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Abstract: Attenuation of sinusoidal disturbances with uncertain and arbitrarily time-varying
frequencies is considered. The disturbances are modeled as the outputs of an autonomous
exogenous system, whose system matrix depends on some uncertain parameters and is yet skew-
symmetric for all admissible parameter values. A procedure is then developed for the synthesis
of a linear time-invariant controller that guarantees a desired level of attenuation at steady-state
as well as sufficiently fast transient response in the face of all admissible parameter variations.
The procedure is based on solving a convex optimization problem in which the variables are
subject to a set of linear matrix inequality as well as equality constraints. The order of the
controller is equal to the order of the plant plus the order of the exogenous system.
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1. INTRODUCTION

Rejection of sinusoidal or periodic disturbances is a com-
mon problem in various engineering systems ranging from
disk drives, Sacks et al. [1996], to CD players, Lee [1998],
Dettori [2001], helicopters, Arcara et al. [2000] and steel
casting, Manayathara et al. [1996]. With the disturbances
generated by a known autonomous and unstable exoge-
nous system from unknown initial conditions, it is well-
established in the theory of asymptotic regulation (see
Saberi et al. [2000], Byrnes et al. [1997]) when and how
such a problem can be solved in a stationary setting.
In this case, the solution essentially amounts to repli-
cating in the feedback loop the dynamics of the exoge-
nous system as required by the Internal Model Principle
of Francis et al. [1974]. The classical asymptotic regu-
lation theory, however, does not offer an immediate so-
lution when the disturbances have a non-stationary and
uncertain nature, i.e. when their frequencies or periods
can change in time. Hence, part of the recent interest
concerning sinusoidal/periodic disturbance rejection is on
reducing the sensitivity of the design against changes
in the period/frequency. This can be realized either by
robust controller synthesis techniques, Lee and Chung
[1998], Tsao et al. [2000], Li and Tsao [2001], Steinbuch
[2002], Osburn and Franchek [2004], Kim and Tsao [2004],
Steinbuch et al. [2007], Dietz et al. [2007], or by adaptive
methods, Bodson and Douglas [1997], Bodson [2001], Guo
and Bodson [2005], Serrani et al. [2001] as specialized to
sinusoidal disturbance rejection. When the frequency is
measurable or estimable online, as is the case -for instance-

⋆ This work is supported by the Technology Foundation STW,
applied science division of NWO and the technology programme of
the Ministry of Economic Affairs.

in systems with rotational machinery, linear parameter-
varying (LPV) controller synthesis techniques can also be
applied for robust and adaptive non-stationary sinusoidal
disturbance attenuation, Dettori [2001], Du et al. [2003],
Hüttner et al. [2005], Kulkarni et al. [2005], Gruenbacher
et al. [2007]. Within the LPV control framework, it even
becomes possible to systematically and simultaneously
handle other performance objectives, as has been illus-
trated by Köroğlu and Scherer [2007].

In this paper, we are concerned with robust attenuation
of sinusoidal disturbances of uncertain and time-varying
frequencies by a linear time-invariant (LTI) controller. We
formulate in Section 2 the sinusoidal disturbance attenua-
tion problem more in the spirit of the classical regulation
theory with the help of a neutrally-stable exo-system.
The exo-system depends on uncertain and possibly time-
varying parameters, which correspond to the variations in
the frequencies. With inspirations from Hu et al. [2005],
we adopt a generalized notion of asymptotic regulation
and impose requirements on the steady-state disturbance
attenuation level as well as the transient response. We first
describe in Section 3 a characterization of the controllers
that solve the nominal version of the problem as derived in
Köroğlu and Scherer [2008]. The controllers are identified
by a generic structure, which in fact originates from the
solution of the exact asymptotic regulation problem (see
Scherer et al. [1997], Stoorvogel et al. [2000]). We adopt
the same structure when studying the robust version of the
problem in Section 4, where a convex solution is provided
for the problem considered in this paper. An illustrative
example is also provided Section 5, after which some con-
cluding remarks are drawn.
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2. PROBLEM FORMULATION

