
Functional (Meta)Models for the Development of Control Software

Laurent Thiry*, Bernard Thirion*

* ENSISA - 12, rue des frères Lumière - 68093 MULHOUSE Cedex (France)
{laurent.thiry, bernard.thirion}@uha.fr

Abstract: The development of control software is a complex task: it requires the integration of many
descriptions and tools for specification, design, deployment, etc. To reduce the gap between the various
models used to describe a system, this paper proposes the concept of functional metamodels, i.e. precise
descriptions of a modeling language embedded into a functional language. The interest of the concept is
the ability to define frameworks to simplify the development process. In particular, the paper proposes a
framework for specification, design and deployment and applies it to the example of a legged robot.

Keywords: Software engineering, (Meta)Modeling, Programming approach

1. INTRODUCTION

The development of software for control requires the integra-
tion of models and tools ; each one being dedicated to a stage
of the development (Sanz and Arzen, 2003). To simplify the
integration of models, this paper defines the concept of func-
tional metamodel. Indeed, combining functions with descrip-
tions of models (called metamodels) makes possible the de-
sign of simple tools that can be integrated in the development
process of software for control, with modeling, checking, and
deployment. The tools proposed as an illustration are written
in the functional language Haskell and make software analy-
sis and design easier ; each tool captures a modeling language
with its syntax and semantics. Thus, a framework for devel-
oping safety critical systems is presented ; the framework is
based on Labeled Transition Systems to describe and simu-
late a system’s behavior, Linear Temporal Logic to verify that
a behavior satisfies a temporal property, and a prototype of
concurrent language to implement checked behaviors. As an
example, the paper presents the development of a control
software for a legged robot, Fig. 1.
This paper is divided into three parts. The first part presents
the development process as a family of expertise to integrate,
the difficulties to do this integration and the solution brought
by the Model Driven Development (MDD) community ; see
(Mellor et al., 2003). The second part presents the advantages
of functional languages combined with model driven princi-
ples and proposes a framework to model software for control,
check their properties and get the code to deploy. The third
part concludes by summarizing the results which were ob-
tained and the perspectives which where considered.

2. SOFTWARE FOR CONTROL

2.1 Development process: from multi-model to metamodels

Overview. Nowadays, the development of software dedicated
to control systems becomes increasingly complex. In particu-
lar, such software must be produced in a shorter time and at a
lower cost, and must be of higher quality (Henzinger and
Sifakis, 2006). The problem is that the design process re-

quires a set of various descriptions, or formalisms, to inte-
grate ; see (Thiry et al., 2003). So, the methodologies and
tools which are used have to be considered with a great atten-
tion.
The development process is the rendez-vous of many actors
or specialists, each one uses its own languages and tools, and
a lot of energy/time is lost integrating these various points of
view ; see (Mosterman et al., 2004). In the field of software
for control, the main steps that compose the development are
specification, design and deployment. The specification con-
sists in translating the informal requirements expressed by a
client into expressions in a formal language ; it describes
what must be done with the main components that character-
ize a software system. Indeed, control systems usually consist
of a set of entities, performing a set of tasks, distributed on a
network and embedded on dedicated processor. The global
behavior resulting from the parallel composition of these
entities/tasks must satisfy requirements and formal models
are the means of proving this satisfaction ; see (Magee and
Kramer, 2006). Design describes a possible solution that can
satisfy the specification and the requirements. This step re-
quires creativity and must be compatible with the previous
step ; the models which are used have to be compared to
specification models for formal proofs. The creativity con-
sists in identifying the various configurations of a system and
the paths, or sequences of actions, between them. Deploy-
ment is a translation of the design models into code that can
be compiled and deployed in the physical architecture. This
part requires an interpretation of the concepts used by models
into programming constructs. The difficulty here is that de-
sign models do not always integrate programming facilities
such as processes, channels, rendez-vous, etc. Then, the de-
velopment process is characterized by a family of modeling
languages necessary for specification, design and deploy-
ment.

Sample development. To illustrate the development process,
this section describes the various models used to design a
control software for a legged hexapod ; see (Thirion and
Thiry, 2002), Fig. 1.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 8449 10.3182/20080706-5-KR-1001.0682

Fig. 1. Example of complex system to control.

