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Abstract: A recently proposed by the authors impulsive mathematical model of non-basal
testosterone secretion of the hypothalamic-pituitary-testicular axis in the male is considered.
Conditions for existence of periodic solutions in the model, their parametrization and stability
are studied. Parameter bifurcations which lead to periodic oscillations of hormone levels with
one or two pulses of gonadotropin releasing hormone (GnRH) in the least period are explored.
The feasibility of the periodic mode with two pulses of GnRH is validated using experimental
data.

1. INTRODUCTION

Hormones are chemical messengers in distant cell-to-cell
communication. Endocrine hormone molecules are se-
creted directly into the bloodstream. The endocrine sys-
tem is an integrated system of organs involved in the
release of endocrine hormones. In biomedical research, the
endocrine network is treated as a complex control system
with a large number of feedback loops and feedforward
connections, see Murray (2002); Farhy (2004). The feed-
back loops enable sustained oscillations of hormone levels
with amplitudes and frequencies lying within some individ-
ual specific limits. To simplify the analysis, the endocrine
system is usually decoupled into presumably independent
subsystems called axes.

One of the most studied axes regulates the secretion of
testosterone (Te) in the male. Besides Te, which is pro-
duced in testes, it also includes luteinizing hormone (LH)
and gonadotropin-releasing hormone (GnRH), secreted in
pituitary gland and hypothalamus, respectively. Being se-
creted in the parts of brain, GnRH and LH are closely
related to the neural dynamics, so their secretion is known
to be pulsatile, see e.g. Krsmanović et al. (1992). The secre-
tion of GnRH stimulates the secretion of LH which, in its
turn, stimulates the production of Te, while Te inhibits the
secretion of GnRH and LH, see Veldhuis (1999). The fast
responses in Te serum concentration due to the pulsatile
secretion of GnRH are referred to as non-basal levels, in
contrast to basal levels that exhibit slow diurnal variations
related to circadian rhythm.

The mathematical exploration of the GnRH–LH–Te axis
has a long history and an ample bibliography. The mathe-
matical models in question can be divided into two classes
— simplified deterministic and stochastic simulation mod-
els. Stochastic models are usually quite complex and diffi-
cult to analyze but produce realistic results in simulations.

1 This work has been carried out with financial support by The
Royal Swedish Academy of Sciences. A. Medvedev was partly sup-
ported by Swedish Research Council.

The work reported in Keenan and Veldhuis (1997), Keenan
et al. (2000) presents yet the most complete mathematical
model of testosterone regulation. However, the model de-
veloped there is too complex to be dealt with analytically
using existing mathematical tools. A simplified stochas-
tic model of non-basal Te secretion suggested in Heuett
and Qian (2006) originates from a different perspective.
Instead of continuous changes in hormone concentration,
it reasons in terms of secreted and degraded hormone
molecules, i.e. discrete events. Simulation of the model is
a random walk on a three-dimensional greed with each
dimension corresponding to a hormone in the modeled
axis. Similar to the model in Keenan and Veldhuis (1997),
Keenan et al. (2000), this model as well exhibits oscilla-
tions resembling those observed in experimental data. The
authors attribute the oscillatory behavior to the stochastic
nature of the approach. An interesting observation made
regarding this model is that certain combinations of model
parameters lead to an oscillation with a “double pulse” of
Te, i.e. a combination of a lager and a smaller one. This
closely resembles the 2-cycles studied in the sequel of the
present paper.

Simplified deterministic models are more appealing to a
control engineer as they have low dynamic dimension and
clear structure based on the biochemistry of the involved
processes. The main disadvantage of this class of models
lies in their poor agreement with experimental studies.

The origin of deterministic models of the GnRH–LH–Te
axis goes back to early papers Goodwin (1965), Smith
(1980). A number of authors has contributed to further re-
search of these models, including Smith (1983), Cartwright
and Husain (1986), Liu and Deng (1991), Das et al.
(1994), Ruan and Wei (2001), Murray (2002), Hek et al.
(2002), Enciso and Sontag (2004), Mukhopadhyay and
Bhattacharyya (2004), Efimov (2005). All these papers
have dealt with basal (non-pulsatile) regulation of Te.
Lack of stable periodic solutions (see Enciso and Sontag
(2004) for an excellent analysis of this) is otherwise a main
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problem with the low-order hormone regulation models of
this group, in a sharp contrast with the above mentioned
stochastic ones.

