and Badgwell [2003]. Thanks
to an internal model of the plant, the controller is able to
predict its expected future outputs and therefore optimize
the current input accordingly. The main advantages of
MPC are the following:

• It can very easily handle multi-input multi-output
processes, processes with large time-delay, non-minimum
phase processes, and unstable processes;

• It is easy to tune;
• It can take constraints into account in a natural man-

ner: input constraints as well as output constraints or
state constraints;

• It can be easily reconfigured by changing the internal
model, for example in case of fault detection.

MPC is formulated as an optimization problem on a
receding horizon. At all time, a cost function penalizing
the difference between the desired and expected outputs
should be minimized under the constraints. A huge amount
of publications already studied properties and tuning of
MPC cost functions and constraints, see for example
Maciejowski [2002], Garcia et al [1989], Rossiter [2003]
and references therein. This paper will instead focus on a
new way to implement the controller based on given MPC
characteristics.

Typically, most implementations of MPC are done us-
ing discrete-time controllers and a discrete-time model
of the plant is used as an internal model. Continuous-
time models could also be used like in Receding Horizon
Control, see Primbs [1999]. This paper focuses on MPC
based on discrete-time internal models. A large number
of papers in the literature rely on on-line optimization,
where a traditional optimization method is used and the
exact value of the optimum is computed at each time
step, see Maciejowski [2002]. Other approaches compute a
multiparametric optimal solution beforehand (off-line) and
store the results for on-line use, see Bemporad et al [2000].

In the first case, such an on-line optimization can be very
complex and demanding, especially on small embedded
microcontrollers. In the second case, the amount of data to
be stored can become extremely large if many parameters
or constraints appear in the problem formulation. Thus,
real-time implementation of MPC is not an easy task and
this is probably one reason why it is cautiously used in
embedded systems with fast dynamics.

In control theory, most of the systems and controllers
are described as dynamical systems, i.e. vector differential
equations on the form

ẋ = f(x(t))

The objective of the research presented here is to in-
vestigate the possibility to also implement a MPC-like
controller using a traditional dynamical system.

Moreover, the challenge is to compete with traditional
techniques while reducing the complexity and the com-
putation cost. Obviously the proposed solution will have
limitations, but it will aim at exploiting characteristics of
MPC to design the feedback controller.

The basis of this new method relies on the fact that MPC
can be seen as a time-varying cost function that should
be minimized over time by updating the optimizations
variables, i.e. the state of the controller. In this paper, the
focus will be on the control of linear systems that leads to
convex cost functions. The Reader is referred to Boyd and
Vandenberghe [2004] for more details about the notions
optimization and convexity. Moreover, the state of the
controller should stay at all time in a prescribed smooth
convex set. Therefore, a constrained gradient method can
be used and the idea proposed by the authors in Gerard
[2007] will be exploited. If rate constraints are present in
the problem, which is often the case when actuators are
involved, they can directly be used to define the speed of
the descent method.

A more detailed description of MPC is given in Section 2.
The proposed controller, in its continuous-time version, is
presented and analysed in Section 3. Section 4 discusses a
possible discretization of the controller to allow discrete-
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time implementation. Finally Section 5 shows simulation
results for a high-order linear system.

2. MODEL PREDICTIVE CONTROL

In MPC, the future evolution of the system on a certain
time interval in considered. An internal model of the pro-
cess to be controlled is used to compute the predictions.
To limit the number of variables and simplify the com-
putation, a discrete-time internal model is used with a
sampling time ∆T . Therefore, if the noise-free process has
the state-space model

{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)

then the equivalent internal model takes the form
{

xk+1 = Ãxk + B̃uk

yk = C̃xk

(2)

Using a prediction horizon Np, the prediction covers the
time interval [t, t + Np∆T ]; and the cost function will
be based on the value of the output at the Np next
sampling time instants. The variables to be optimized in
the procedure are the input u at the following Nu sampling
time instants. Through this paper, t is the measurement
time; therefore time before t has already been measured
and is known, while time after t is expected by the
controller. Using the following variables:

ũ(t) =









u(t)
u(t + ∆T )

..

.
u(t + (Nu − 1)∆T )









(3)

x̃(t) =









x(t + ∆T )
x(t + 2∆T )

.

.

.
x(t + Nu∆T )









=









Ãx(t) + B̃u(t)

Ãx(t + ∆T ) + B̃u(t + ∆T )
.
..

Ãx(t+(Nu−1)∆T )+B̃u(t+(Nu−1)∆T )









(4)

ỹ(t) =









y(t + ∆T )
y(t + 2∆T )

.

.

.
y(t + Nu∆T )









=









C̃x(t + ∆T )

C̃x(t + 2∆T )
..
.

