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Abstract: The development of control software is a complex task: it requires the integration of many 
descriptions and tools for specification, design, deployment,  etc. To reduce the gap between the various 
models used to describe a system, this paper proposes the concept of functional metamodels, i.e.  precise 
descriptions of a modeling language embedded into a functional language. The interest of the concept is 
the ability to define frameworks to simplify the development process.  In particular, the paper proposes a 
framework for specification, design and deployment and applies it to the example of a legged robot.
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1. INTRODUCTION

The development of software for control requires the integra-
tion of models and tools ; each one being dedicated to a stage 
of the development (Sanz and Arzen, 2003). To simplify the 
integration of models, this paper defines the concept of func-
tional metamodel. Indeed, combining functions with descrip-
tions of models (called metamodels) makes possible the de-
sign of simple tools that can be integrated in the development 
process of software for control,  with modeling, checking, and 
deployment. The tools proposed as an illustration are written 
in the functional language Haskell and make software analy-
sis and design easier ; each tool captures a modeling language 
with its syntax and semantics. Thus, a framework for devel-
oping safety critical systems is presented ; the framework is 
based on Labeled Transition Systems to describe and simu-
late a system’s behavior, Linear Temporal Logic to verify that 
a behavior satisfies a temporal property, and a prototype of 
concurrent language to implement checked behaviors. As an 
example, the paper presents the development of a control 
software for a legged robot, Fig. 1.
This paper is divided into three parts. The first part presents 
the development process as a family of expertise to integrate, 
the difficulties to do this integration and the solution brought 
by the Model Driven Development (MDD) community ; see 
(Mellor et al., 2003). The second part presents the advantages 
of functional languages combined with model driven princi-
ples and proposes a framework to model software for control, 
check their properties and get the code to deploy. The third 
part concludes by summarizing the results which were ob-
tained and the perspectives which where considered.

2. SOFTWARE FOR CONTROL

2.1 Development process: from multi-model to metamodels

Overview.  Nowadays, the development of software dedicated 
to control systems becomes increasingly complex. In particu-
lar, such software must be produced in a shorter time and at a 
lower cost, and must be of higher quality (Henzinger and 
Sifakis, 2006). The problem is that the design process re-

quires a set of various descriptions, or formalisms, to inte-
grate ; see (Thiry et al., 2003). So, the methodologies and 
tools which are used have to be considered with a great atten-
tion.
The development process is the rendez-vous of many actors 
or specialists, each one uses its own languages and tools, and 
a lot of energy/time is lost integrating these various points of 
view ; see (Mosterman et al., 2004). In the field of software 
for control, the main steps that compose the development are 
specification, design and deployment. The specification con-
sists in translating the informal requirements expressed by a 
client into expressions in a formal language ; it describes 
what must be done with the main components that character-
ize a software system. Indeed, control systems usually consist 
of a set of entities, performing a set of tasks, distributed on a 
network and embedded on dedicated processor. The global 
behavior resulting from the parallel composition of these 
entities/tasks must satisfy requirements and formal models 
are the means of proving this satisfaction ; see (Magee and 
Kramer, 2006).  Design describes a possible solution that can 
satisfy the specification and the requirements. This step re-
quires creativity and must be compatible with the previous 
step ; the models which are used have to be compared to 
specification models for formal proofs. The creativity con-
sists in identifying the various configurations of a system and 
the paths, or sequences of actions,  between them. Deploy-
ment is a translation of the design models into code that can 
be compiled and deployed in the physical architecture. This 
part requires an interpretation of the concepts used by models 
into programming constructs. The difficulty here is that de-
sign models do not always integrate programming facilities 
such as processes, channels,  rendez-vous, etc. Then, the de-
velopment process is characterized by a family of modeling 
languages necessary for specification, design and deploy-
ment.

Sample development. To illustrate the development process, 
this section describes the various models used to design a 
control software for a legged hexapod ; see (Thirion and 
Thiry, 2002), Fig. 1.
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Fig. 1. Example of complex system to control.