A pulsatile model for non-basal Te regulation put forward
in Medvedev et al. (2006), Churilov et al. (2007a), Churilov
et al. (2007b) combines the classical hormone nodal scheme
given in Smith (1980) with the model of a GnRH pulse
generator proposed for a simulation model in Rasgon
et al. (2003). The GnRH producing cells of hypothalamus
are considered as a pulse element implementing pulse-
amplitude and pulse-frequency modulation, see Gelig and
Churilov (1998), where Te is the modulating signal and
GnRH is the modulated pulse signal. The pulsatile LH
secretion can be seen as the response of the continuous part
of the system on the pulse signaling of the hypothalamus.
Being very simple in its nature, the model lends itself to
mathematical analysis. At the same time, it exhibits sus-
tained oscillations of different signal shapes and accurately
explains experimental data, Churilov et al. (2007b).

This paper suggests an explanation to the variability in
the pulse signal form observed in non-basal secretion of
Te, see e.g. Keenan et al. (2000) via bifurcation theory. It
is shown that the origin of oscillations in mathematical
models of the GnRH–LH–Te axis lies at the pulsatile
nature of the feedback regulation mechanism and not at
the choice between stochastic or deterministic modeling
of the system. Indeed, all the known models implicitly
or explicitly employing the principle of pulsatile feedback
(e.g. Keenan and Veldhuis (1997), Keenan et al. (2000),
Heuett and Qian (2006) and also Rasgon et al. (2003) for
estrogen regulation), oscillate yielding realistic hormone
patterns when numerically simulated.

First, existence and stability conditions for periodic so-
lutions in the considered mathematical model are formu-
lated. Then the phenomenon of parameter bifurcation is
studied, in particular explicating the changes of periodic
mode from one pulse of GnRH in the least period to two
pulses of GnRH and back. An experimental data study
supports the hypothesis of periodic solutions with two
pulses of GnRH in the least period.

2. PULSATILE MODEL

Consider a system of differential equations

Ṙ = ξ(t) − b1R,

L̇ = g1R − b2L,

Ṫ = g2L − b3T,

(1)

where R(t), L(t) and T (t) represent the serum concentra-
tions of GnRH, LH and Te, respectively. Linear functions
b1R, b2L, b3T describe clearing rates of the hormones and
g1R, g2L, ξ(t) are the rates of their secretion, where bi, gi

are positive numbers.

Equations (1) can be rewritten by using a state space
notation. Let us denote x1 = R(t), x2 = L(t), x3 = y =
T (t). Then (1) is equivalent to

dx

dt
= Ax + Bξ(t), y = Cx, (2)

where

A =

[

−b1 0 0
g1 −b2 0
0 g2 −b3

]

, B =

[

1
0
0

]

, CT =

[

0
0
1

]

.

The function ξ(t) is described as

ξ(t) =

∞
∑

n=0

λnδ(t − tn), (3)

where δ(t) is the Dirac delta-function. Notice that the δ-
functions do not correspond to any biologically meaningful
quantity in the model and are employed in order to
obtain a compact mathematical description of the pulsatile
feedback mechanism. Further, δ-functions are usual in
modeling spiking neurons of the brain, Gerstner and
Kistler (2002).

Suppose that the GnRH pulse firing times tn are given by

tn+1 = tn + τn, τn = Φ(y(tn)), (4)

where Φ(·) is a non-decreasing function (frequency modu-
lation characteristics), and

λn = F (y(tn)), (5)

where F (·) is a non-increasing function (amplitude mod-
ulation characteristic). This reflects the fact that when
the concentration of serum Te rises, the pulses of GnRH
become sparser and their amplitude (or area) diminishes,
see Veldhuis (1999). The functions Φ and F are bounded
and positive.

System (2)–(5) has a hybrid nature, because it combines
continuous time and discrete time mechanisms. Its solu-
tions sustain jumps x(t+n ) = x(t−n ) + λnB. Here x(t−n ),
x(t+n ) are one-sided limits of x(t) (left and right, corre-
spondingly) at tn.

Obviously, A is Hurwitz stable and CB = 0. System (2)–
(5) does not have equilibria because all the modulation
characteristics are positive. Since pulse amplitude and
frequency are bounded from above by the choice of Φ(·)
and F (·), then all the solutions of (2)–(5) are also bounded.

3. PERIODIC SOLUTIONS AND THEIR STABILITY

Since the processes of endocrine regulation are self-
sustained, periodic solutions of system (2)–(5) are espe-
cially interesting. In a periodic mode, the original hybrid
system can be equivalently replaced by a discrete time
system with the help of natural sampling at impulse firing
times.

