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Abstract: This paper proposes a novel robust predictive control synthesis technique for
constrained nonlinear systems based on linear matrix inequalities (LMIs) formalism. Local
discrete-time polytopic models have been exploited for prediction of the system behavior.
This design strategy can be applied to a wide class of nonlinear systems provided a suitable
embedding is available. The devised procedure guarantees constraint satisfaction and asymptotic
stability. The proposed result extends previous works by allowing different local descriptions of
nonlinearity and uncertainty and by handling less conservative input constraints. The multi-
model prediction shows significant improvements in terms of closed-loop performance and
estimation of the feasibility domain.

1. INTRODUCTION

Model Predictive Control (MPC) is nowadays a well un-
derstood optimisation-based design technique for discrete-
time systems allowing constraints handling from the de-
sign stage (Goodwin et al., 2004). Performance of the
closed-loop system are directly related to the pertinence
of the mathematical model used for predicting the system
behavior (Mayne et al., 2000). The complexity of the
underlying optimization problem is increased according
to the model used for the prediction (linear, linear with
uncertainties, nonlinear), the main practical limitations
being related to the computational effort and the size of
the feasibility region (Allgöwer and Zheng, 2000). The
present contribution handles this trade-off between ac-
curate prediction and complexity of optimization prob-
lems by proposing a new formulation which embeds the
nonlinear model into linear models with uncertainty and
casts the resulting optimal control problem into a convex
optimization framework (known to provide polynomial-
time solutions, (Ben-Tal and Nemirovski, 2001)). An el-
egant robust MPC formulation was proposed in (Kothare
et al., 1996) by using linear matrix inequalities formulation
for synthesizing the feedback control laws. Hereafter, this
methodology is improved by considering local polytopic
descriptions in order to decrease the conservatism in the
approximation of nonlinearity and parametric uncertainty,
while augmenting the feasible regions of the state space.
Indeed, it is well known that efficient control solutions
can be deviced exploiting piecewise linear model or other
type of approximations (Özkan and Kothare, 2002; Lee
et al., 2005; Lu and Arkun, 2002; Sontag, 1981; Rugh and
Shamma, 2000; Chisci et al., 2003; Shamma and Xiong,
1999; Muñoz de la Peña et al., 2006). Moreover, the pro-
posed formulation allows the device of an improved scheme
handling input constraints. The novel input conditions are
formulated in terms of bilinear matrix inequalities (BMI)

⋆ This work was conducted within the framework of multidisci-
plinary project PPF (Project Pluri-Formation).

and then, in order to be efficiently solved, a suitable iter-
ative procedure based on LMIs problem is proposed. This
procedure guarantees an improved solution in terms of
performance and feasibility domain. The improved policy
might turn to be unsuitable for on-line implementation
within high sampling rate systems. For this reason, an
off-line explicit solution is currently under investigation
in order to improve on-line evaluation capabilities. The
paper is organized as follows: in section 2 the problem
formulation is introduced; section 3 presents the main con-
ceptual results with respect to the optimal control problem
formulation while in section 4 are detailed the constraints
handling extensions of the optimisation problem. Section
5 details the practical adaptation for obtaining suboptimal
solutions while section 6 presents an illustrative example.

2. PROBLEM FORMULATION

Consider a discrete-time nonlinear system

x(t + 1) = f(x(t), u(t)) (1)

where u(t) ∈ IRm and x(t) ∈ IRn are respectively the
state and control input at sample time t. Without loss
of generality we assume f(0,0) = 0. Moreover x(t) is
available for feedback and the system is subject to the
constraints

u(t) ∈ U(x), x(t) ∈ X (2)

where X is a compact set containing the origin in the
interior and U : X → U is a compact set valued map

where U
△
= {V ⊆ IRm : V is compact, 0 ∈ int(V )}.