The specification expresses the properties required, by the
way of logical formulae. The formulae give a formal model
of the requirements expressed by a client. For instance, the
following expressions imply that a leg can not go up and
move if the preceeding or following leg is up (for stability
reasons), and each leg contributes to the global movement of
the platform (for equity reason), i.e. globally (G) if a leg i
moves then (=>) in the future (F) it will push.

forall i in [0..6],
 G (not (Move(i) /\ Move(i+1 mod n)))
 G (Move(i) => F Push(i))

The design proposes a state model representing the order of
actions to be performed . The main models used for a design
are Finite State Machines (FSM) ; see (Antoniotti and
Mishra, 1995). Fig. 2 gives an overview of the robot behav-
ior. The proposed model must satisfy the previous formulae ;
this is done by tests or model checking ; see (Clarke et al.,
2000).

Fig. 2. The movement of the robot results from the parallel
composition of the legs’ behavior.

Using a programming language, the deployment gives the
code to put in the various controllers. Most often, this step
uses dedicated platform with threads and networks ; it is im-
portant to be able to interpret design models with these con-
cepts. The following code gives a translation of the design
model into an imperative/concurrent style, and it is the basis
for the control software. The code is based on basic actions
(pos, update to access or update shared variables as the
position p of a leg i), control structures (forever) and combi-
nators (; for sequence and || for parallel composition).

behavior i = forever do { push i;

Move

Push

Await

pmax

pmin

canMove

Behavior 1

Move

Push

Await

pmax

pmin

canMove

Behavior 6

...

System

 await i; move i }
push i = do { p<-pos i;
 if p<pmax then update i (p+delta)
 else return () }
main = (behavior 1)||...||(behavior 6)

Conclusion. Developing software for control is a difficult
task and current works try to propose concepts, methodolo-
gies and tools for the integration of many modeling lan-
guages ; see (Henzinger and Sifakis, 2006). An elegant solu-
tion has been brought by the Model Driven Development
(MDD) community described in the next part.

2.2 Model Driven Development (MDD)

Overview. The MDD community defines concepts and tools
to capture and then integrate families of modeling languages ;
see (Mellor et al., 2003). Each modeling language is repre-
sented by way of a metamodel, usually an UML class dia-
gram extended by OCL constraints, and is often called Do-
main Specific Language (DSL) ; see (Deursen et al., 2000).
The metamodels are used to configure metamodeling tools,
i.e. generic tools used to edit, to save/restore, or to translate
into code models conformed to the specified metamodel.
Sample tools are the Generic Modeling Environment GME
(Ledeczi et al., 2005) or Atom3 (Lara and Vangheluwe,
2002). Concerning model transformations, they are usually
based on graph transformations, i.e. rewriting rules between
two (meta)models.

Sample metamodel. To understand the concept of metamodel,
this section presents a metamodel for dataflow models, Fig.
3. Dataflow models are used to model continuous system
with signals and functions on these signals ; Fig. 4 presents
an example of dataflow model. The dataflow models can be
presented graphically: a function is represented by a box
(called block) with inputs similar to the arguments of the
function represented, and the resulting outputs. The composi-
tion of functions is represented by linking inputs to outputs.
Blocks can be classified into two categories: Basic blocks, to
map inputs to outputs by an equation, and Composite blocks,
to define hierarchy inside the models. All the concepts de-
scribing dataflow models can be represented by a metamodel,
itself represented graphically by an UML class diagram. The
Unified Modeling Language (UML) is a standard to model
software architectures ; see (OMG, 2007).
The concept of functional metamodels, presented in part 3,
consists in replacing the metamodel description language
UML by a functional language to exploit the notions of (me-
ta)model and transformation, and then simplify the develop-
ment of control software. For instance, Fig. 5 proposes the
UML metamodel for Labeled Transition Systems (LTS) and
the code below the figure its translation into the functional
programming language Haskell.

Well formed dataflow models are defined by the previous
metamodel completed by logical expressions in the Object
Constraint Language (OCL). For instance, a rule saying that
an input can be connected to one, and just one, output is for-
malized by the OCL expression:

context i:Input
inv OneConnection: i.output->size()==1

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8450

Fig. 3. Metamodel specifying dataflow models (see Fig. 4 as
an example).

Conclusion. UML is described using class diagrams and OCL
expressions in a reference document (OMG, 2007) of a thou-
sand pages ; what can be considered a bit too complicated to
be really useable. Moreover, in specific fields (real-time ap-
plications for instance), the notation is not sufficient and must
be extended by using profiles (i.e. extension of UML meta-
model). Finally, UML/OCL are considered as semi-formal in
the sense that their are described with themselves. This is a
problem in the field of critical systems where it must be pos-
sible to formally prove that a system satisfies requirements.
Thus, the standard approach proposed by the MDD commu-
nity which uses generic tools and UML can be described as
too complicated.
This paper proposes an approach to exceed these limitations,
and the following part shows how the functional paradigm
can make the concepts of metamodel and transformation
practicable. Indeed, the concepts of Domain Specific Lan-
guage (DSL) or “meta” appeared early in the history of func-
tional languages, and it is interesting to show how advances
in this field combined with metamodels and transformations
can be profitable for the development of control software.