Denote xn = x(t−n ), where x(t) is a solution of (2)–(5).
Then

xn+1 = Q(xn), (6)

where

Q(x) = eAΦ(Cx)(x + F (Cx)B).

Given a solution of (6), the corresponding intersample
behavior (2)–(5) can be completely reconstructed.

Following Zhusubaliev and Mosekilde (2003), a periodic
solution is called m-cycle if there are exactly m impulses
fired on its period. Then each 1-cycle corresponds to a
fixed point x0 of the operator Q(·), i.e.

Q(x0) = x0 (7)

and has the initial condition x(t−0 ) = x0. The periodic
solution corresponding to this mode is characterized by
the period τ0 and the pulse amplitude λ0.

Assume that the numbers b1, b2, b3 are distinct. This
assumption is biologically feasible since all the involved
hormones have different half-life times. Introduce the num-
bers
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α1 =
1

(b2 − b1)(b3 − b1)
,

α2 =
1

(b1 − b2)(b3 − b2)
,

α3 =
1

(b1 − b3)(b2 − b3)
.

Obviously α1 + α2 + α3 = 0 and two of these numbers are
positive, while the third number is negative.

Denote y0 = Cx0.

Theorem 1. System (2)–(5) has one and only one 1-cycle.
The cycle parameters λ0, τ0 and y0 can be evaluated by
solving the following system of transcendental equations

y0 = λ0g1g2

3
∑

i=1

αi

ebiτ0 − 1
,

λ0 = F (y0), τ0 = Φ(y0).

(8)

Proof. The proof of the fact that system (8) is uniquely
solvable is rather cumbersome and substantially employs
the two-diagonal structure of the matrix A. It is omitted
for brevity. 2

Notice that Theorem 1 says nothing about stability of the
solution in question. A 1-cycle in system (2)–(5) would cor-
respond to an equilibrium point of (6). Lyapunov stability
of the equilibrium xn ≡ x0 for discrete time system (6)
can be easily studied by linearizing the right-hand of (6)
in a neighborhood of x0. However, the stability properties
of discrete system (6) are not necessarily inherited by
hybrid system (2)–(5). Because of the jumps, perturbed
and unperturbed solutions of the hybrid system can differ
significantly. So, a weaker stability notion is to be con-
sidered for the hybrid system, namely orbital (Poincaré)
asymptotic stability.

Consider a periodic solution xp(t) of (2)–(5) with the
initial condition xp(t−0 ) = x0. Let Ω ⊂ R

3 be the positive
semi-trajectory corresponding to xp(t) for t > t−0 . The
solution xp(t) will be called stable, if for any ε > 0 there
exists a number ε0 > 0 such that if ‖x(t−0 )−xp(t−0 )‖ < ε0,
then dist(x(t),Ω) < ε for all t > t0. Moreover, there is
a neighborhood D of x0 such that for each solution x(t)
originating from D at t−0 the limit relationship

dist(x(t),Ω) → 0 as t → +∞

is satisfied. Orbital stability of a 1-cycle is readily follows
from the Lyapunov asymptotic stability of the correspond-
ing equilibrium of (6). Consider a Jacobian matrix

Ψ(x, y) = eAΦ(y)
[

I + F ′(y)BC
]

+ Φ′(y)AQ(x)C.

Theorem 2. Suppose that x0 satisfies (7) and the functions
F (·) and Φ(·) have continuous derivatives F ′(·) and Φ′(·)
in a neighborhood of y0 = Cx0. The 1-cycle with the initial
condition x(t−0 ) = x0 is stable if Ψ(x0, y0) is Schur stable
(i.e. all its eigenvalues lie strictly inside the unit circle).

Proof. Omitted.

For a 2-cycle, the initial condition x(t−0 ) = x0 solves the
equation

Q(Q(x0)) = x0. (9)

Consider a 2-cycle xp(t) with the pulse parameters τ0, λ0,
τ1, λ1. Denote

x̂0 = Q(x0), y0 = Cx0, ŷ0 = Cx̂0.

Theorem 3. Suppose that x0 satisfies (9). Then parame-
ters of the 2-cycle with the initial value x(t−0 ) = x0 satisfy
the following transcendental equations, where y0 6= ŷ0:

y0 = g1g2

3
∑

i=1

αi

λ0 + λ1e
biτ0

ebi(τ0+τ1) − 1
, (10)

ŷ0 = g1g2

3
∑

i=1

αi

λ1 + λ0e
biτ1

ebi(τ0+τ1) − 1
, (11)

λ0 = F (y0), τ0 = Φ(y0),

λ1 = F (ŷ0), τ1 = Φ(ŷ0).

