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Abstract: Despite the success of particle filter, there are two factors which cause difficulties in
its implementation. The first one is the choice of importance functions commonly used in the
literature which are far from being optimal. The second one is the combined state and parameter
estimation problem. In a widely used Heston model on stochastic volatility in financial literature,
we are able to circumvent both these problems. To reflect the most realistic situation, we also
include jump in the stochastic volatility model. Numerical results show the effectiveness of the
algorithms.

1. INTRODUCTION

Before starting the general framework of this paper, we
start with the continuous time Heston Volatility model :

dSt = μSStdt +
√

vtStdBt (1)

dvt = κ(θ − vt)dt + ξ
√

vtdZt (2)

where vt is the (unobserved) volatility and St is the
perfectly observable stock price. Bt and Zt are standard
Brownian motion processes with correlation ρ. Here, we
can construct the observation process yt = log St/S0

and corresponding stochastic differential equation for yt

is given as

dyt = (μS − 1
2
vt)dt +

√
vtdBt. (3)

Our aim is to estimate recursively the volatility process vt

from {ys}0≤s≤t.

Setting

Z̃t =
1

√
1 − ρ2

(Zt − ρBt),

we find that Z̃t is independent of Bt. Noting that

dZt =
√

1 − ρ2dZ̃t + ρdBt

=
√

1 − ρ2dZ̃t +
ρ√
vt

(dyt − (μS − 1
2
vt)dt),

we have
� This work is partially supported by The Ministry of Education,
Culture, Sports, Science and Technology of Japan under Grant-in-
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dvt = κ(θ − vt)dt + ξ
√

vt

√
1 − ρ2dZ̃t

+ξρ(dyt − (μS − 1
2
vt)dt). (4)

The filtering problem for vt under yt is out of the usual
filtering theory. See Bensoussan (1992) and Liptser (1974).
The recent results for the filtering of the stochastic volatil-
ity in the continuous time framework can be found in
Aihara (2006). The nonlinear filtering approach for this
model ia a bit unconventional, as the state appears in
the observation noise. As stated in Aihara (2006), this
problem can be theoretically addressed by using Zakai
equation with the splitting out method. However, the
results obtained are very sensitive to the noise correlation
parameter. The numerical behavior is very complicated
and does not always work well.

To circumvent the above difficulty, we envisage here the
use of particle filter for volatility estimation. Particle filter
is a simulation based tool for filtering in discrete time
framework, which can easily adapt to the nonlinearity in
the model and/or non Gaussian noises. Here, the probabil-
ity distributions are represented by a cloud of (weighted)
particles. These particles are recursively generated from
a so called ”importance function”, π(·). Although the
resulting densities (represented by the particle clouds) do
asymptotically converge to the true filtered densities as
the number of particles tends to infinity, however, for finite
sample size, the efficiency of this method depends heavily
on the importance function used.Usually the ‘naive’ pro-
posal, p(vk|vk−1), which is the discrete state transition
density, is used as the importance function due to the ease
of drawing samples from it and corresponding simplicity
of weight update (see Doucet et al. (2000)).This is recently
used by Javaheri (2005) for estimating volatility, although
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in an imprecise filtering framework. However, a better
choice for importance function is, π = p(vk|vi

k−1, yk), i.e.
to make use of recent observation as it carries information
about the state vk. Moreover, as shown by Doucet et al.
(2000), this is also optimal in the sense that the variance
of the importance weights is minimum.

In this paper, we first consider the continuous time Hes-
ton model and apply Euler discretization scheme to this
model. Next, we implement particle filter with the optimal
importance function as proposed above. This procedure is
then extended to the Bates model.

We also address the parameter estimation problem by
augmenting the state and parameters. It is well known that
this augmentation causes particle filter to work poorly. The
reason is the rapid depletion of the weights associated with
most of the particles (Doucet et al. (2000)). We propose
here a new algorithm where the parameter is estimated by
weighted average of some set of particles selected initially
from any arbitrary (possibly uniform) distribution. The
weights chosen come from the weight updates for the state
”particles”. We obtain the feasible parameter estimates
without adding extra noise. Some numerical simulations
are demonstrated to check the feasibility of the method
proposed above.