The specification expresses the properties required, by the 
way of logical formulae. The formulae give a formal model 
of the requirements expressed by a client. For instance, the 
following expressions imply that a leg can not go up and 
move if the preceeding or following leg is up (for stability 
reasons), and each leg contributes to the global movement of 
the platform (for equity reason), i.e.  globally (G) if a leg i 
moves then (=>) in the future (F) it will push.

forall i in [0..6], 
 G (not (Move(i) /\ Move(i+1 mod n)))
 G (Move(i) => F Push(i))

The design proposes a state model representing the order of 
actions to be performed . The main models used for a design 
are Finite State Machines (FSM) ; see (Antoniotti and 
Mishra, 1995).  Fig. 2 gives an overview of the robot behav-
ior.  The proposed model must satisfy the previous formulae ; 
this is done by tests or model checking ; see (Clarke et al., 
2000).

Fig. 2. The movement of the robot results from the parallel 
composition of the legs’ behavior.

Using a programming language, the deployment gives the 
code to put in the various controllers. Most often, this step 
uses dedicated platform with threads and networks ; it is im-
portant to be able to interpret design models with these con-
cepts.  The following code gives a translation of the design 
model into an imperative/concurrent style, and it is the basis 
for the control software. The code is based on basic actions 
(pos,  update to access or update shared variables as the 
position p of a leg i), control structures (forever) and combi-
nators (; for sequence and || for parallel composition).

behavior i = forever do { push i; 

Move

Push

Await

pmax

pmin

canMove

Behavior 1

Move

Push

Await

pmax

pmin

canMove

Behavior 6

...

System

 await i; move i }
push i = do { p<-pos i; 
 if p<pmax then update i (p+delta) 
  else return () }
main = (behavior 1)||...||(behavior 6)

Conclusion.  Developing software for control is a difficult 
task and current works try to propose concepts, methodolo-
gies and tools for the integration of many modeling lan-
guages ; see (Henzinger and Sifakis, 2006). An elegant solu-
tion has been brought by the Model Driven Development 
(MDD) community described in the next part.

2.2 Model Driven Development (MDD)

Overview.  The MDD community defines concepts and tools 
to capture and then integrate families of modeling languages ; 
see (Mellor et al., 2003). Each modeling language is repre-
sented by way of a metamodel, usually an UML class dia-
gram extended by OCL constraints, and is often called Do-
main Specific Language (DSL) ; see (Deursen et al., 2000). 
The metamodels are used to configure metamodeling tools, 
i.e. generic tools used to edit, to save/restore, or to translate 
into code models conformed to the specified metamodel. 
Sample tools are the Generic Modeling Environment GME 
(Ledeczi et al.,   2005) or Atom3 (Lara and Vangheluwe, 
2002). Concerning model transformations, they are usually 
based on graph transformations, i.e. rewriting rules between 
two (meta)models.

Sample metamodel. To understand the concept of metamodel, 
this section presents a metamodel for dataflow models, Fig. 
3. Dataflow models are used to model continuous system 
with signals and functions on these signals ; Fig. 4 presents 
an example of dataflow model. The dataflow models can be 
presented graphically: a function is represented by a box 
(called block) with inputs similar to the arguments of the 
function represented, and the resulting outputs. The composi-
tion of functions is represented by linking inputs to outputs. 
Blocks can be classified into two categories: Basic blocks, to 
map inputs to outputs by an equation, and Composite blocks, 
to define hierarchy inside the models. All the concepts de-
scribing dataflow models can be represented by a metamodel, 
itself represented graphically by an UML class diagram. The 
Unified Modeling Language (UML) is a standard to model 
software architectures ; see (OMG, 2007). 
The concept of functional metamodels, presented in part 3, 
consists in replacing the metamodel description language 
UML by a functional language to exploit the notions of (me-
ta)model and transformation, and then simplify the develop-
ment of control software. For instance,  Fig. 5 proposes the 
UML metamodel for Labeled Transition Systems (LTS) and 
the code below the figure its translation into the functional 
programming language Haskell.