This paper is concerned with the attenuation of multi-
sinusoidal disturbances with uncertain and possibly time-
varying frequencies. These disturbances are viewed as the
outputs of an autonomous system of the form

v̇ = Ae(δ)v; Ae(δ) = −Ae(δ)
T ∈ R

l×l, (1)

where δ = [ δ1 · · · δr ]
T

represents a vector of uncertain
and possibly time-varying parameters. As a simple yet
sufficiently representative example, let us consider

Ae =

[
0 −̟(t)

̟(t) 0

]

, ̟(t) = (1 + δ(t))ω0, (2)

where ω0 ≥ 0 corresponds to a nominal frequency. With

φ(t) =

∫ t

0

̟(τ)dτ = ω0t+ ω0

∫ t

0

δ(τ)dτ, (3)

it is straightforward to verify for this example that
[
v1(t)
v2(t)

]

=

[
cos(φ(t)) − sin(φ(t))
sin(φ(t)) cos(φ(t))

] [
v1(0)
v2(0)

]

, (4)

which reveals the motivations behind viewing the sys-
tems described by (1) as the generators of non-stationary
sinusoidal disturbances. Systems that generate multi-
sinusoidal disturbances can be obtained -for instance- by
using block-diagonal system matrices with sub-blocks of
the form given in (2). The uncertain parameters in our
setting basically reflect the deviations of the frequencies
from their nominal values and are assumed to vary in time
in a compact region R ⊂ R

η. The admissible parameter
trajectories are hence identified as TR , {δ(·) : [0,∞) →
R}. Note that, irrespective of the parameter trajectory, the
state of the system in (1) evolves with a constant norm, i.e.

‖v(t)‖2 , v(t)T v(t) = ‖v(0)‖, ∀t ≥ 0 (which can easily be
established as d‖v(t)‖2/dt = v(t)T He(Ae(δ(t)))v(t) = 0,

where HeAe , Ae + AT
e ). This is a property which we

particularly rely on in the problem formulation.

The disturbance attenuation problem is formulated for a
plant with dynamics

G :





ẋ
e
y



 =





A Br(δ) B
Cr Dr(δ) Drc

C Dcr 0









x
v
u



 , (5)

where x(t) ∈ R
k denotes the state vector, while u(t) ∈ R

n

is the vector of control inputs that are to be used to
regulate the outputs e(t) ∈ R

r based on the measurements
y(t) ∈ R

m. We assume that:

A.1

[
Br(δ)
Ae(δ)

]

︸ ︷︷ ︸

B̃r(δ)

=

[
B0

r

A0
e

]

︸ ︷︷ ︸

B̃0
r

+

[
B1

r(δ)
A1

e(δ)

]

︸ ︷︷ ︸

B̃1
r
(δ)

and Dr(δ) = D0
r + D1

r (δ),

with B̃1
r (δ) and D1

r (δ) depending continuously on δ

and satisfying B̃1
r (0) = 0, D1

r (0) = 0;
A.2 (A |B) is stabilizable (∃F :A+BF is Hurwitz);

A.3

(
Ã

C̃

)

=





A B0
r

0 A0
e

C Dcr



 is detectable (∃L̃ :Ã+L̃C̃ is Hurwitz).

With an LTI controller of the form

K :

[

ξ̇
u

]

=

[
AK BK

CK DK

] [
ξ
y

]

, (6)

the closed-loop dynamics are described by

χ̇=

[
A+BDKC BCK

BKC AK

]

︸ ︷︷ ︸

A

[
x
ξ

]

︸︷︷︸

χ

+

[
Br(δ) +BDKDcr

BKDcr

]

︸ ︷︷ ︸

Br(δ)

v,

e = [Cr+DrcDKC DrcCK]
︸ ︷︷ ︸

Cr

χ+[Dr(δ)+DrcDKDcr]
︸ ︷︷ ︸

Dr(δ)

v.
(7)

We consider designing a fixed controller K such that:

C.1. (Internal Stability) The feedback system formed by
G and K is asymptotically stable (i.e. A is Hurwitz);

C.2. (Robust Generalized Asymptotic Regulation
to a Level κ > 0 with a Decay Rate ρ > 0) There
exists a ϕ ∈ R+ such that ‖e(t)‖2 < ϕ‖χ̂(0)‖2e−2ρt +

κ2‖v(0)‖2, ∀t≥0, ∀δ(·)∈TR, where χ̂T , [χT vT ].