2. PARTICLE FILTER AND OPTIMAL
IMPORTANCE FUNCTION

2.1 The Diffusion Model (Heston model)

Here we present the particle filter formulation and the
selection of the optimal importance function.

In order to apply the particle filter to our system, we
discretize the system (4) and (3) using Euler scheme. We
select this scheme mainly due to its relative simplicity
and less computational load. We discretized the system
as follows:

vk = vk−1 + κ(θ − vk−1)Δt − ξρ(μS − 1
2
vk−1)Δt

+ξ
√

vk−1

√
1 − ρ2ΔZ̃k + ξρ(yk − yk−1) (5)

and

yk = yk−1 + (μS − 1
2
vk)Δt +

√
vk−1ΔBk

where for tk − tk−1 = Δt,

ΔBk = Btk
− Btk−1 , ΔZ̃k = Z̃tk

− Z̃tk−1

Now we use the sequential importance sampling (with
resampling) algorithm for the particle filter.

• The updated weight w
(i)
k at tk is obtained by

w
(i)
k = w

(i)
k−1

p(yk|v(i)
0:k, y0:k−1)p(v(i)

k |v(i)
0:k−1, y0:k−1)

π(v(i)
k |v(i)

k−1, yk)
.

• It is possible to select the importance function π as
the optimal selection as in Doucet et al. (2000)

π(vk|vk−1, yk) = p(vk|vk−1, yk).

• Form (5) we can easily get

p(vk|vk−1, yk) = N (m(vk−1, yk), σ2(vk−1))
where

m(vk−1, yk) = vk−1 + κ(θ − vk−1)Δt

−ξρ(μS − 1
2
vk−1)Δt + ξρ(yk − yk−1)

and
σ(vk−1) = ξ

√
vk−1

√
1 − ρ2

√
Δt.

Hence we obtain the optimal importance function for the
particle filter. Additionally, we enforce the hard constraint
that the samples selected from this proposal are all posi-
tive.

• Next problem is to obtain p(vk|v0:k−1, y0:k−1). Now
substituting the observation data yk into (5), we
obtain

vk = vk−1 + κ(θ − vk−1)Δt − ξρ(μS − 1
2
vk−1)Δt

+ξ
√

vk−1

√
1 − ρ2ΔZ̃k

+ξρ{(μS − 1
2
vk)Δt +

√
vk−1ΔBk}

i.e.,

vk = (1 +
1
2
ξρΔt)−1{vk−1 + κ(θ − vk−1)Δt

+ξρ
1
2
vk−1Δt + ξ

√
vk−1

√
1 − ρ2ΔZ̃k

+ξρ
√

vk−1ΔBk}.
This implies that

p(vk|v0:k−1, y0:k−1) =p(vk|vk−1)

= N (m̃(vk−1), σ̃2(vk−1))
where

m̃(vk−1) = (1 +
1
2
ξρΔt)−1{vk−1 + κ(θ − vk−1)Δt

+
ξρ

2
vk−1Δt

and

σ̃(vk−1) = (1 +
1
2
ξρΔt)−1ξ

√
vk−1

√
Δt.

• The likelihood function becomes
p(yk|v0:k, y0:k−1) = p(yk|vk, vk−1, yk−1)

which is given as

p(yk|vk, vk−1, yk−1) =

N (yk−1 + (μs − 1
2
vk)Δt, vk−1Δt).