3. FUNCTIONAL METAMODELS

3.1 Functional models

Foundation. The functional paradigm is based upon the
lambda calculus, a metamodel of computation based on the
concepts of function, application of function to an argument
and rewriting rules from an expression of a language into
another expression ; see (Hudak, 1989). Modern functional
languages, such as Haskell, add to this metamodel the con-
cepts of type and constant to increase intelligibility and to
reduce errors. A type is defined by a set of functions. For
instance, lists are defined with a constant (the empty list []),
and the operator (:) which adds an element at the beginning
of a list. Then, 1:2:3:[] is a list of integers, and can be
written [1,2,3]. A special construct of a language with no
special semantics is called syntactic sugar. Then, the first
advantage of Functional Models (FM) is their simplicity (i.e.
complex computations can be done with short expressions)
and their ability to compute easily a collection of objects with
lists (such as matrixes with eventually symbolic expressions):
for instance, Haskell is built upon a simple grammar and a
standard library with a set of generic functions ; see (Peyton
Jones, 2003).
The second advantage of FM is their ability to model compu-
tations, i.e. the way an expression is reduced or evaluated.
Contrary to imperative models, functional models support

CompositeBasic

Bloc

Input Output
N

Link

Equation
N

N N

lazy evaluation and, implicitly, dataflow models with infinite
streams ; see (Mathaikutty, 2005). As an illustration, the fol-
lowing model declares a continuous dynamical system and its
simulation. Such a model is used to compute trajectories of
the legged robot (Fig. 1).

h = 0.01; f = 1; c = 2*cos(2*pi*f*h)
minus = zipWith (-) -- Combinators
mult k = zipWith (*)
y =0.0:y1 -- Infinite Stream
y1=sin (2*pi*f*h):((repeat c `mult` y1)
 `minus` y)
y = take 100 y
-- [0.0, 0.06, 0.12, 0.18, ...]

Fig. 4. Dataflow model of an oscillator.

Finally, the third advantage of FM is their ability to easily
build embedded languages, or Domain Specific Language
(DSL). For instance, Pembeci et al. (2002) have proposed a
functional model for reactive/control systems with robotic
and vision parts. A DSL can be defined by a datatype playing
the role of a metamodel, and functions playing the role of
transformations. Contrary to the standard MDD approach
using UML as a foundation, the combination of functional
paradigm with the MDD concepts can lead, as shown in part
3.2, to a simple but complete framework integrating a family
of languages for specification, design, deployment, and so on.

Modeling actions. Programming features of more classical
programming languages can be easily captured using mo-
nadic types ; see (Peyton Jones, 2001). In particular, an action
is defined by a type IO a = s->(a,s) ; where s is the exe-
cution environment before, then after, the computation, and a
is the type of the value computed. The primitive getChar
and putChar are built upon this definition and have respec-
tively the type IO Char (say an action that computes a char-
acter) and IO (). Similar definitions are used to define mu-
table variables (monad State), optional results or errors (mo-
nad Maybe), alternative results (monad Either), concurrency
(monad Continuation), etc. Monads are associated to special
functions: “return” to create a monadic value, and “bind”
combinator (>>) to compose monads. Bind is used with IO to
create sequences of actions and exchange values between
them. The concept of sequential composition of actions is
described precisely and in a simple way. Moreover, func-
tional actions can be put into lists and can be passed as argu-
ment or result of functions, etc. Then, monads make possible
the use of imperative aspects inside declarative/functional
model ; the metamodel of code used for deployment is based
on the concept of monadic action and is presented in the next
part.

Conclusion. Combining functions with MDD concepts makes
possible the definition and use of specific languages for con-
trol. The next part exploits the presented elements to propose

z-1

c

z-1

+

y

yn = c.yn-1 - yn-2 ; y0 = 0

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8451

an other framework for specification, validation and imple-
mentation of discrete dynamical systems. As an illustration,
this part detailed the development environment used for the
control software of the legged robot, Fig. 1.