Remark 1. A larger class of disturbances can be consid-
ered with exo-systems for which there exists a positive-
definite matrix P such that AT

e (δ)P + PAe(δ) = 0, ∀δ ∈
R. Such cases can easily be subsumed to our frame-
work through the state transformation ν = P 1/2v, since
P 1/2Ae(δ)P

−1/2 is then skew-symmetric.

3. NOMINAL GENERALIZED ASYMPTOTIC
REGULATION

In this section, we describe the solution to the nominal
version of the problem as derived by Köroğlu and Scherer
[2008]. The key step that leads to the solution of this
problem is the introduction of a state transformation of
the form κ = χ + Ψv, based on a matrix variable Ψ. In
this fashion, we obtain an alternative description of the
closed-loop dynamics as

κ̇ = Aκ + (Br(δ) + ΨAe(δ) −AΨ)
︸ ︷︷ ︸

Ba(Ψ,δ)

v,

e = Crκ + (Dr(δ) − CrΨ)
︸ ︷︷ ︸

Da(Ψ,δ)

v.
(8)

If the closed-loop is guaranteed to be stable and if Ψ
is chosen to render Ba(Ψ, 0) = 0, the state evolution
of (8) becomes autonomous as well as stable, and the
asymptotic influence of v on the output to be regulated is
then determined only by the feed-through term Da(Ψ, 0).
With a partition of the form ΨT =

[
ΠT ΦT

]
compatible

with A, we can easily obtain

Ba(Ψ, δ) =

[
Br(δ) + ΠAe(δ) − AΠ − BΓ

ΦAe(δ) −AKΦ −BK(CΠ −Dcr)

]

, (9)

Da(Ψ, δ) =Dr(δ)−CrΠ−DrcΓ, (10)

after introducing Γ as

Γ , CKΦ +DK(CΠ −Dcr). (11)

Further investigations based on these formulas lead us to
the following result from Köroğlu and Scherer [2008]:

Theorem 2. Consider the generalized asymptotic regula-
tion problem within the setting described in Section 2 for
κ = κ0 and assume that R = {0}. There exists a controller
that solves this problem for a sufficiently small ρ, if and
only if there exist Π ∈ R

k×l and Γ ∈ R
n×l that satisfy

B0
r + ΠA0

e −AΠ −BΓ = 0, (12)
[

κ0I
(
D0

r −CrΠ−DrcΓ
)T

D0
r −CrΠ−DrcΓ κ0I

]

≻ 0. (13)
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∫

Ka

∫

u1

[
Aa Ba

C1

a
D1

a

C2

a
D2

a

]

y
ua u

[
A

0

e
I

I 0

]

Ki

ΓDcr−CΠ u2

Fig. 1. A structured controller for asymptotic regulation.

Any controller that solves this problem admits a realiza-
tion of the form

K :

[

ξ̇
u

]

=





A0
e +D2

a(Dcr − CΠ) C2
a D2

a
Ba(Dcr − CΠ) Aa Ba

Γ +D1
a(Dcr − CΠ) C1

a D1
a





[
ξ
y

]

, (14)

and can be implemented as in Figure 1, where Ki is a
controller that replicates the dynamics of the nominal exo-
system and Ka is an accompanying controller with which
the feedback-loop formed by G and K is stabilized.

4. ROBUST GENERALIZED ASYMPTOTIC
REGULATION

In this section, we derive a solution to the robust gen-
eralized asymptotic regulation problem as formulated in
Section 2. Our approach is based on adopting the structure
of the controller that emerges naturally from the nominal
version of the problem and deriving a convex optimization
problem to determine suitable values for the involved vari-
ables (i.e. Π,Γ, Aa, Ba, Ca, Da). The optimization problem
is derived from the parameter-dependent version of the
matrix inequality condition adapted from Hu et al. [2005]:

Lemma 3. There exists a solution to the generalized
asymptotic regulation problem as formulated in Section 2,
if there exist X = X T , R = RT and Q for which

L̂s(δ) = He

[
X Q
QT R

]

︸ ︷︷ ︸

X̂

[
A+ρI Br(δ)

0 Ae(δ)+ρI

]

︸ ︷︷ ︸

Â(δ)

4 0, ∀δ ∈ R,(15)

L̂r(δ) =





X Q CT
r

QT κI +R Dr(δ)
T

Cr Dr(δ) κI



≻ 0, ∀δ ∈ R.(16)

The generalized asymptotic regulation condition is then

satisfied with any ϕ for which X̂ 4 κ−1ϕI.