2.2 The Diffusion Model with Jump (Bates model)

We adopt the Bates model ( Bates (1996)) to characterize
the stock dynamics:

dSt = μSStdt +
√

vtStdBt + StdZ
J
t − λmJStdt, (6)

dvt = κ(θ − vt)dt + ξ
√

vtdZt (7)

where ZJ
t denotes the pure-jump process which contains

two components: random jump-event times and random
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jump sizes. The jump-event times {Ti; i ≥ 1} arrive with
a constant intensity λ . Given the arrival of the i-th jump
event, the stock price jumps from ST−

i
to ST−

i
exp(Usi)

where Us
i is normally distributed with mean μJ and

variance σ2
J , independent of Bt and Zt, inter -jump times

and of Us
j , for j �= i. Intuitively, the conditional probability

at time t of another jump before t + Δt is, for some small
Δt, approximately λΔt and, conditional on a jump event,
the mean relative jump size is mJ = E(exp(Us) − 1) =
exp(μJ +σ2

J/2)−1. Combining the effects of random jump
timing and size, the last term λmJStdt in (6) compensates
for the instantaneous change in expected stock introduced
by the pure-jump process ZJ

t .

Now by using the same approach as in the previous section,
we transform (6) to yt = log St. By using Ito’s formula, we
have

dyt = (μS − λmJ − 1
2
vt)dt +

√
vtdBt + dqJ

t

where qJ
t is a compound Poisson process with intensity λ

and Gaussian distribution of jump size ,N (μJ , σ2
J). Noting

that

dZt =
√

1 − ρ2dZ̃t +
ρ√
vt

(dyt

−(μS − λmJ − 1
2
vt)dt − dqJ

t ),

we have

dvt = κ(θ − vt)dt + ξ
√

vt

√
1 − ρ2dZ̃t

+ρξ(dyt − (μS − λmJ − 1
2
vt)dt − dqJ

t ). (8)

Now discretize these systems as

yk − yk−1 = (μS − λmJ − 1
2
vk)Δt

+
√

vk−1ΔBk + ΔqJ
k , (9)

where ΔqJ
k is the jump in qJ

tk
. We also have

vk − vk−1 = κ(θ − vk−1)Δt + ξ
√

vk−1

√
1 − ρ2ΔZ̃k

+ξρ(yk − yk−1 − (μS − λmJ − 1
2
vk−1)Δt − ΔqJ

k ).(10)

Now in this diffusion-jump case we need to derive the
explicit form of the weight update equation:

• The updated weight w
(i)
k is obtained in the same way

as in the previous section:

w
(i)
k = w

(i)
k−1

p(yk|v(i)
0:k, y0:k−1)p(v(i)

k |v(i)
0:k−1, y0:k−1)

π(v(i)
k |v(i)

k−1, yk)
.

• Assuming that at tk the jump occurs at most one, we
have from Cont (2004)

p(v|vk−1, yk) = { (1 − e−λΔtλΔt)
√

2πσ̄2(vk−1)

× exp[− (vk − m̄(vk−1, yk))2

2σ̄2(vk−1)
]

+
e−λΔtλΔt

√
2π(σ̄2(vk−1) + ξ2ρ2σ2

J)

× exp[− (vk − m̄(vk−1, yk) + ξρμJ)2

2(σ̄2(vk−1) + ξ2ρ2σ2
J)

]}
where

m̄(vk−1, yk) = vk−1 + κ(θ − vk−1)Δt

+ρξ(yk − yk−1 − (μS − λmJ − 1
2
vk−1)Δt)

and
σ̄2(vk−1) = ξ2vk−1(1 − ρ2)Δt.

• Now we shall evaluate p(vk|v0:k−1, y0:k−1). Substitut-
ing yk − yk−1 into (10), we get

vk = (1 +
1
2
ξρΔt)−1{vk−1 + κ(θ − vk−1)Δt

−ξρ(μS − 1
2
vk−1)Δt + ξ

√
vk−1

√
1 − ρ2ΔZ̃k

+ξρ{μSΔt +
√

vk−1ΔBk}}.
Hence, p(vk|v0:k−1, y0:k−1) = p(vk|vk−1), which is
same as the non-jump case. This is a quite reasonable
result because vk does not contain any jumps.

p(vk|vk−1) = N (m̃(vk−1), σ̃(vk−1))
where

m̃(vk−1) = (1 +
1
2
ξρΔt)−1{vk−1 + (ω − θvk−1)Δt

−ξρ(μS − 1
2
vk−1)Δt + ξρμSΔt}

and

σ̃(vk−1) = (1 +
1
2
ξρΔt)−1ξ

√
vk−1

√
Δt.