The function f : D → IRn is assumed to be defined in

D
△
=

⋃

x∈X

{x} × U(x). The control objective is to regulate

the system to the origin while satisfying the constraints
(2). In order to solve the problem with computationally
efficient tools, a convenient approach is to embed the
nonlinear dynamics into an LPV representation following
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the lines discussed in (Rugh and Shamma, 2000). The LPV
model will be subsequently adopted for designing MPC
algorithms. Adopting an LPV paradigm and applying a
suitable embedding technique, whose description is beyond
the scope of this paper, the dynamics (1) can often (Boyd
et al., 1994; Rugh and Shamma, 2000) be recast as

x(t + 1) = A (p(t))x(t) + B (p(t))u(t)
p(t + 1) ∈ G(p(t))

(3)

where p(t) is a measurable, time-varying parameter vector
which depends on the state variables. The parameter p(t)
is confined to be in a compact set P and evolves according
to a prescribed set-valued map, denoted as G : P → P ,
in order to take into account all possible dynamics of
the original systems in the considered state space region.
It is worth pointing out that there exist systems which
can be stabilized by a parameter dependent feedback but
not robustly stabilized if p(t) takes value in a sufficiently
large interval (Blanchini and Miani, 2003). Then, it is
convenient to exploit the knowledge of parameter value
during operation to reduce conservatism. However, in
order to develop constructive algorithms it is necessary
to consider suitable finite parameterizations of the LPV
model (Shamma and Xiong, 1999; Chisci et al., 2003). In
order to build a finite parametrization, a region S ⊆ X
of the state space is selected and further partitioned into
compact sub-regions Xi, i = 1, 2, . . . , ℓ, such that

S ⊆
ℓ

⋃

i=1

Xi. (4)

Noticed that it is not assumed that Xi ∩Xj = ∅ for i 6= j.
This further degree of freedom can be exploited to improve
numerical robustness of the algorithm. In each sub-region
Xi, we embed the nonlinear dynamics into a polytopic
model.

x(t + 1) = A(i)(t) x(t) + B(i)(t) u(t), (5)

where
[

A(i)(t), B(i)(t)
]

=

pi
∑

h=1

λ
(i)
h (t)[A

(i)
h , B

(i)
h ], (6)

λ
(i)
h (t) ≥ 0,

∑pi

h=1 λ
(i)
h (t) = 1, for i ∈ I

△
= {1, 2, . . . , ℓ}. In

order to complete the embedding procedure it is customary
to define appropriate transition equations for the dynamics
of the index i on the basis of the set valued map G. In this
paper we are not going to define explicitly dynamics for i(t)
but we essentially allow for arbitrary variations of i ∈ I.
The following assumption is however fulfilled.

Assumption 1. - For any value i ∈ I of the discrete
parameter, the sets

Ωi , Co
{

[A
(i)
1 , B

(i)
1 ], [A

(i)
2 , B

(i)
2 ], · · · , [A(i)

pi
, B(i)

pi
]
}

(7)

are such that f(x, u) ⊆ Ωi [x′ u′]
′
,∀(x, u) ∈ D

⋂

[Xi×IRm].

In words, this means that each set of linear models indexed
by i provides a valid one-step ahead prediction of the
nonlinear dynamics for any x ∈ Xi and u ∈ U(x).

For the moment, we consider the set of time varying
models (5) subject to the subsequent constraints on the
state variables and the control variables

(x(t), u(t)) ∈
⋃

i∈I

Xi × Ui, (8)

where Xi and Ui can be ellipsoidal and/or polyhedral sets.
Notice that constraints on the input may differ in every
region Xi due to the dependence of U on the variables x
as in (2). In particular, then, it is possible to compute
different norm bounds in every region. The choice of
number ℓ of regions Xi is driven by a trade-off between
conservatism and model complexity and making sure that:

Ui ⊆ U(x), ∀x ∈ Xi (9)

3. MULTI-MODEL MIN-MAX ROBUST ALGORITHM

In this section the robust model predictive control scheme
for the set of models (5) is introduced by extending
ideas developed in (Kothare et al., 1996). The optimal
control problem will be reformulated as an LMI synthesis
procedure. The next section will extend the technique for
handling input constraints.