Proof. With V(χ̂) , χ̂T X̂ χ̂, we observe from (15) that

d
(
e2ρtV(χ̂(t))

)
/dt = χ̂(t)T L̂s(δ(t))χ̂(t) ≤ 0,

and hence V(χ̂(t)) ≤ V(χ̂(0))e−2ρt ≤ κ−1ϕ‖χ̂(0)‖2e−2ρt,
∀t ≥ 0, ∀δ(·) ∈ TR, along the trajectories of the closed-
loop system. Recalling the positive definiteness of X (i.e
∃ǫ > 0 : ǫI 4 X ), we infer for v(0) = 0 that ǫ‖x(t)‖2 ≤
χ(t)TXχ(t) ≤ χ(0)TXχ(0)e−2ρt ≤ κ−1ϕ‖χ(0)‖2e−2ρt,
which establishes the internal stability. For arbitrary v(0),
we have from (16) with ψ(t)T =

[
χ̂(t)T − κ−1e(t)T

]
that

ψ(t)T L̂r(δ(t))ψ(t) = V(χ̂(t)) + κ‖v(t)‖2 − κ−1‖e(t)‖2 > 0,

which guarantees generalized asymptotic regulation. 2

By suitable congruence transformations, we can equiva-
lently express the conditions of Lemma 3 as the existence
of an invertible matrix Y, an arbitrary matrix Ψ = X−1Q
and symmetric matrices X , P = R− ΨTXΨ, for which

He

[

YTX (A+ρI)Y YTXBa(Ψ, δ)
0 P (Ae(δ)+ρI)

]

4 0, ∀δ ∈ R, (17)





YTXY 0 YTCT
r

0 κI + P Da(Ψ, δ)
T

CrY Da(Ψ, δ) κI



≻ 0, ∀δ ∈ R. (18)

With the candidate controllers parameterized as in (14),
the challenge thus becomes finding suitable Y and Ψ with
which conditions (17) and (18) are rendered tractable.

Since other options typically hinder tractability of (17) due
to the term YTXBa(Ψ, δ), the choice of Ψ would naturally

be of the form Ψ =
[
ΠT ΦT

]T
with Φ = I(k+l)×k =

IT
k×(k+l) , [ Ik 0k×l ], as inherited from the solution

of the nominal problem. Recall that, when considering
nominal generalized regulation, the matrix variables Π and
Γ are required to satisfy (12) as well as (13). Although
this need not be the case for the robust version of the
problem, it turns out that respecting (12) opens the path
towards a nice solution, whereas satisfaction of (13) is not
required unless there are concerns about the behavior of
the system when δ(t) = 0, ∀t ≥ 0. For the convenience of
our presentation, we try to explicate this by introducing
an extended plant whose dynamics are described by

˙̂x =

[
A BΓ
0 A0

e

]

︸ ︷︷ ︸

Â(Γ)

[
x
ξi

]

︸ ︷︷ ︸

x̂

+

[
Br(δ)

0

]

︸ ︷︷ ︸

B̂r(δ)

v +

[
B 0
0 I

]

︸ ︷︷ ︸

B̂

[
u1

u2

]

︸ ︷︷ ︸

ũ

,

e = [Cr DrcΓ ]
︸ ︷︷ ︸

Ĉr(Γ)

x̂+Dr(δ)v + [Drc 0 ]
︸ ︷︷ ︸

D̃rc

ũ,

ua = [C Dcr − CΠ ]
︸ ︷︷ ︸

Ĉ(Π)

x̂+Dcrv.