• We need to derive the explicit form of p(yk|v0:k,
y0:k−1) . It is easy to show that

p(yk|v0:k, y0:k−1)= p(yk|yk−1, vk, vk−1).

One notes

p(yk|yk−1, vk−1:k) =
(1 − e−λΔtλΔt)

√
2πvk−1Δt

× exp(− (yk − yk−1 − (μS − λmJ − 1
2vk)Δt − uk)2

2vk−1Δt
)

+
e−λΔtλΔt

√
2π(vk−1Δt + σ2

J)

× exp(− (yk − yk−1 − (μS − λmJ − 1
2vk)Δt − uk − μJ)2

2(vk−1Δt + σ2
J)

).

where
uk =

ρ

ξ
[vk − vk−1 − κ(θ − vk−1)Δt]

3. PARAMETER IDENTIFICATION PROBLEM

To identify the parameters contained in the system model,
we construct the augmented state zk = (vk, α) where for
the diffusion case, vector α contains the parameters as

α = [κ θ ξ μS ρ]

and similarly, for the jump-diffusion case
α = [κ θ ξ μS ρ λ μJ σJ ].

To perform the particle filter for zk we assume that
α ∈ U(uniform distribution with known upper and lower
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bounds), and is independent of the initial distribution of
v1 which is taken here as Gaussian. Hence we can apply
the particle filter algorithm developed in the previous
section to zk-process. Noting that the state α is time
independent, the parameter value α(i) is not updated and
we encounter the degenerated problem. In this paper to
avoid this deficiency, we use the simple random resampling
for each parameter and apply the systematic resampling
for the state vk. Repeating this resampling for every
parameter, we observe that the estimated parameters
do not degenerate. From the simulation results, we find
that the random resampling for the parameters performs
similar effect as adding the so called roughening noises to
the parameter values.

4. SIMULATION STUDIES

For our numerical studies, we consider only the diffusion
model with jumps which represents the most realistic
scenario. In the subsequent simulations, resampling is done
whenever the effective sample size as defined in Doucet
et al. (2000) falls below two-third of the sample size used.
To check the algorithm proposed here, the stock price and
volatility process are simulated using the following values
of the parameters

κ = 3.0, θ = 0.1, μ = 0.1, ρ = −0.2,

ξ = 0.4, λ = 4.5, μJ = −0.1, σJ = 0.1.

The simulated volatility and the log price y(t) are shown
in Fig.1. and Fig.2 respectively. In this simulation studies,
we set Δt = 0.001 and the number of particles is set as
2000.

For unknown parameters, we set

κ ∈ U [1, 10], θ ∈ U [0.05, 0.5], μ ∈ U [0.05, 0.3],

ξ ∈ U [0.01, 0.91], ρ ∈ U [−0.8, 0]

λ ∈ U [0, 5], μJ ∈ U [−0.2, 0], σJ ∈ U [0, 0.2].
We also set

v1 ∈ N (0.25, 0.022).

The true and estimated volatility are demonstrated in
Fig.3 and its square error is also shown in Fig.4.

The estimates of unknown parameters are also demon-
strated in Figs.5 to 12. In these simulation studies, one
may find bias in some of the estimated parameters, which
occurs depending on the setting of the upper and lower
bounds selected for the estimation of unknown parameters.

5. CONCLUSION

For the discretized Heston model with jumps, we derive the
stochastic volatility using particle filter algorithm with the
optimal importance function. By using the simple random
resampling method, we also propose an estimation proce-
dure for the parameters of the model. In this setting, with
these estimated parameters, the estimation of stochastic
volatility works quite well. So, one can expect these es-
timated parameters to be quite reasonable. Comparing
the estimated parameters with other known estimation
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Fig. 6. True and estimated θ
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Fig. 9. True and estimated ρ
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Fig. 10. True and estimated λ
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Fig. 11. True and estimated μJ
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Fig. 12. True and estimated σJ

techniques is out of the scope for our current work and
will be discussed elsewhere in the future.
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