If ŷ0 > 0 is fixed, equation (10) is uniquely solvable in y0.
If y0 > 0 is fixed, equation (11) is uniquely solvable in ŷ0.

Proof. Omitted.

Unlike system (8), solvability of (10), (11) is not guaran-
teed. In the next section it will be seen that emergence
and disappearance of 2-cycles is connected with certain
bifurcations of parameters.

If (10), (11) are satisfied, system (2)–(5) has two 2-cycles
with the initial values x(t−0 ) = x0 and x(t−0 ) = x̂0,
respectively. These 2-cycles have the same trajectory and
differ only in the time domain by a constant phase shift.

Theorem 4. Let F (·) and Φ(·) have continuous derivatives
in some neighborhoods of y0 and ŷ0. The 2-cycle with the
initial value x(t−0 ) = x0 is stable if the matrix product
Ψ(x̂0, ŷ0)Ψ(x0, y0) is Schur stable.

Proof. Omitted.

Theorem 2 and Theorem 4 state only local stability of
the corresponding cycles. However, numerical experiments
show that these cycles are globally orbitally stable.

4. BIFURCATIONS OF PARAMETERS

4.1 Bifurcation diagrams

The values of the model parameters in this section are not
biologically motivated but rather chosen to clearly illus-
trate the dynamical behaviors of the system. The results
of this section were obtained by numerical experiments for

A =

[

−b1 0 0
2 −b2 0
0 0.5 −b3

]

.

As follows from Theorem 1 and Theorem 3, the non-zero
off-diagonal elements of A influence mainly the amplitudes
of the oscillations and not their type. The nonlinearities
were taken as

Φ(y) = k1 + k2
(y/h)2

1 + (y/h)2
, F (y) = k3 +

k4

1 + (y/h)2
,

where parameters k1, k2, k3, k4 and h are positive.

Theorems 1 and 3 are illustrated by Figures 1 and 2. From
Theorem 3, it follows that each equation of (10) and (11)
determines a curve in the plane (y0, y1), where y1 = ŷ0.
The curve corresponding to (10) is drawn in a solid line,
an the curve corresponding to (11) — in a dashed line.
The intersection points of the curves correspond ether to
a 1-cycle (for y0 = y1), or to a 2-cycle (for y0 6= y1).

The figures were obtained for b2 = 0.15, b3 = 0.2, k1 = 60,
k2 = 40, k3 = 3, k4 = 2, h = 2.7. In the case b1 = 0.03, the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10321



0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

b
1
 = 0.03

y
0

y
1

1−cycle

Fig. 1. Graphical solution of equations (10), (11) for b1 =
0.03.
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Fig. 2. Graphical solution of equations (10), (11) for b1 =
0.06.

system has no 2-cycles but a unique 1-cycle. In the case
b1 = 0.06, the system has both 1-cycle and 2-cycle.

These figures suggest that there is a bifurcation value of b1,
where a 2-cycle emerges. The bifurcation diagram for b1 is
shown in Figure 3. The ordinates of the graph correspond
to the fixed points y0, ŷ0. The solid curve shows that the
fixed point matches a stable solution, and a dashed curve
— an unstable solution. The diagram demonstrates the
presence of two bifurcation points. When b1 increases, a
period doubling bifurcation is followed by a period halving
bifurcation. Thus the bifurcation diagram forms a non-
chaotic “bubble”. Similar “bubbles” occur when varying
the parameters b2, b3, k1 and h.

For the bifurcation values, the spectrum of the Jacobian
Ψ(x0, y0) reaches the unit circle at the point −1, so the
1-cycle either loses or restores its stability.

4.2 Circadian oscillations

Hormonal secretion is governed by a biological clock,
which has a 24-hour cycle called circadian rhythm. Clinical
experiments exhibit that the serum concentration of Te
attains its maximum at 4–6 AM, then drops by 15–70 %
in the evening and rises again at the nighttime sleep, see
Keenan and Veldhuis (1998). Another feature observed in
clinical practice is variability of pulse shapes, see Keenan
et al. (2000), which directly influences the modeling of non-
basal secretion.