At each time instant the measured state x(t) is collected
and a robust performance objective is minimized with
respect to linearly parameterized state feedback

min
F (i), i∈I

max
[A(i)(t+k),B(i)(t+k)]∈Ωi, k≥0

J∞(t)

subject to

x(i)(t + k + 1|t) = A(i)(t + k)x(i)(t + k|t)
+B(i)(t + k)u(i)(t + k|t)

u(i)(t + k|t) = F (i)x(i)(t + k|t)
x(i)(t|t) = x(t)

x(i)(t + k + 1|t) ∈ S

(10)

with

J∞(t)
△
=

∞
∑

k=0

[x(i)(t + k|t)′Q1x
(i)(t + k|t)

+u(i)(t + k|t)′Ru(i)(t + k|t)]

(11)

where Q1 ≻ 0, R ≻ 0 (positive definite matrices) are
suitable weighting matrices and x(i)(t + k|t), u(i)(t +
k|t) denote respectively the predicted state and input
at time t + k, by means of the i−th model based on
the measured x at time t. The considered quadratic
performance objective (10) results in an infinite horizon
MPC using worst-case closed-loop predictions. In order to
devise an efficient algorithm we consider, along the same
lines as in (Kothare et al., 1996), an upper bound on
the performance objective by assuming, first of all, the
following linear parameterization of the feedback control
laws

u(i)(t + k|t) = F (i)x(i)(t + k|t), k ≥ 0, i = 1, . . . , ℓ. (12)

Notice that the control laws differ for every polytopic
description. Moreover, an upper bound of the cost func-
tional is achieved in the form of some quadratic function
of the state V (x) = x′Px, with P = P ′ and P ≻ 0. At
sampling time t we assume that V (x) satisfies the following
ℓ inequalities for all x(i)(t+k|t) and u(i)(t+k|t) satisfying
(5), (6) and (12)
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V (x(i)(t + k + 1|t)) − V (x(i)(t + k|t)) ≤
−[x(i)(t + k|t)′Q1x

(i)(t + k|t)+
u(i)(t + k|t)′Ru(i)(t + k|t)],

∀
[

A(i)(t + k), B(i)(t + k)
]

∈ Ωi, ∀i ∈ I, k ≥ 0

(13)

for some P to be determined possibly as a function of
F (i). For any i ∈ I the robust performance objective
(11) is finite if limk→∞ x(i)(t + k|t) = 0 and hence
limk→∞ V (x(i)(t + k|t)) = 0. Thus, by summing (13)
from k = 0, . . . ,∞ the following upper bound for the
performance index is obtained readily

max
[A(i)(t+k),B(i)(t+k)]∈Ωi, ∀i, k≥0

J∞ ≤ V (x(t|t)) (14)

Then the robust MPC strategy can be recast as follows:
synthesize a set of constant feedback laws u(i)(t + k|t) =
F (i)x(i)(t + k|t) i = 1, . . . , ℓ, that minimize the function
V (x(t|t)) while satisfying constraints in (10). As it is
customary in MPC, at each time instant apply the first
input action u(t|t) = F (i∗)x(t|t) with i∗ ∈ I such that
x(t|t) ∈ Xi∗ . Notice that i∗ does not need to be unique.

Conditions for the existence of P together with the set
of feedback laws F (i) which guarantee fulfillment of in-
equalities (13) together with the following performance
requirement

V (x(t|t)) = x(t|t)′Px(t|t) < γ for some γ ≥ 0 (15)

are supplied by the following theorem

Theorem 1. Let x(t|t) the measured state x(t) at the time
instant t. Assume that the predictions are carried out with
the set of polytopic models (5) and the uncertainty in (6),
without taking into account input and state constraints.
Then the set of feedback control laws that, at the time
instant t, minimize the upper bound γ while satisfying the
inequalities (13) is given by

F (i) = Y (i)Q−1 i = 1, . . . , ℓ (16)

where Q = γP−1 ≻ 0 and Y (i) for i = 1, . . . , ℓ are ob-
tained from the following optimization problem whenever
feasible:

γ∗ = min
Q, Y (i) i=1,···,ℓ

γ
[

1 x(t|t)′

x(t|t) Q

]