(19)

We can observe with the help of Figure 1 that our problem
can be reformulated as the design of Ka for this extended
plant. Assuming (12) is satisfied, the state-transformation

x̂ = T̃ (x̃ − ẼT v); T̃ =

[
Π̃

Ẽ

]

,

[
I Π
0 I

]

, (20)

leads us to an alternative realization of the form

˙̃x =

[
A B0

r

0 A0
e

]

︸ ︷︷ ︸

Ã

x̃+

[
B1

r (δ)
A1

e(δ)

]

︸ ︷︷ ︸

B̃1
r
(δ)

v +

[
B −Π
0 I

]

︸ ︷︷ ︸

B̃(Π)

ũ,

e = [Cr CrΠ+DrcΓ]
︸ ︷︷ ︸

C̃r(Π,Γ)

x̃+ (Dr(δ)−CrΠ−DrcΓ)
︸ ︷︷ ︸

Λ(Π,Γ,δ)

v + D̃rcũ,

ua = [C Dcr ]
︸ ︷︷ ︸

C̃

x̃.

(21)
We note in this alternative representation that the mea-
sured output is not influenced by the infinite-energy dis-
turbance, which means that the controller will not feed
back any disturbance input. In the nominal generalized
regulation problem, the state is not influenced either and
hence a solution can easily found by constructing a (-for
instance- observer-based) controller Ka that stabilizes the
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extended plant. The robust version of the problem longs
for a more delicate design procedure for Ka, by which e is
to be desensitized to the variations in δ as well as to the
resulting disturbances v.

The way to a tractable design procedure is paved by a
convenient choice of Y followed by a transformation of the
accompanying controller parameters. This transformation
is obtained by modifying the one proposed before by
Scherer et al. [1997] for integrating the exact regulation
objective into LMI-based controller synthesis. The modifi-
cation is done in a way to reduce computational complexity
and allow for direct construction of reduced order Ka’s (of
order k rather than k + l). With the Lyapunov matrix X
and its inverse partitioned compatibly with the extended
plant and the accompanying controller as

X =

[
X̂ Û

ÛT H

]

=

[
T̃−T X̃T̃−1 T̃−T Ũ

ŨT T̃−1 S−1+ŨT X̃−1Ũ

]

, (22)

X−1 =

[
Ŷ V̂

V̂ T S

]

=

[
T̃ Ỹ T̃ T T̃ Ṽ

Ṽ T T̃ T H−1+Ṽ T Ỹ −1Ṽ

]

, (23)

the variable transformation that we propose relies on
choosing

Y =

[
Ŷ I(k+l)×k T̃

V̂ T I(k+l)×k 0

]

=





Y I Π
Z 0 I

V T 0 0



 . (24)

We can obtain by exploiting XX−1 = I that

YTX =

[
Ik×(k+l) 0

X̃T̃−1 Ũ

]

, YTXY =

[
Y Π̃

Π̃T X̃

]

. (25)

Further manipulations that also recall Ψ =
[
ΠT I 0

]T

with (12) lead to

[

YTXAYYTXBa(Ψ, δ)
CrY Da(Ψ, δ)

]

=





AY +BΓZ Π̃Ã Π̃B̃1
r (δ)

X̃ÃỸ Π̃T X̃Ã X̃B̃1
r (δ)

CrY+DrcΓZ C̃r(Π,Γ) Λ(Π,Γ, δ)





+





0 Π̃B̃(Π)
Ũ X̃B̃(Π)

0 D̃rc





[
Aa Ba

Ca Da

] [
Ṽ T Π̃T 0 0

C̃Ỹ Π̃T C̃ 0

]

. (26)

The crucial observation at this point is that the matrices
in (17) and (18) can be rendered affine in a set of
free variables, simply by absorbing the bilinear terms
X̃ÃỸ Π̃T , BΓZ and DrcΓZ into the transformed controller
parameters as
[

J̃ M̃
N D

]

=

[

Ũ X̃B̃(Π)
0 In×(n+l)

][
Aa Ba

C̃a D̃a

][
Ṽ T Π̃T 0

C̃Ỹ Π̃T I

]

+

[

X̃ÃỸ Π̃T 0
ΓZ 0

]