3.2 Functional metamodels in control

The development process described in part 2.1 is based on a
set of languages, each one being adapted to a step of the
process. As shown in part 2.2, a modeling language can be
described by a metamodel. Part 3.1 presents functional lan-
guages as a mean to design easily embedded languages
(called DSL) ; each DSL is based upon a metamodel and a set
of transformations. Using the functional paradigm, this part
proposes DSLs (i.e. metamodels) adapted to the various steps
of the development process identified.

Specification and validation. Properties are usually formal-
ized with logical expressions. Expressions are modeled by a
grammar that is interpreted, in Haskell, by a datatype defini-
tion. The following model specifies a subset of temporal
logic with: constant (FTrue), basic properties, operators of
classical logic (Not, Or) and temporal operators (neXt, Un-
til). The semantics of these constructs, represented by s, is
based on traces t, i.e. sequences of states. ; each state corre-
sponding to a set of properties. This model also describes
how to build syntactic sugars (globally and imply) on the
top of the previous elements.

type Trace e = [Set e]
data Form e = FTrue | Property e
 | Not (Form e)
 | Or (Form e) (Form e)
 | X (Form e)
 | U (Form e) (Form e)

s :: Trace e -> Form e -> Bool
s t FTrue = True
s (ps:pss) (Property p) = member p ps
s t (Not f) = not (s t f)
s t (Or f f') = (s t f) || (s t f')
s (ps:pss) (X f) = s pss f
s t@(ps:pss) g@(U f f') = ((s t f) &&
 (s pss g)) || (s t f')
s _ _ = False

globally f = U f FTrue
imply f g = Or (Not f) g

The datatype definition can be described by an UML meta-
model, similar to the one of Fig. 3: Form becomes a paramet-
ric class with an operation s(t:Trace):Boolean and
FTrue, Property, Not, etc. become subclasses ; the imple-
mentation is described by the rules under data definition. This
establishes the compatibility between the elements proposed
and the standard MDD approach ; tools cited in part 2.1 can
be exploited. However, one can wonder about the interest of
having a UML visual model for a formulae such as (Push
=> X Move) U Stop)? The following model gives an ex-
ample of test for this expression using the framework pro-
posed.

t = [["Push"],["Move"],["Stop"]]
f = U (imply (Property “Push”)
 (X (Property “Move”)))
 (Property “Stop”)
r = s t f -- is True

Anyone can copy the functional metamodel below, and then
get a simple model checker for the bounded LTL to check
that a finite trace t satisfies the formulae f (see the result r).
To continue the example, it is necessary to define a model of
design. The next section proposes a metamodel for the La-
beled Transition Systems (LTS) and a function to run an lts
and obtain a trace useable with the function s ; testing all
possible traces of the lts with a property p will prove that the
lts satisfies p.

Design. The discrete behavior of a system is generally de-
scribed with a set of configurations, or states, and a set of
transitions between these configurations ; transitions are gen-
erally controlled either by an event received by the system, or
by an action in which the system is engaged. More precise
definitions of such structures are Finite State Machine - FSM
(for events) and Labeled Transition Systems - LTS (for ac-
tions). LTS were proposed by Plotkin to formally describe the
semantics of programming languages ; in particular, they are
used to describe process algebra which are modeling lan-
guages for concurrent communicating processes. The Finite
State Process (FSP) proposed by Magee and Kramer (2006),
for instance, is a process algebra built upon LTS and is used
to describe systems behaviors, and properties to check before
deployment. As the other languages (CSP, CCS or ACP), FSP
defines syntactic sugars to facilitate the definition of complex
behaviors integrating hierarchy (i.e. an LTS inside a state),
concurrency and synchronization. Thus, LTS, as lambda cal-
culus in functional models, represent a formal kernel lan-
guage for concurrent systems and are well suited for design.
Moreover, they can be easily integrated into the specification
model of the previous part to prove that a behavior proposed
is in accordance with the requirements. Fig. 5 presents the
UML metamodel based on the mathematical definition of the
LTS and the code below gives the (second) functional meta-
model: classes are translated into data structures and trans-
formations to functions on these structures.

Fig. 5. Metamodel of Labeled Transition Systems for behav-
ior and properties specification.