The latter fact can be explicated by bifurcations in the
proposed model. Note that the signal form for GnRH
pulses is usually assumed and not derived from the model
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Fig. 3. Bifurcation diagram for b1
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Fig. 4. Graph of a solution with a circadian rhythm taken
into account

structure. Suppose that some of the model parameters
periodically vary passing through their bifurcation points.
Then the system comes from 1-cycle to 2-cycle and vice
versa. In clinical experiments, a couple of adjacent pulses
fired in a 2-cycle can look as a single pulse of highly
asymmetric shape, Churilov et al. (2007b).

As an example, consider the results of computer simulation
depicted in Figure 4. There, the model with the previously
assumed set of parameters, b1 = 0.06, and

h(t) = 7 + 6.5 cos(2πt/1440)

is simulated. Notice that time is measured in minutes.

5. EXPERIMENTAL RESULTS

In medical literature, it is an established thesis that pulses
of GnRH from hypothalamus cause pulses of LH secretion
in pituitary in a nearly uniformly one-to-one ratio, Veld-
huis (1991). In a typical endocrinological study, pulses of
GnRH and LH are counted using a pulse detection algo-
rithm run on a hormone concentration time series, as in the
classical CLUSTER algorithm by Veldhuis and Johnson
(1986). Pulses are recognized over a sliding window as
significant increases followed by significant decreases. In
this way, minor pulses can be missed due to slow sampling
or regarded as nuisance. Furthermore, the pulse signal
form has to be assumed.
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Fig. 5. Changes in LH serum concentration observed in a
patient during a day. Highs and lows of the signal are
marked to facilitate localization of impulses.
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Fig. 6. Four pulses of LH extracted for the data set. Notice
similar pulse signal form.

In this section, it is demonstrated that the signal form
predicted by the model studied in this paper for the case
of two pulses of GnRH on the least period is consistent
with LH serum concentration data observed in a young
human male at a sampling time of 10 min, see Fig. 5.
The data set was kindly provided by Prof. Veldhuis of
Mayo Clinic. In the data set, both the slow (basal) trend
related to circadian rhythm and pulses caused by non-
basal hormone secretion are visible. Four pulses of LH have
been studied, each comprised of more than 10 measured
points and assayed from the same patient, see Fig 6. All
of them have similar signal form that can be explained as
LH secretion stimulated by two consequent GnRH pulses.

In the model, the amplitude and onset time of GnRH
pulses are governed by weighted δ-functions generated by
the impulse feedback controller, see (3). Assuming that the
periodic mode has two pulses of GnRH in the least period
T and setting t = 0 at the beginning of a period, gives
two weighted δ-functions produced on each period by the
impulse controller in the mathematical model

Θ(t) = λ0δ(t) + λ1δ(t − t1).

Table 1. Parameter estimates for LH pulse
caused by two GnRH pulses

data set estimates

b̂1 b̂2 t̂1 ĝ1 λ̂1

pulse 1 0.07 0.033 89 0.23 0.04
pulse 2 0.075 0.023 60 0.75 0.1
pulse 3 0.075 0.033 72 0.32 0.05
pulse 4 0.076 0.017 60 0.87 0.08
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6

Time, min

L
H

Estimated pulse form and actual data

Fig. 7. LH pulse model with parameters from Table 1
(solid line) compared to the identification set pulse 2

(asterisks)

This results in the following evolution in the concentration
of GnRH

R(t) = λ0e
−b1t, 0 6 t < t1,

R(t) = η(b1)e
−b1t, η(x) = λ0 + λ1e

xt1 , t1 6 t < T,

and that of the measured model output LH

L(t) =
λ0g1

b2 − b1
(e−b1t − e−b2t), 0 6 t < t1,

L(t) =
g1

b2 − b1

(

η(b1)e
−b1t − η(b2)e

−b2t
)

, t1 6 t < T.

Since GnRH concentrations cannot be measured in the
human, the problem of evaluating the model parameters
b1, b2, g1, λ0, λ1 from experimental data involves deconvo-
lution. From the equations above, it becomes clear that λ0
and g1 cannot be estimated separately from measurements
of LH but only in a product. Therefore, the values of λ0
and λ1 cannot neither be estimated but only their ratio.
Here it is assumed that λ0 = 1. As already mentioned, the
value of g1 does not influence the type of oscillations in
the model but only their amplitude.

Model parameters have been estimated from the data
set using standard nonlinear least squares, a method
commonly applied for deconvolution, and the obtained
estimates are summarized in Table 1. A typical estimation
result is illustrated in Fig. 7 showing a fair model fidelity.
Without the second GnRH pulse which is 10% of the first
one in this case, the almost constant concentration of LH
in the interval between t = 60 min and t = 70 min would
be difficult to explain.