Well formed dataflow models are defined by the previous 
metamodel completed by logical expressions in the Object 
Constraint Language (OCL). For instance, a rule saying that 
an input can be connected to one, and just one, output is for-
malized by the OCL expression:

context i:Input 
inv OneConnection: i.output->size()==1
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Fig. 3. Metamodel specifying dataflow models (see Fig. 4 as 
an example).

Conclusion.  UML is described using class diagrams and OCL 
expressions in a reference document (OMG, 2007) of a thou-
sand pages ; what can be considered a bit too complicated to 
be really useable. Moreover, in specific fields (real-time ap-
plications for instance), the notation is not sufficient and must 
be extended by using profiles (i.e. extension of UML meta-
model). Finally,  UML/OCL are considered as semi-formal in 
the sense that their are described with themselves. This is a 
problem in the field of critical systems where it must be pos-
sible to formally prove that a system satisfies requirements. 
Thus, the standard approach proposed by the MDD commu-
nity which uses generic tools and UML can be described as 
too complicated. 
This paper proposes an approach to exceed these limitations, 
and the following part shows how the functional paradigm 
can make the concepts of metamodel and transformation 
practicable. Indeed, the concepts of Domain Specific Lan-
guage (DSL) or “meta” appeared early in the history of func-
tional languages, and it is interesting to show how advances 
in this field combined with metamodels and transformations 
can be profitable for the development of control software. 

3. FUNCTIONAL METAMODELS

3.1 Functional models

Foundation.  The functional paradigm is based upon the 
lambda calculus, a metamodel of computation based on the 
concepts of function, application of function to an argument 
and rewriting rules from an expression of a language into 
another expression ; see (Hudak, 1989). Modern functional 
languages, such as Haskell, add to this metamodel the con-
cepts of type and constant to increase intelligibility and to 
reduce errors. A type is defined by a set of functions. For 
instance, lists are defined with a constant (the empty list []), 
and the operator (:) which adds an element at the beginning 
of a list. Then,  1:2:3:[] is a list of integers, and can be 
written [1,2,3].  A special construct of a language with no 
special semantics is called syntactic sugar. Then, the first 
advantage of Functional Models (FM) is their simplicity (i.e. 
complex computations can be done with short expressions) 
and their ability to compute easily a collection of objects with 
lists (such as matrixes with eventually symbolic expressions): 
for instance, Haskell is built upon a simple grammar and a 
standard library with a set of generic functions ; see (Peyton 
Jones, 2003).
The second advantage of FM is their ability to model compu-
tations, i.e. the way an expression is reduced or evaluated. 
Contrary to imperative models, functional models support 

CompositeBasic

Bloc

Input Output
N

Link

Equation
N

N N

lazy evaluation and, implicitly, dataflow models with infinite 
streams ; see (Mathaikutty, 2005).  As an illustration, the fol-
lowing model declares a continuous dynamical system and its 
simulation. Such a model is used to compute trajectories of 
the legged robot (Fig. 1).

h  = 0.01; f  = 1; c  = 2*cos(2*pi*f*h)
minus  = zipWith (-) -- Combinators
mult k = zipWith (*)
y =0.0:y1 -- Infinite Stream
y1=sin (2*pi*f*h):((repeat c `mult` y1)
                   `minus` y)
y = take 100 y 
-- [0.0, 0.06, 0.12, 0.18, ...]

Fig. 4. Dataflow model of an oscillator.

Finally, the third advantage of FM is their ability to easily 
build embedded languages, or Domain Specific Language 
(DSL).  For instance, Pembeci et al. (2002) have proposed a 
functional model for reactive/control systems with robotic 
and vision parts. A DSL can be defined by a datatype playing 
the role of a metamodel, and functions playing the role of 
transformations. Contrary to the standard MDD approach 
using UML as a foundation, the combination of functional 
paradigm with the MDD concepts can lead, as shown in part 
3.2,  to a simple but complete framework integrating a family 
of languages for specification, design, deployment, and so on.