C̃x(t + Nu∆T )









(5)

the traditional MPC cost function q is

q(ũ(t), x(t), ỹref (t)) = ||ỹ − ỹref ||
2
Qy

+ ||∆ũ||2Qu
(6)

where ỹref is the desired output at the Np next sampling
time instants, ∆ũ contains the value of the signal u(t) −
u(t − ∆T ) at the next Nu sampling time instants and Qy

and Qu are weighting matrices.

This cost function can be rewritten in a standard quadratic
form

q(ũ(t), x(t), ỹref (t)) =

1

2
ũT Qũ + xT RT ũ + ỹT

refST ũ + c(x, ỹref ) (7)

where c does not depend on ũ and Q, R and S are time-
independent matrices. Note that the cost function depends
on the future values of u and yref , which are embedded
in ũ and ỹref respectively; while it is parametrized by the
value of x only at the current time t which is the “initial

state” of the current horizon. For concision, the explicit
dependency on t is omitted.

The gradient is therefore

∇ũq =
∂q

∂ũ
= Qũ + Rx + Sỹref (8)

Then a set of constraints is defined for the variables.
Constraints on the control input can directly be expressed
while constraints on state or outputs require the use of
the internal model. In this paper, the constraint set, also
called feasible set, is restricted to the smooth convex case
described by

gi(ũ, x) ≤ 0 i = 1...m (9)

where gi : ℜn → ℜ is a differentiable convex function. Ob-
viously, if the internal model is used to express constraints,
the functions gi will also depend on the state x.

Furthermore, rate constraints can be expressed on the
control inputs. The general form of those constraints are
the following:

|u̇(t)| < umaxrate ∀t (10)

In traditional implementation, to give time for the opti-
mization to be performed, the MPC controller is imple-
mented in discrete time. In this paper, we will first have a
look at the continuous-time case.

3. THE HYBRID FEEDBACK CONTROLLER

It has been shown that the cost function of the MPC only
depends over time on ũ(t), x(t) and ỹref (t). Therefore the
objective of the research is to design a feedback controller
on the form

˙̃u(t) = f(ũ(t), x(t), ỹref (t)) (11)

where f : ℜn → ℜn is a vector function easily defined
using the cost function and the constraints of the MPC
formulation, that would perform, to a certain extent, close
to a traditional MPC. A graphical representation of the
control scheme is presented in figure 3.

In practice, control inputs are always linked to actuators
which have limited bandwidth, i.e. limited rate of change.
Therefore it is interesting to take it into account in the
controller design. Then the controller should not try to
change instantaneously the value of the control input but
should rather continuously push each actuator in the best
direction at maximum rate. Therefore it seems logical to
imagine the controller modeled as a vector differential
equation where f is the best direction. Furthermore, in
this framework, the norm of f can be scaled to precisely
match the rate limit so that the control inputs evolves at
maximum rate. This is done using a saturation function.

ỹref y

x

u
Controller

˙̃u = f(ũ, x, ỹref )

Process

ẋ = Ax + Bu
y = Cx

Figure 1. Controller scheme
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In general, the best direction f will be close to the gradient
of the cost function. However, special care should be taken
with respect to the constraints. Therefore the proposed
controller is based on the hybrid constrained steepest
descent method developed by the authors in Gerard [2007].

The MPC cost function depends on the future values of
the output reference. In case of a time-varying reference,
the cost function will vary accordingly and can therefore
conveniently be seen as time-varying. Also it might be in-
teresting to consider time-varying constraints which could
depend on the operating point. The proposed method
is perfectly suited in case of time-varying cost function
and constraints. Firstly because the direction f will be
adapted at all time to take the variations of the cost
function into account, therefore ũ is always going toward
the instantaneous optimal point. And secondly because
when a constraint is changed and becomes not satisfied, ũ
will be instantaneously pushed toward the feasible set.

This leads us to the hybrid feedback controller described
by the following equations:

˙̃u(t) = f̄(ũ(t), x(t), ỹref ) (12)

with, where only the dependency in ũ is emphasized,

f̄(ũ) = sat [αf(ũ), umaxrate] (13)

where sat is the traditional saturation function that limits
the value of αf(ũ)i to + or - umaxratei; and

f(ũ) =







−∇ũq if gi(ũ) ≤ 0 ∀i

−
∑

i∈L(ũ)

∇ũgi otherwise (14)

with L(ũ) = {l : gl(ũ) ≥ 0}.

α is a tuning parameter that scales the descent direction.
To fully exploit the capabilities of the actuators in terms of
rate of change, a large enough α should be used. However,
a too large α will lead to a too reactive controller that
could be difficult to discretize, as will be seen later on.