As shown in Churilov et al. (2007b), the present sampling
time of 10 min. yields undersampled data sets and the
accuracy of estimates cannot be expected to be high. This
agrees well with the results in Veldhuis et al. (1986) where
it is concluded from stochastic analysis that a sampling
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time of 2–3 min is necessary to capture 90% of all LH
pulses. Besides, the very coarse mathematical modeling
applied to obtain the model at hand allows for significant
model uncertainty which in its turn unavoidably leads to
parameter estimation errors.

The oscillations in endocrine regulation are severely per-
turbed by many contributing factors and it is clearly vis-
ible from the parameter estimates in Table 1. First of all,

the estimate b̂1 corresponding to the clearing rate of GnRH
varies least. However, according to Keenan and Veldhuis
(1998), GnRH has to clear out much faster than LH, while

the values of b̂1 and b̂2 are of the same order. This is
probably a consequence of undersampling making the fast
GnRH dynamics poorly observed in the experimental data.

6. CONCLUSIONS

Parameter bifurcations in a mathematical model of non-
basal testosterone secretion are studied. The paper pro-
vides a mathematical explanation to impulsive and oscilla-
tive effects in the male reproductive axis. Existence and
stability conditions for periodic solutions in the considered
mathematical model are formulated. Experimental data
validate the existence of a periodic mode with two pulses
of gonadotropin releasing hormone in the least period.
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M.A. Virmani, and K.J. Catt. Calcium signaling and
episodic secretion of gonadotropin-releasing hormone in
hypothalamic neurons. Proc. Nat. Acad. Sci. USA, 89:
8462–8466, 1992.

B.Z. Liu and G.M. Deng. An improved mathemati-
cal model of hormone secretion in the hypothalamo-
pituitary-gonadal axis in man. J. Theor. Biol., 150(1):
51–58, 1991.

A.V. Medvedev, A.N. Churilov, and A.I. Shepeljavyi.
Mathematical models of testosterone regulation. In
Stochastic Optimization in Informatics, (In Russian),
number 2, pages 147–158. St. Petersburg State Univer-
sity, 2006.

B. Mukhopadhyay and R. Bhattacharyya. A delayed
mathematical model for testosterone secretion with
feedback control mechanism. Intern. J. of Mathematics
and Math. Sciences, 2004(3):105–115, 2004.

J.D. Murray. Mathematical biology, I: An introduction (3rd
ed.). Springer, New York, 2002.

N.L. Rasgon, L. Pumphrey, P. Prolo, S. Elman, A.B. Ne-
grao, J. Licinio, and A. Garfinkel. Emergent oscillations
in mathematical model of the human menstrual cycle.
CNS Spectrums, 8(11):805–814, 2003.

S. Ruan and J. Wei. On the zeros of a third degree
exponential polynomial with applications to a delayed
model for the control of testosterone secretion. IMA J.
of Math. Applied in Medicine and Biology, 18(1):41–52,
2001.

R.W. Smith. Hypothalamic regulation of pituitary secre-
tion of luteinizing hormone — II. feedback control of
gonadotropin secretion. Bull. Math. Biol., 42(1):57–78,
1980.

R.W. Smith. Qualitative mathematical models of en-
docrine systems. Amer. J. Physiol., 245(4):R473–R477,
1983.

J.D. Veldhuis. The hypotalamic-pituitary-testicular axis.
In S. S. C. Yen and R. B. Jaffe, editors, Reproduc-
tive Endocrinology, (3rd ed.), pages 409–459. Saunders,
Philadelphia, PA, 1991.

J.D. Veldhuis. Recent insights into neuroendocrine mech-
anisms of aging of the human male hypothalamic-
pituitary-gonadal axis. J. Andrology, 20(1):1–18, 1999.

J.D. Veldhuis and M.L. Johnson. Cluster analysis: a
simple, versatile, and robust algorithm for endocrine
pulse detection. Am. J. Physiol. Endocrinol. Metab.,
250:E486–E493, 1986.

J.D. Veldhuis, W.S. Evans, M.L. Johnson, M.R. Wills, and
A.D. Rogol. Physiological properties of the luteiniz-
ing hormone pulse signal: impact of intensive and ex-
tended venous sampling paradigms on its characteri-
zaion in healthy men and women. Journal of Clinical
Endocrinology and Metabolism, 62:881–891, 1986.

Zh.T. Zhusubaliev and E. Mosekilde. Bifurcations and
chaos in piecewise-smooth dynamical systems. World
Scientific, Singapore, 2003.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10324