Modeling actions. Programming features of more classical 
programming languages can be easily captured using mo-
nadic types ; see (Peyton Jones, 2001). In particular, an action 
is defined by a type IO a = s->(a,s) ; where s is the exe-
cution environment before, then after, the computation, and a 
is the type of the value computed. The primitive getChar 
and putChar are built upon this definition and have respec-
tively the type IO Char (say an action that computes a char-
acter) and IO ().  Similar definitions are used to define mu-
table variables (monad State), optional results or errors (mo-
nad Maybe), alternative results (monad Either), concurrency 
(monad Continuation),  etc. Monads are associated to special 
functions: “return” to create a monadic value, and “bind” 
combinator (>>) to compose monads. Bind is used with IO to 
create sequences of actions and exchange values between 
them. The concept of sequential composition of actions is 
described precisely and in a simple way. Moreover, func-
tional actions can be put into lists and can be passed as argu-
ment or result of functions, etc. Then, monads make possible 
the use of imperative aspects inside declarative/functional 
model ; the metamodel of code used for deployment is based 
on the concept of monadic action and is presented in the next 
part. 

Conclusion.  Combining functions with MDD concepts makes 
possible the definition and use of specific languages for con-
trol. The next part exploits the presented elements to propose 
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an other framework for specification, validation and imple-
mentation of discrete dynamical systems. As an illustration, 
this part detailed the development environment used for the 
control software of the legged robot, Fig. 1.

3.2 Functional metamodels in control

The development process described in part 2.1 is based on a 
set of languages, each one being adapted to a step of the 
process. As shown in part 2.2, a modeling language can be 
described by a metamodel. Part 3.1 presents functional lan-
guages as a mean to design easily embedded languages 
(called DSL) ; each DSL is based upon a metamodel and a set 
of transformations. Using the functional paradigm, this part 
proposes DSLs (i.e. metamodels) adapted to the various steps 
of the development process identified.

Specification and validation. Properties are usually formal-
ized with logical expressions. Expressions are modeled by a 
grammar that is interpreted,  in Haskell, by a datatype defini-
tion.  The following model specifies a subset of temporal 
logic with: constant (FTrue), basic properties, operators of 
classical logic (Not, Or) and temporal operators (neXt, Un-
til).  The semantics of these constructs, represented by s, is 
based on traces t, i.e. sequences of states. ; each state corre-
sponding to a set of properties. This model also describes 
how to build syntactic sugars (globally and imply) on the 
top of the previous elements.

type Trace e = [Set e] 
data Form e = FTrue | Property e
            | Not (Form e)
            | Or (Form e) (Form e) 
            | X (Form e) 
            | U (Form e) (Form e)

s :: Trace e -> Form e -> Bool
s t FTrue = True
s (ps:pss) (Property p) = member p ps
s t (Not f) = not (s t f)
s t (Or f f')  = (s t f) || (s t f')
s (ps:pss) (X f) = s pss f
s t@(ps:pss) g@(U f f') = ((s t f) && 
      (s pss g)) || (s t f')
s _ _ = False

globally f = U f FTrue
imply f g = Or (Not f) g

The datatype definition can be described by an UML meta-
model, similar to the one of Fig. 3: Form becomes a paramet-
ric class with an operation s(t:Trace):Boolean and 
FTrue, Property, Not, etc. become subclasses ; the imple-
mentation is described by the rules under data definition. This 
establishes the compatibility between the elements proposed 
and the standard MDD approach ; tools cited in part 2.1 can 
be exploited. However, one can wonder about the interest of 
having a UML visual model for a formulae such as (Push 
=> X Move) U Stop)?  The following model gives an ex-
ample of test for this expression using the framework pro-
posed. 

t = [["Push"],["Move"],["Stop"]]
f = U (imply (Property “Push”) 
             (X (Property “Move”))) 
      (Property “Stop”)
r = s t f -- is True

Anyone can copy the functional metamodel below, and then 
get a simple model checker for the bounded LTL to check 
that a finite trace t satisfies the formulae f (see the result r). 
To continue the example, it is necessary to define a model of 
design. The next section proposes a metamodel for the La-
beled Transition Systems (LTS) and a function to run an lts 
and obtain a trace useable with the function s ; testing all 
possible traces of the lts with a property p will prove that the 
lts satisfies p.