.(27)

This leads us to the following solution for the robust
disturbance attenuation problem considered in this paper:

Theorem 4. There exists an LTI controller that solves the
robust generalized asymptotic regulation problem formu-
lated in Section 2, if there exist Y = Y T ∈ R

k×k, X̃ =
X̃T ∈ R

(k+l)×(k+l), P = PT ∈ R
l×l,Π ∈ R

k×l,Γ ∈
R

n×l, J̃ ∈ R
(k+l)×k, M̃ ∈ R

(k+l)×m, N ∈ R
n×k and D ∈

R
n×m such that

Π̃B̃0
r −AΠ −BΓ = 0, (28)

and for all δ ∈ R, we have

He





(A+ρI)Y+BN Π̃Ã+ρΠ̃+BDC̃ Π̃B̃1
r (δ)

J̃+ρΠ̃T X̃(Ã+ρI)+M̃C̃ X̃B̃1
r (δ)

0 0 P (Ae(δ)+ρI)



40,(29)

He







0.5Y 0.5Π̃ 0 0
0.5Π̃T 0.5X̃ 0 0

0 0 0.5(κI+P ) 0

CrY+DrcN C̃r(Π,Γ)+DrcDC̃ Λ(Π,Γ, δ) 0.5κI






≻0,(30)

where Π̃ , [ I Π ], C̃r(Π,Γ) , [Cr CrΠ +DrcΓ ] and

Λ(Π,Γ, δ) , Dr(δ) − CrΠ − DrcΓ. With Ik×(k+l) =

IT
(k+l)×k , [ Ik 0k×l ], Ẽ , [ 0l×k Il ] and

W = Y − Π̃X̃−1Π̃T , (31)

Ỹ = X̃−1 + I(k+l)×kWIk×(k+l) , (32)

Z = ẼX̃−1Π̃T , (33)

a controller that solves the problem can then be con-
structed as
[

Aa Ba

C1

a D1

a

C2

a D2

a

]

=

[
Π̃ −B

0 I

Ẽ 0

][

X̃−1J̃ − ÃỸ Π̃T X̃−1M̃

N − ΓZ D

][

−W−1 0

C̃Ỹ Π̃T W−1 I

]

. (34)

Proof. In order to finalize the proof, we need to construct
a positive-definite X and an invertible Y, using the matrix
variables that satisfy (28)-(30). For this, it suffices to find

Ỹ , Ũ , Ṽ and S with which X̃Ỹ + Ũ Ṽ = I, X̃Ṽ + ŨS = 0
and Y is invertible. With W and Ỹ being as introduced
in (31) and (32), these conditions are satisfied by Ũ =

X̃I(k+l)×lU , Ṽ = −I(k+l)×lWU−T and S = U−1WU−T ,
where U is an arbitrary matrix except for being invertible.
Note that in this case Y−1 can be obtained explicitly as

Y−1 =

[
0 −W−1U

I Ỹ Π̃TW−1U

]

.

A realization of Ka can then be obtained from the inverse
of the transformation in (27), which reads for U = I
as given by (34). Different choices for U in fact lead to
different realizations of the same controller. 2

Remark 5. For a multi-objective version of the problem in
which nr outputs ei are to be regulated down to levels κi,
Theorem 4 admits an immediate extension in which we
have (28) and (29) accompanied by nr constraints of the
form (30) expressed in terms of the system matrices and
κi corresponding to the relevant outputs to be regulated.

Remark 6. We observe from (30) that Cr and Drc can be
allowed to be parameter-dependent as well. Nevertheless,
conditions (29) and (30) read as infinitely many matrix
inequalities and hence are not per se tractable. There are
a variety of relaxations that can be applied to replace
them with finitely many conditions (see Scherer [2006]
and the references therein). As far as the sinusoidal distur-
bance attenuation problem is concerned, the uncertainty
can simply be described in the form of affine parameter
dependence (i.e. B̃1

r (δ) = B̃1
r (δ⊗I),D1

r (δ) = D1
r (δ⊗I)). If,

moreover, R is assumed to be a polytotic region identified
by a set of vertices {δ1, . . . , δq} (i.e. R = {