This control system has been proved to have the following
properties in Gerard [2007]:

• for ũ(t) outside the feasible set, the trajectory ũ(t)
converges to the feasible set, i.e. ∃tf s.t. g(ũ(tf )) ≤ 0.

• the trajectory ũ(t) remains in the feasible set as soon
as ũ(tf ) is in the set, i.e. g(ũ(t)) ≤ 0 ∀t > tf s.t.
g(ũ(tf )) ≤ 0;

• for ũ(tf ) in the feasible set, the trajectory ũ(t) de-
creases the cost function q(ũ(t)) at all time until
q(ũ) = q∗, with q∗ the optimal value of q under the
constraints, i.e. q(ũ(t1)) > q(ũ(t2)) ∀(t1, t2) with tf ≤
t1 < t2 s.t. q(ũ(t1)) > q∗, and limt→∞ q(ũ(t)) = q∗.

Therefore, it can be concluded that if the cost function
stay constant, then the control inputs will converge to
the optimum that achieves the best results regarding the
cost function. If the cost function does vary with time,
then the control inputs will at all time go toward the
instantaneous optimum. Because there are rate constraints
and because the feedback system is running at maximum
speed, the performances should very similar to traditional
implementation.

Unfortunately, because of the hybrid characteristics and
in particular the sliding mode, see Filippov [1960], such a
controller can not be directly implemented. Some authors
have already studied the implementation of discrete-time
sliding mode control and found interesting rules to deal
with them. However, as first approach, a very simple
discretization is done.

4. DISCRETIZATION

For practical implementation, a good idea is probably to
sample the system at a given sampling frequency. In that
way, the computation can easily be scheduled on time-
driven microcontrollers and the number of switches in the
sliding mode is limited to one every period.

Obviously, because of the sampling, the accuracy of the
system is going to be reduced. Two main drawbacks can
be seen:

• during a sliding mode, the trajectory will not stay
perfectly on the boundary but will meander slightly
around it. The amplitudes of the oscillations will
depend on the sampling period and the norms of the
gradients ∇ũq and ∇ũgi.

• the trajectory will not precisely converge toward the
precise optimal point but will vacillate around it.

The sampling is done by approximating the derivative by a
forward difference. For a sampling time ∆t, the difference
equation is given by

ũk+1 = ũk + f̄(ũk, xk, ỹrefk
)∆t (15)

The sampling method in this paper is rather simple. Some
more advanced methods exist and might lead to improved
behaviours. The possibility to use such advanced methods
and their benefits will be investigated in future work.

It should be noted that the sampling frequency of the
controller does not need to be related to the sampling
frequency of the internal model. Two different notations
are used in this paper.

5. SIMULATION

Finally let us now have a look at some simulations to show
that the method is working and to analyse the influence
of the parameters ∆t and α. The first simulations focus
on input constraints while the last one introduces output
constraints. A random stable non-minimum phase linear
system is taken as process to be controlled. The transfer
function contains 11 poles and 2 zeros in the left half plane,
and one zero in the right half plane. The pole-zero map is
shown in figure 2.

For use as internal model in the MPC, the model should
be discretized and transformed to a state-space form. The
sampling time is here taken as ∆T = 0.1.

The control input is constrained by both a range and a
rate limit, which apply for each component of ũ:

umax = 0.8
umaxrate = 3

(16)

The tuning of the MPC is not the primary objective of
this paper. Moreover, it might be of interest to show that
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Figure 2. Pole-zero map of the process to be controlled.

the controller is able to deal with large horizons. So the
following parameters are taken: control horizon Nu = 20,
prediction horizon Np = 40, and identity matrices for Qy

and Qu.

In the simulation, the initial state of the process is x0 =
[0, 0] and a step output reference is asked after 1 second.
Note that in this setup, the controller is not aware of the
change in set-point before it actually takes place. This
precisely happen when a human operator set in real-time
the reference of the controller.

For comparison purpose, the MPC is implemented both
using traditional optimization techniques and the new
hybrid dynamic feedback. The traditional version relies on
the solver QuadProg in Matlab. The response is given by
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Figure 3. Simulation of the dynamic feedback Model Pre-
dictive Controller discretized with a very high sam-
pling frequency. α is also chosen large. For compari-
son, an implementation of a traditional MPC is shown
as dotted line.
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Figure 4. Simulation of the dynamic feedback Model Pre-
dictive Controller discretized with a 10 times longer
sampling period. α is still large. Oscillations appears
when a constraint is reached and near the steady-
state.

the dotted lines. The feedback system (12) is tuned using
first a large and then a small α. In the case of the large α,
3 sampling frequencies are compared.