Design. The discrete behavior of a system is generally de-
scribed with a set of configurations, or states, and a set of 
transitions between these configurations ; transitions are gen-
erally controlled either by an event received by the system, or 
by an action in which the system is engaged.  More precise 
definitions of such structures are Finite State Machine - FSM 
(for events) and Labeled Transition Systems - LTS (for ac-
tions). LTS were proposed by Plotkin to formally describe the 
semantics of programming languages ; in particular,  they are 
used to describe process algebra which are modeling lan-
guages for concurrent communicating processes. The Finite 
State Process (FSP) proposed by Magee and Kramer (2006), 
for instance, is a process algebra built upon LTS and is used 
to describe systems behaviors, and properties to check before 
deployment. As the other languages (CSP, CCS or ACP), FSP 
defines syntactic sugars to facilitate the definition of complex 
behaviors integrating hierarchy (i.e.  an LTS inside a state), 
concurrency and synchronization. Thus, LTS, as lambda cal-
culus in functional models, represent a formal kernel lan-
guage for concurrent systems and are well suited for design. 
Moreover, they can be easily integrated into the specification 
model of the previous part to prove that a behavior proposed 
is in accordance with the requirements. Fig. 5 presents the 
UML metamodel based on the mathematical definition of the 
LTS and the code below gives the (second) functional meta-
model: classes are translated into data structures and trans-
formations to functions on these structures.

Fig. 5. Metamodel of Labeled Transition Systems for behav-
ior and properties specification.

An example of model is given by the legs’  behavior of Fig.  2 
; the system behavior is obtained by composing local behav-
iors into a single LTS. In the functional metamodel, the se-
mantic of the LTS is captured by the function step and aux-
iliary function menu which returns the possible actions a 
system can engage into ; a potential deadlock is then an 

step(Action):LTS
menu():Set(Action)

LTS

Action

Transition
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empty menu []. The step function describes the evolution 
of a LTS from state to state and corresponds to a model trans-
formation. A run corresponds to a sequence of actions and 
can be used to generate a trace. Then, it is possible, using the 
specification model and function s, to check if this trace satis-
fies a set of properties. 
The following code proposes an implementation of the LTS 
metamodel, an example of model (lts) and the transforma-
tions onto the metamodel (step and run).

data LTS s a = -- Metamodel
  LTS { current     :: s,
        states      :: [s],
        transitions :: [(s,a,s)] }

lts = LTS “Push” -- Sample model
  [“Move”,”Push”,”Await”,”Stop”]
  [(“Push”,”pmax”,”Await”),
   (”Await”,”canMove”,“Move”),
   (“Move”,”pmin”,”Push”),
   (“Push”,”pmax”,”Await”)]

menu lts =[a|(s,a,_)<-transitions lts,
   s==current lts]
lock lts = menu lts == []

step (LTS cur sts trs) act = 
 LTS cur' sts trs
   where cur' = head [d|(s,a,d) <- trs,
     s==cur, a==act]

run lts trs = do
  if not (lock lts) then do { 
    putStrLn (show (menu lts)); 
    act <- getLine; 
    run (step lts act) (act:trs)} 
  else return (reverse trs)

compose :: (Lts s a) -> (Lts s a) -> Lts s a

As for LTL, the implementation of the LTS is simple and can 
be used to define design models, test (with run) or check 
(with s) them. Then, it is possible to define syntactic sugars to 
define lts more easily with product of two lts (for parallel-
ism),  relabeling of actions (for synchronization),  or copy. 
Concerning the product (see function compose) of two LTS, 
used to model concurrency, it returns a new global lts for the 
whole system and is consequently not interesting for deploy-
ment: target platform/language generally integrates dedicated 
constructs for concurrency and distribution. Moreover, mod-
eled actions must be translated into concrete actions for con-
trol (beginning with read/write values). The next section pro-
poses an embedded language into Haskell for concurrency. 
This language is defined by a third functional metamodel and 
can be use to describe design model with imperative and con-
currency features before the deployment to the target archi-
tecture.