∑q
j=1 αjδ

j :
∑q

j=1 αj = 1, αj ≥ 0}), conditions (29) and (30) are
satisfied throughout R if and only if they are satisfied at
for each δj , j = 1, . . . , q. In the case of quadratic parameter
dependence, one can employ the multi-convexity argument
of Gahinet et al. [1996]) to arrive at finitely many LMIs.
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Remark 7. Thanks to adopting the controller structure
derived from the nominal generalized regulation problem,
the controller synthesis procedure described in Theorem 4
offers much flexibility, which can be used to guarantee
additional objectives. In particular, one can simply add
condition (13) to the set of constraints to guarantee
generalized asymptotic regulation of level of κ0 when
δ = 0, of course at the possible cost of increasing the
level of robust generalized asymptotic regulation. In fact,
one can choose κ as parameter-dependent and guarantee
robust generalized asymptotic regulation with a changing
level as κ(δ(t)). It is intuitive to think of a (graceful)
regulation level degradation profile by considering a non-
negative and non-decreasing function µ(‖δ‖) with µ(0) = 0
(e.g. µ(‖δ‖) = η‖δ‖ or µ(‖δ‖) = η‖δ‖2, where η > 0) and
try to achieve generalized asymptotic regulation down to
levels κ(δ(t)) = κ0 + µ(‖δ(t)‖).

Remark 8. As is visible from C.2, it is essential to make
sure that ϕ is not too large so that the output does not
exhibit undesirable peaking during the transient period.
As can be observed from Lemma 3, we can realize this by
adding an extra constraint of the form

X̂ = [ I Ψ ]TX [ I Ψ ] + [ 0 I ]TP [ 0 I ] ≺

[

σT̃−T T̃−1 0
0 σI

]

,

and bounding the value of σ from above. With X con-
structed as in the proof of Theorem 4 being

X =
[

T̃−1 Ĩ
]T

X̃
[

T̃−1 Ĩ
]

+ [ 0 Ik ]T W−1 [ 0 Ik ] ,

where Ĩ , I(k+l)×k, this condition can be expressed (after
an application of the Schur-complement lemma and a
congruence transformation) as







σI − X̃ X̃ 0 0

X̃ σI − X̃ − ẼTPẼ I(k+l)×k 0

0 Ik×(k+l) Y Π̃

0 0 Π̃T X̃






≻ 0. (35)

In fact, for a given level of κ that is known to be
achievable, one can even minimize σ subject to (28), (29),
(30) and (35) to obtain a controller with which ‖e(t)‖2 ≤

σ(‖T̃−1x̂(0)‖2 + ‖ξa(0)‖2 + ‖v(0)‖2)e−2ρt + κ2‖v(t)‖2.

5. ILLUSTRATIVE EXAMPLE

In this section, we consider a mass-spring damper system
whose dynamics are described by
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,

where the disturbance affecting the system is assumed to
be of the form d(t) = sin(ω0(1 + δ(t))), δ(t) ∈ [−β, β],
as is the first state of (2) for the initial condition v(0) =

[ 0 − 1 ]
T
. For a set of parameters given by m1 = 2,m2 =

0.5, k1 = 100, k2 = 150, b = 10, ω0 = 4, we synthesized
three different controllers using the procedure of Theo-
rem 4 for three different β values β1 = 0.18, β2 = 0.1 and
β3 = 0.01. Thanks to the affine parameter dependence,
condition (29) is satisfied for all δ ∈ R if and only if it is

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

t (sec.)