� 0
(17)









Q ∗ ∗ ∗

A
(i)
h Q + B

(i)
h Y (i) Q ∗ ∗

Q
1/2
1 Q 0 γI ∗

R1/2Y (i) 0 0 γI









≻ 0,

h = 1, · · · , pi, i = 1, · · · , ℓ

(18)

where � 0 denotes a semidefinite positive condition.
Proof - The proof of the theorem can be derived following
the steps of theorem 1 in (Kothare et al., 1996). The
only difference comes from the fact that there are ℓ
distinct polytopic models (rather than a single one) and,
for every such model, a different feedback law is designed
that guarantees the satisfaction of the related LMIs with
performance not worst than γ.
The solution of the optimization problem (10) requires the
fulfillment of the state constraints x(i)(t + k + 1|t) ∈ S,

i = 1, . . . , ℓ. Thus in order to consider state and/or output
constraints, let us introduce the output variables:

y(i)(t) = Cx(i)(t) i = 1, . . . , ℓ (19)

where y(i)(t) ∈ IRs. Consider Euclidean norm and/or
componentwise peak bounds on the output variables (19)
for t ≥ 0, k ≥ 1 and ∀i ∈ I

‖y(i)(t + k + 1|t)‖2 ≤ ymax

|y
(i)
j (t + k + 1|t)| ≤ yj,max j = 1, . . . , s

(20)

where y
(i)
j is the j − th component of y(i). The constraints

(20) are satisfied if the following set of LMIs hold (see
(Kothare et al., 1996))

[

Q (A
(i)
h Q + B

(i)
h Y (i))′C ′

C(A
(i)
h Q + B

(i)
h Y (i)) y2

max

]

� 0

[

Q (A
(i)
h Q + B

(i)
h Y (i))′C ′

j

Cj(A
(i)
h Q + B

(i)
h Y (i)) y2

j,max

]

� 0

j = 1, · · · , s, h = 1, · · · , pi, i = 1, · · · , ℓ

(21)

where Cj is the ith row of the matrix C. Then an
LMI synthesis procedure for the solution of the robust
performance problem (10) is provided by solving the
optimization problem (17-18) together with the additional
constraints (21).

Theorem 2. Let consider the system (1) and assume that
assumption 1 is satisfied. Providing x(0) ∈ S, at each
time instant t the state is measured and the optimization
problem (17) together with the constraints (18) and (21)
is solved. Thus at each time instant determine i∗(t) such
that x(t) ∈ Xi∗(t) and apply

u(t) = F (i∗(t))x(t). (22)

Then, if the considered optimization problem is feasible
at t = 0, it is feasible for all times t > 0. Moreover, the
proposed control algorithm guarantees that: (i) the state
constraints are satisfied and (ii) limt→∞ x(t) = 0 where
x(t) denotes the trajectory of the nonlinear system under
the control law (22).

In order to prove the above theorem, the following Lemma
is fundamental.

Lemma 1. Consider the following prediction model

x(t + k + 1|t) = f(x(t + k|t), u(t + k|t)), x(t|t) = x(t)(23)

and let assumption 1 be satisfied. At sampling time t,
suppose there exist Q ≻ 0, γ > 0 and Y (i) = F (i)Q,
i = 1, . . . , ℓ such that (18) and (21) hold. Moreover suppose
that

u(t + k|t) = F (i∗(t+k|t))x(t + k|t), (24)

∀i∗(t + k|t) s.t. x(t + k|t) ∈ Xi∗(t+k|t).