Deployment. Deployment consists in translating the design 
models into a specific programming language and platform. 
In the field of functional languages, concurrency can be eas-
ily modeled with the Continuation monad: each action (see 
IO, part 3.1) is extended by the rest of the computation, 

called continuation. As for the specification part, the meta-
model for concurrency is better described with a textual 
metamodel ; see the following code. In the tool proposed for 
deployment, continuations are integrated to IO actions to 
mimic interleaving of, possibly infinite, sequences of actions. 
The parallel combinator (||) makes the interleaving and is 
detailed by (Peyton, 2001). The function schedule captures 
the semantic of round robin used in the domain of multitask-
ing. The communication between processes is based on the 
State monad which plays the role of a shared memory ; this 
concept is detailed by the previous author.

data Action = Atom (IO Action)
  | Par Action Action
  | Stop

schedule [] = return ()
schedule (Atom m:rem) = m >>= (\m' -> 
  schedule (rem++[m']))
schedule (Par m1 m2:rem) = 
  schedule (m1:m2:rem)
schedule (Stop:rem) = schedule rem

exec m = schedule [m stop]

The previous metamodel/language is then used to run the 
deployment model for the legged robot, simply with exec 
main ; see code after Fig. 2. This code is obtained by 
translating/transforming the LTS , presented in the previous 
section, into statements of an imperative language: 
if_then_else or forever, for instance. This transformation 
from design model to a deployment model is difficult to de-
scribe ; so, the approach proposed here consists rather in giv-
ing the type IO Action to the functions step and run. Thus, 
design models can be integrated into deployment models in a 
simple/elegant manner. For instance, the behaviors presented 
in the example of part II.1 is replace by (run ltsi) and the be-
havior of the robot is given by:

main=schedule [Par (run lts1) (run lts2) ...]

The previous expression can be executed on a single proces-
sor ; or it can be broken into sub-expressions that whill be 
executed by many processors to increase performances. Dis-
tribution on a network is the next step of the development 
process and belongs to the perspectives of this work.

Synthesis. Part 3.2 presents a framework based on the con-
cept of functional metamodels and applies it to the analysis 
and design of software for control. Each expertise required by 
the development process is captured by an Haskell (me-
ta)model and is naturally integrated to the others. Conse-
quently, there is no need for extra tools to model, check and 
run complex systems such as the legged robot used as an il-
lustration, Fig. 1.

4. CONCLUSION

This paper has proposed the concept of functional metamod-
els which consists in describing metamodels in a functional 
language. The interest of the concept is the possibility to in-
tegrate modeling paradigms in a common framework. As an 
illustration, the paper has detailed a family of metamodels 
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implemented with Haskell for specification, design, simula-
tion and checking, and deployment. The resulting framework 
has been applied to the development of a control software for 
a legged robot, Fig. 1. 
More precisely, the use of datatypes and functions,  represent-
ing metamodels and model transformations, can capture the 
various points of view, knowledge and methods, necessary in 
the field of control software. As an example and an applica-
tion of the concept of functional metamodels,  the paper has 
presented three tools to model systems behavior with Labeled 
Transitions Systems (LTS), to check properties modeled by 
formulae from Linear Temporal Logic (LTL), and a prototype 
of concurrent language to implement checked behaviors.
The perspectives envisaged with these works will consist 
mainly in refining the development process and to identify its 
other advantages/limits, in particular with the integration of 
continuous and discrete (meta)models, and the model of the 
target architecture (with resources, networks, sensors/
actuators, etc.).
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