δ
, 

d

(a)

 

 

δ

d

0 2 4 6 8 10 12 14 16 18 20

−0.1

0

0.1

t (sec.)

e

(b)

10
0

10
1

−100

−80

−60

−40

−20

0

T
e
d
 (

ω
) 

 (
d

B
)

(c)

ω   (rad/sec)

Fig. 2. Example designs and simulations: (a) Parameter
trajectory and the disturbance; (b) Outputs, (c) Bode
magnitude plots of Ted for various designs (K1:dashed,
K2:solid, K3:dotted, K4:dash-dotted)

satisfied for δ = −β and δ = β. We added (35) as well as
some additional constraints that bound X and the norms
of the transformed controller parameters from above. By
favor of the Yalmip (Löfberg [2004]) interface, we solved

the optimization problems in MATLABr with SeDuMi
(Sturm [1999]) and obtained the the minimum κ levels
for the three different parameter ranges respectively as
κ1 = 0.4962, κ2 = 0.2821 and κ3 = 0.0367. A fourth
controller is designed to guarantee generalized asymptotic
regulation of level κ = 0.001 for the zero parameter tra-
jectory δ = 0 as well as best possible level of generalized
asymptotic regulation for any parameter variation within
the range identified by β2. This is realized as described
in Remark 7 and the minimum achievable κ is obtained
as a significantly large value given by 103.5. The transfer
functions of the designed controllers are given by

K1 = 28.64(s−2.16·108)(s−45.1)(s+8.1)(s+2.94)(s2+34.64s+808.7)
(s+4152)(s+1525)(s+25.49)(s+2.843)(s2−140.2s+1.173·105) ,

K2 = 28.59(s−9.36·107)(s−41.56)(s+6.58)(s+4.01)(s2+32.64s+699.9)
(s+18.33)(s+3.585)(s2−228.2s+6.42·104)(s2+2893s+4.87·106) ,

K3 = −16.02(s+9.96·107)(s−35.7)(s2+9.89s+35.42)(s2+28.74s+480.5)
(s2+13.38s+60.1)(s2−87.72s+2.04·104)(s2+934.4s+7.94·106) ,

K4 = 81.73(s+5.96·106)(s+48.15)(s2+9.66s+32.42)(s2+16.11s+592.7)
(s+2.78·104)(s+39.99)(s2+15.01s+67.14)(s2+264.4s+6.045·104) .

For a disturbance input as in Figure 2-a, the outputs
obtained with these controllers (starting from zero initial
plant and controller states) are presented in Figure 2-b.
Note from Figure 2-a that the uncertain parameter first
switches between 0.3 and −0.3 with increasing frequency,
then remains zero for a while and finally increases from
−0.3 up to 0.3 with a constant rate. Although the pa-
rameter range is much larger than the ranges considered
to design the controllers, the regulation performance does
not degrade undesirably even when the parameter is close
to its extreme values. In fact the controller K2, which is
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designed for the range β2 = 0.1 usually outperforms all of
the controllers including K1, which is designed for a larger
range. We should, however, note that this observation is
restricted to the considered particular parameter trajec-
tory and cannot be expected generically. In fact, even K4

exhibits quite acceptable performance for this parameter
trajectory, although it is designed to guarantee (almost)
exact nominal regulation and has poor guarantees against
parameter variation. The performance of the controllers
for constant parameter trajectories can be analyzed based
on the Bode magnitude plots of the transfer function from
the disturbance to the error signal, which are displayed in
Figure 2-c. All of the four controllers in fact guarantee
more than −20dB of attenuation within the frequency
range [2.8, 5.2]rad/sec. We should however note that no
theoretical guarantees can be inferred from the Bode plots
when the parameter is varying arbitrarily.

6. CONCLUDING REMARKS

We have developed a novel procedure for the synthesis
of an LTI controller that guarantees robust attenuation
of non-stationary sinusoidal disturbances. The proposed
method provides performance guarantees in contrast to ad-
hoc loop-shaping procedures. The key step that leads to a
convex solution for our particular problem in fact paves the
way to the solutions of a variety of optimal controller syn-
thesis problems under generalized asymptotic regulation
constraints. It is open whether and how the performance
can be improved by taking into account any available
bounds on the rates-of-variation of the parameters.
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C. Hüttner, J. M. Rieber, F. Allgöwer, and J. Hugel. Compensation
of time-varying harmonic disturbances on nonlinear bearingless
slice motors. In Proc. 16th IFAC Trien. World Cong., Prague,
Czech Republic, Jul. 2005.

B.-S. Kim and T.-C. Tsao. A performance enhancement scheme for
robust repetitive control system. ASME Jrn. Dyn. Syst., Meas.,

& Cont., 126(1):224–229, Mar. 2004.
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