Define E
△
= {x : x′Q−1x ≤ 1} = {x : x′Px ≤ γ}, then

E ∩ S is an invariant set for the predicted states of the
nonlinear system (1)

Sketch of the proof - From theorem 1 we have that
satisfaction of (18) implies fulfillment of (13) for all the set
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x1

x2

Xi
Ci

F (i)x

Fig. 1. Saturation of input constraints

of uncertain models (5) under the set of control laws (12)
computed according to (16). Thus, since Q1 ≻ 0, we have
that V (x) = x′Px is a decreasing Lyapunov function for
all the polytopic models. Moreover, thanks to constraints
(21), the requirement x(i)(t + k|t) ∈ S ∀k > 0 is satisfied
for any x(t) ∈ E . Therefore, it is possible to show that
E ∩S is an invariant set for all the polytopic models under
the set of control laws (12). Finally, exploiting assumption
1, it can be proved that the invariance of E ∩ S holds also
for the nonlinear system.
Sketch of the proof of theorem 2 - First of all it is possible
to show that any feasible solution of the optimization
problem (17) together with the constraints (18) and (21)
at time t is also feasible for all times k > t. Then the
convergence of the algorithm can be carried out showing
that the control algorithm supplies a strictly decreasing
Lyapunov function for the set of polytopic models Then,
by assumption 1, the contractivity property of control laws
holds also for the nonlinear system. .

4. INPUT CONSTRAINTS

Euclidean norm and/or component peak bounds on the
input variables can be considered in the robust predictive
control synthesis. Their formulation can be carried out in
a similar way. In the following only the peak bounds case
will be described.

|(F (i)x(t + k|t))j | ≤ u
(i)
j,max

j = 1, · · · ,m, ∀i ∈ I, k ≥ 0
(25)

In order to recast (25) in terms of LMIs (see (Boyd
et al., 1994; Kothare et al., 1996)) the following sufficient
conditions are imposed for j = 1, · · · ,m

|(F (i)z)j | ≤ u
(i)
j,max, ∀i ∈ I, k ≥ 0, ∀z s.t. z′Q−1z ≤ 1 (26)

Thus the final input constraints are given by the following
LMIs

[

V (i) Y (i)

Y (i)′ Q

]

� 0, V
(i)
jj ≤ (u

(i)
j,max)

2,
j = 1, · · · ,m
i = 1, · · · , ℓ

(27)

where V (i) = V (i)′ are additional decisional variables.
Notice that it is also possible to take into account dif-
ferent peak bounds for each region Xi, thus reducing the
conservatism. The input constraints (27) can be incorpo-
rated in the optimization problem (17) together with the
constraints (18) and (21). The devised MPC algorithm
guarantees constraints satisfaction and convergence to zero
of the controlled nonlinear system.
However conservatism is still substantial since condition

(27) require satisfaction for any state in E . Indeed it would
be preferable to enforce constraints satisfaction for each
F (i), i = 1, · · · , ℓ considering the specific region Xi where

F (i) is actually applied. The main idea is illustrated in
figure 1. The control law F (i)x can reach its saturation
level in a region that is far from Xi. Clearly it would be
possible to improve performance and enlarge the stability
domain imposing constraints on F (i)x only for the states
belonging to the intersection, indicated as Ci in figure
1, between E and the region Xi. Formally, let us define

Ci
△
= E ∩ Xi The goal is to impose the following less

conservative input limitations for j = 1, . . . ,m:

u
(i)
j,min ≤ (F (i)z)j ≤ u

(i)
j,max, ∀z ∈ Ci, ∀i ∈ I (28)

A powerful tool, that allows to tackle constraints (28), is
the so called S-procedure (Boyd et al., 1994). Hereafter
it is assume that the sets Xi are polytopes. For space
reason only the case of upper bounds in (28) is detailed, the
construction for the lower bounds will follow analogously.
Let the following quadratic functions for i = 1, . . . , ℓ

and j = 1, . . . ,m: H
(i)
0 (z)

△
= (u

(i)
max)2 − z′(F (i))′(F (i))z,

H
(i)
j,U (z)

△
= 2u

(i)
j,max − 2(F (i)z)j , E(z)

△
= 1 − z′Q−1z, and

H
(i)
l (z)

△
= 2h

(i)′

l z + 2c
(i)
l , where H

(i)
l (z) for l = 1, · · · , n

(i)
c

are the linear equations describing the set Xi. If there

exist F (i) = Y (i)Q−1 and scalars λ
(i)
j,U ≥ 0, τ

(i)
j,l ≥ 0 for

j = 1, · · · ,m, l = 1, · · · , n
(i)
c and i = 1, · · · , ℓ such that

H
(i)
j,U (z) − λ

(i)
j,UE(z) −

n(i)
c

∑

l=1

τ
(i)
j,l H

(i)
l (z) ≥ 0, (29)