An example of model is given by the legs’ behavior of Fig. 2
; the system behavior is obtained by composing local behav-
iors into a single LTS. In the functional metamodel, the se-
mantic of the LTS is captured by the function step and aux-
iliary function menu which returns the possible actions a
system can engage into ; a potential deadlock is then an

step(Action):LTS
menu():Set(Action)

LTS

Action

Transition

State

trs

N

sts1..N

act

src dst

current

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8452

empty menu []. The step function describes the evolution
of a LTS from state to state and corresponds to a model trans-
formation. A run corresponds to a sequence of actions and
can be used to generate a trace. Then, it is possible, using the
specification model and function s, to check if this trace satis-
fies a set of properties.
The following code proposes an implementation of the LTS
metamodel, an example of model (lts) and the transforma-
tions onto the metamodel (step and run).

data LTS s a = -- Metamodel
 LTS { current :: s,
 states :: [s],
 transitions :: [(s,a,s)] }

lts = LTS “Push” -- Sample model
 [“Move”,”Push”,”Await”,”Stop”]
 [(“Push”,”pmax”,”Await”),
 (”Await”,”canMove”,“Move”),
 (“Move”,”pmin”,”Push”),
 (“Push”,”pmax”,”Await”)]

menu lts =[a|(s,a,_)<-transitions lts,
 s==current lts]
lock lts = menu lts == []

step (LTS cur sts trs) act =
 LTS cur' sts trs
 where cur' = head [d|(s,a,d) <- trs,
 s==cur, a==act]

run lts trs = do
 if not (lock lts) then do {
 putStrLn (show (menu lts));
 act <- getLine;
 run (step lts act) (act:trs)}
 else return (reverse trs)

compose :: (Lts s a) -> (Lts s a) -> Lts s a

As for LTL, the implementation of the LTS is simple and can
be used to define design models, test (with run) or check
(with s) them. Then, it is possible to define syntactic sugars to
define lts more easily with product of two lts (for parallel-
ism), relabeling of actions (for synchronization), or copy.
Concerning the product (see function compose) of two LTS,
used to model concurrency, it returns a new global lts for the
whole system and is consequently not interesting for deploy-
ment: target platform/language generally integrates dedicated
constructs for concurrency and distribution. Moreover, mod-
eled actions must be translated into concrete actions for con-
trol (beginning with read/write values). The next section pro-
poses an embedded language into Haskell for concurrency.
This language is defined by a third functional metamodel and
can be use to describe design model with imperative and con-
currency features before the deployment to the target archi-
tecture.

Deployment. Deployment consists in translating the design
models into a specific programming language and platform.
In the field of functional languages, concurrency can be eas-
ily modeled with the Continuation monad: each action (see
IO, part 3.1) is extended by the rest of the computation,

called continuation. As for the specification part, the meta-
model for concurrency is better described with a textual
metamodel ; see the following code. In the tool proposed for
deployment, continuations are integrated to IO actions to
mimic interleaving of, possibly infinite, sequences of actions.
The parallel combinator (||) makes the interleaving and is
detailed by (Peyton, 2001). The function schedule captures
the semantic of round robin used in the domain of multitask-
ing. The communication between processes is based on the
State monad which plays the role of a shared memory ; this
concept is detailed by the previous author.

data Action = Atom (IO Action)
 | Par Action Action
 | Stop

schedule [] = return ()
schedule (Atom m:rem) = m >>= (\m' ->
 schedule (rem++[m']))
schedule (Par m1 m2:rem) =
 schedule (m1:m2:rem)
schedule (Stop:rem) = schedule rem

exec m = schedule [m stop]

The previous metamodel/language is then used to run the
deployment model for the legged robot, simply with exec
main ; see code after Fig. 2. This code is obtained by
translating/transforming the LTS , presented in the previous
section, into statements of an imperative language:
if_then_else or forever, for instance. This transformation
from design model to a deployment model is difficult to de-
scribe ; so, the approach proposed here consists rather in giv-
ing the type IO Action to the functions step and run. Thus,
design models can be integrated into deployment models in a
simple/elegant manner. For instance, the behaviors presented
in the example of part II.1 is replace by (run ltsi) and the be-
havior of the robot is given by:

main=schedule [Par (run lts1) (run lts2) ...]

The previous expression can be executed on a single proces-
sor ; or it can be broken into sub-expressions that whill be
executed by many processors to increase performances. Dis-
tribution on a network is the next step of the development
process and belongs to the perspectives of this work.

Synthesis. Part 3.2 presents a framework based on the con-
cept of functional metamodels and applies it to the analysis
and design of software for control. Each expertise required by
the development process is captured by an Haskell (me-
ta)model and is naturally integrated to the others. Conse-
quently, there is no need for extra tools to model, check and
run complex systems such as the legged robot used as an il-
lustration, Fig. 1.