The first simulation gives a case that should be very
close to the continuous version. To this end, the sampling
frequency is taken very high: ∆t = 0.001. In order to
make sure that the controller will be reactive enough to
fully exploit the actuators, a large value is taken for α :
α = 100. The results are shown in figure 3. The results
are extremely close compared to the traditional MPC.
The desired steady-state is reached in the same time and
the constraints are perfectly respected. This seems really
promising.

Then the sampling frequency of the controller is decreased
and a 10 times larger sampling period is taken ∆t = 0.01.
The plots are displayed in figure 4. As it was expected,
oscillations appears in the control input during a sliding
mode, i.e. when a constraint is reached, and when the
minimum of the cost function is reached, i.e. near the
steady-state. However, the global behaviour is still really
good.

To investigate further the influence of the sampling fre-
quency of the controller, the sampling time is again multi-
plied by 10 to reach ∆t = 0.1. As can be seen in figure 5,
the oscillations are even larger; which had to be expected.
A small steady state error appears because the oscillations
are not symmetric compared to the steady-state control
input. But on the other hand, the trajectory is still going
in the right direction. So it can be concluded that the
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Figure 5. Simulation of the dynamic feedback Model
Predictive Controller discretized with an again 10
times longer sampling period. α is still large. The
oscillations becomes even larger and a steady-state
error appears but the behaviour of the system is still
globally correct.

sampling time will influence the oscillations and the preci-
sion of the steady-state; but it also directly influences the
computation complexity.

From the equations defining the controller (12)-(14), it can
be understood that α will have a large influence on the
size of the oscillations. To show this, the same simulation
with a large sampling period ∆t = 0.1 is repeated with
an α much smaller: α = 0.01. Figure 6 show the results.
It can easily be noticed that the oscillations have been
completely removed and that the steady-state error has
completely disappeared; but at a cost of a slower response.
Therefore, a good tuning of α or even an adapting value
could improve largely the method.

Furthermore this method allows, similarly to traditional
MPC, the expression of output constraints. This is done
by including the internal model in the computation of the
constraint set. For linear systems, the predicted outputs
ỹ can be computed using two time-invariant prediction
matrices Px and Pu and the equation

ỹ(t) = Pxx(t) + Puũ(t) (17)

It is then possible to guarantee that y will stay above a
minimum value ymin by using the state-dependent con-
straints

g(ũ, x) = −Puũ − Pxx + ymin ≤ 0 (18)

For the same system described by the pole-zero map of
figure 2, the output constraint ymin = −0.01 is added
to the previous input constraints (16). The results of the
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Figure 6. Simulation of the dynamic feedback Model Pre-
dictive Controller discretized with the same long sam-
pling period; but α is now chosen very small. Oscilla-
tions and steady-state error completely disappear but
the response is slower.

simulation are shown on figure 7. It can be seen that the
undershoot is very well removed. With a good tuning of α,
the results are really good compared to traditional MPC.
However, the choice of α seems to be more critical than
before. In case of a too low α, the controller will not
be reactive enough to steer the system properly at the
beginning to respect the constraint. On the other hand,
a too large α will again induce very large oscillations
near the steady-state. In this simulation, the value of α
is decreased after 5 seconds so that both fast response and
small oscillations are achieved. This shows the need for an
adaptive scheme for α which is under development. So it
has been shown that output constraints can be handled
very easily by this control method.

6. CONCLUSION

A new way to implement an MPC-like controller using
traditional feedback has been presented and simulations
support the interest of such a method. This technique
has the advantage to be very simple and has a clear
interpretation. Moreover, the computation time of each
step is extremely low. Also, input constraints as well as
output constraints can be handled very naturally.

Unfortunately, the method suffers from the discretization
which might lead to oscillations in the control input
and steady-state error, especially if α is large. Future
work will include the investigation of more advanced
discretization methods as well as the development of an
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Figure 7. Simulation of the dynamic feedback Model Pre-
dictive Controller with output constraints ymin =
−0.01. The controller is discretized with a long sam-
pling period ∆t = 0.1. α has been chosen large at
the beginning to rapidly steer the system and respect
the constraint; and is decreased after 5 seconds to
cancel out the large oscillations. The constraint is
well respected and the global behaviour is really good
compared to a traditional MPC.

adaptive scheme for α to improve the response speed and
damp the oscillations.

In order to investigate further the interest of this method,
future work will also include comparisons with other MPC
implementations regarding both the performances and the
computation time.

Finally, it can be concluded that this method seems to
give an opening to link dynamic feedback control with
on-line constrained convex optimization, and to allow the
implementation of MPC in an efficient way on limited
embedded microcontrollers.
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