∀z, i ∈ I, j = 1, · · · ,m then the constraints on the upper
bound of the input in (28) hold. Conditions (29) can be
written as

[

0 −F
(i)′

j

−F
(i)
j 2u

(i)
j,max

]

− λ
(i)
j,U

[

−Q−1 0
0 1

]

−

−

n(i)
c

∑

l=1

τ
(i)
j,l

[

0 h
(i)
l

h
(i)′

l 2c
(i)
l

]

� 0

(30)

for j = 1, . . . ,m, and for all i ∈ I. Summing up all the
terms in (30) and multiplying the obtained matrices on the
left and the right side by [Q, 0; 0, 1] we get the following
BMIs for j = 1, . . . ,m, and for all i ∈ I















λ
(i)
j,UQ −Y

(i)′

j −

n(i)
c

∑

l=1

τ
(i)
j,l Qh

(i)
l

∗ 2u
(i)
j,max − λ

(i)
j,U −

n(i)
c

∑

l=1

τ
(i)
j,l 2c

(i)
l















� 0. (31)

The fundamental difference with LMIs is that BMI prob-
lems are non-convex, and algorithms for their effective
solution are not known to exist. Recently several optimiza-
tion problems with BMI constraints have been formulated
and solved with good results exploiting the path-following
algorithm (Hassibi et al., 1999) and/or direct iterative
algorithms (VanAntwerp and Braatz, 2000). Experience
with low order systems has shown that these BMIs can
be solved rather effectively. Numerical difficulties, instead,
can arise for higher order ones. Having in mind these kind
of problems in the next section we propose an ad hoc
iteration method to solve the optimization problem (17)
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together with the constraints (18) and (21) and considering
the devised less conservative input constraints analogous
to (31). The proposed procedure guarantees a result at
least as good as the result obtained exploiting the most
conservative input LMI conditions (25). In most exam-
ples, significant improvements on system performances
and enlargement of basin of attraction have been achieved,
demonstrating the advantages of constraints like in (31).

5. SUBOPTIMAL SOLUTION

This section describes an iterative procedure that alter-
nately solves the following two problems based on LMI
techniques.

Multi-model PC problem (MmPCp) - Given x ∈ S,

choose input bound values u
(i)
j,max ≥ min{|u

(i)
j,min|, u

(i)
j,max},

j = 1, . . . ,m and i = 1, . . . , ℓ, the “Multi-model PC prob-
lem” consists in the solution of the optimization problem
(17) together with the constraints (18), (21) and (27)

considering u
(i)
j,max j = 1, . . . ,m and i = 1, . . . , ℓ as input

limitations.

Input feasibility problem (IFP) - Given Q and Y (i),
i = 1, . . . , ℓ, computed solving the Multi-model PC prob-
lem, the “Input feasibility problem” consists in checking
feasibility of constraints like in (31) considering the real

input bounds u
(i)
j,min, and u

(i)
j,max, i = 1, . . . , ℓ and j =

1, . . . ,m.

The starting point is the observation that the Multi-model
PC problem with the physical input constraints can give
rise to conservative conditions on the synthesized feedback
laws. Roughly speaking, we may solve the Multi-model
PC problem with increased input bounds and a posteriori
verify the effective constraint satisfaction for the obtained
set of feedback laws by solving the Input feasibility problem
with the effective real bounds.
Thus, a suitable procedure, referred as MmPC-IF problem,
can be formalized applying a bisection strategy on the

input bounds u
(i)
j,max. The main idea of the method is

summarized in figure 2 for a scalar input. The algorithm

is initialized assigning to u
(i)
max the effective input bounds

in the MmPCp and a possible maximum bound u(i) is

imposed. Subsequently u
(i)
max is updated according to the

result given by the Multi-model PC problem and the Input
feasibility problem following a bisection strategy between
the minimum and the maximum obtained bounds. When-
ever the solution of Multi-model PC problem is infeasible
the minimum possible bounds for the input is updated,
while if the solution of Input feasibility problem is infeasible
the maximum possible upper bound is updated. Notice
that solution of the Input feasibility problem requires a
feasible solution of the Multi-model PC problem. The
proposed MmPC-IF algorithm provides a nondecreasing
sequence of feasible upper bounds corresponding to an
admissible decreasing sequence of the optimal values γ∗.