4. CONCLUSION

This paper has proposed the concept of functional metamod-
els which consists in describing metamodels in a functional
language. The interest of the concept is the possibility to in-
tegrate modeling paradigms in a common framework. As an
illustration, the paper has detailed a family of metamodels

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8453

implemented with Haskell for specification, design, simula-
tion and checking, and deployment. The resulting framework
has been applied to the development of a control software for
a legged robot, Fig. 1.
More precisely, the use of datatypes and functions, represent-
ing metamodels and model transformations, can capture the
various points of view, knowledge and methods, necessary in
the field of control software. As an example and an applica-
tion of the concept of functional metamodels, the paper has
presented three tools to model systems behavior with Labeled
Transitions Systems (LTS), to check properties modeled by
formulae from Linear Temporal Logic (LTL), and a prototype
of concurrent language to implement checked behaviors.
The perspectives envisaged with these works will consist
mainly in refining the development process and to identify its
other advantages/limits, in particular with the integration of
continuous and discrete (meta)models, and the model of the
target architecture (with resources, networks, sensors/
actuators, etc.).

REFERENCES

Antoniotti M. and Mishra B. (1995). Discrete Event Models
+ Temporal Logic = Supervisory Controller: Automatic
Synthesis of Locomotion Controllers. Research Report,
NYU

Clarke E.M., Grumberg O. and Peled D.A. (2000). Model
Checking. The MIT Press, Cambridge

Deursen A., Klint P., Visser J. (2000), Domain-Specific Lan-
guages: An Annotated Bibliography, In: SIGPLAN No-
tices, Vol. 35, No. 6, pp. 26–36

Henzinger T.A. and Sifakis J. (2006), The Embedded Sys-
tems Design Challenge. In: the 14th International Sym-
posium on Formal Methods (FM), Lecture Notes in
Computer Science, Springer

Hudak P. (1989), Conception, Evolution, and Application of
Functional Programming Languages. In: ACM Comput-
ing Surveys, Vol. 21, Issue 3, pp. 359-411

Lara J. and Vangheluwe J. (2002). AToM3: A Tool for Multi-
formalism and Meta-modelling. In: the 5th International
Conference on Fundamental Approaches to Software
Engineering, pp. 174-188

Ledeczi A., Balogh G., Molnar Z., Volgyesi P., Maroti M.
(2005). Model Integrated Computing in the Large, In:
IEEE Aerospace, pp. 1-8

Magee J. and Kramer J. (2006). Concurrency: State Models
& Java Programs, John Wiley and Sons Eds, Chichester,
UK

Mathaikutty D.A. (2005). Functional Programming and
Metamodeling frameworks for System Design. PhD The-
sis, Faculty of Virginia Polytechnic Institute and State
University

Mellor S.J., Clark A.N., Futagami T. (2003). Guest Editors’
Introduction: Model-driven development. In: IEEE Soft-
ware. Vol. 20, No 5, pp.14-18

Mosterman P.J., Sztipanovits J., Engell S. (2004). Computer
automated multi-paradigm modeling in control systems
technology. In: IEEE Transactions on Control System
Technology, Vol. 12

OMG (2007). UML 2.1.1 Superstructure Specification.
Available from www.uml.org

Pembeci I., Nilsson H., Hager G., Burschka D., Peterson J.
(2002). Functional Reactive Robotics: An Exercise in

Principled Integration of Domain-Specific Languages.
In: Principles and Practice of Declarative Programming,
PPDP’02, Pittsburgh, Pennsylvania, USA

Peyton Jones S. (2001), Tackling the Awkward Squad: mo-
nadic input/output, concurrency, exceptions, and foreign-
language calls in Haskell. In: Engineering theories of
software construction, Tony Hoare, Manfred Broy, Ralf
Steinbruggen Eds, IOS Press, 2001, pp. 47-96

Peyton Jones S. (2003). Haskell 98 Language and Libraries.
Cambridge U. Press, 2003.

Sanz R. and Arzen K.E. (2003). Trends in software and con-
trol. In: IEEE Control Systems Magazine. Vol. 23. No. 3,
pp. 12-15

Thirion B. and Thiry L. (2002). Concurrent Programming for
the Control of Hexapod Walking. In: ACM Ada Letters,
Vol. 21, N°1, pp. 12-36

Thiry L., Perronne J.M., Thirion B. (2003). Patterns for Be-
havior Modeling and Integration, In: Computers in In-
dustry, Elsevier Ed, pp. 225-237

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8454