Solve MmPCp (u
(i)
max)

Set u
(i)
max, u

(i), u
(i)

Feasible?

Feasible?

yes

yes

yes
Solve IFP(u

(i)
max)

Stopno

no

no

Tolerance?
u
(i) = u

(i)
max

u
(i) = u

(i)
max

u
(i)
max =

u
(i)+u

(i)

2

Fig. 2. - Principle idea of the MmPC-IF algorithm for
scalar input described by means of a block scheme

6. SIMULATION EXAMPLE

The effectiveness of the proposed control procedure is now
illustrated by means of simulation experiments. We con-
sider the application of our approach to the strongly non-
linear model of a continuous stirred tank reactor (CSTR)
(Magni et al., 2005). The state variables are CA, the
reagent concentration in the reactor, T the reactor tem-
perature and manipulated variable is Tc the temperature
of the coolant stream. It is possible to obtain a suitable
LPV description as illustrated in (Chisci et al., 2003).
The nominal operating conditions correspond to an un-
stable equilibrium point C

eq
A = 0.5mol/l, T eq = 350◦K,

T eq
c = 300◦K. The system is subject to following input

and state constraints: 240◦K ≤ Tc ≤ 350◦K and 313◦K
≤ T ≤ 387◦K. The system model has been discretized by
the Euler’s technique with a sampling time Ts = 0.03 min.
The weight matrices Q1 = I2 and R = 0.00002 have
been selected. For each possible region, a polytopic em-
bedding with a minimum number of vertices pi = 4 has
been found, adding some suitable additional uncertainty in
the polytopic description. The behaviour of the proposed
procedure is illustrated starting from the initial condition
T = 317.0◦K, CA

∼= 0.881mol/l. Figures 3 and 4 show
the state response of the proposed algorithms. It can be
noticed that the relaxed condition on the input constraints
allows to achieve a faster regulation to the desired set-
point giving arise to a significant improvement in terms
of performance. Moreover several simulation experiments
have shown a considerable enlargement of the estimated
domain of attraction. The considered initial condition is
infeasible for the algorithm introduced in (Kothare et al.,
1996), while the feasibility of the MmPC-IF is obtained
subdividing the interval 313◦K ≤ T ≤ 387◦K into 12
subintervals of equal size. The optimizations required by
the algorithms were performed in Matlab using SeDuMi
toolbox together with Yalmip (Löfberg, 2004). Finally
fig. 5 shows several invariant regions obtained considering
several initial conditions.

7. CONCLUSIONS

In this paper a novel MPC algorithm for nonlinear systems
has been proposed. It is based on the embedding of the
nonlinear dynamics into several local polytopic models.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8813



0 1 2 3 4 5 6 7 8 9
315

320

325

330

335

340

345

350

355
Reactor temperature response T,  (K)

time, (min)
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Fig. 5. Invariant regions in the coordinate space for differ-
ent initial conditions and state partitions.

Convergence and stability properties are guaranteed by the
invariance of sub-level sets under a control law composed
by different state linear control laws defined for the dif-
ferent local descriptions. The computation of such control
laws is performed by minimizing a worst case performance
objective subject to input and state constraints. The ad-

vantages of the approach lie in a remarkable improvement
in performance and size of guaranteed basin of attraction,
even when nonlinear techniques are applicable with diffi-
culty. It is worth to stress the fact that on-line optimization
complexity can be critical from a practical point of view.
For this reason, the future research prospective is focused
on the development of an explicit formulation of the pro-
posed algorithm, looking at a good compromise between
complexity and optimality.
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