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Abstract: In this paper two nonlinear observers for a chaotic system are compared. Moreover,
the left invertible problem and the observability singularity are discussed. Thus, after a
presentation of both observers, a comparison of the two proposed methods and a discussion
are done on the basis of simulations results. The last part highlights the fact that the finite
time observer is more sensible to the singularity observations, but less sensible to parameter
uncertainties and noise in the output of the system.

1. INTRODUCTION

The synchronization of chaotic systems was studied since
20 years ago PC90 [90], HV92 [92], and many articles have
been published from a theoretical point of view NM97
[97] as well as from an applicative one PCKHS92 [92].
The aim of this manuscript is to compare two observer
approaches of chaotic synchronization, and this in order to
highlight some difficulties introduced by a modified G.Y.
Qi system Qi [05]. The first difficulty is the observability
singularity (or bifurcation) BBBB06 [06], the second one
is the left invertibility problem when the observability
matching condition is not verified Barbot et al. [05], and
the third one is the difficulty to design an observer when
the system is not linearizable by output injection KI83 [83],
KR85 [85] (see also SRCH01 [01] for the case of chaotic
synchronization). The last difficulty is due to the original
Qi system has large state amplitude with dynamics varying
from slow to fast behavior. The proposed comparison is
non exhaustive and many other observers dedicated to
chaotic systems may be used.

2. PROBLEM STATEMENT

Consider the following modified Qi chaotic system






ẋ1 (t) = a(x2 (t) − x1 (t)) + x2 (t) x3 (t) + m1 (t)
ẋ2 (t) = b (x1 (t) + x2 (t)) − x1 (t)x3 (t)
ẋ3 (t) = −cx3 (t) − ex4 (t) + x1 (t)x2 (t) + m1 (t)
ẋ4 (t) = fx3 (t) − dx4 (t) + x1 (t)x3 (t) + m2 (t)
y1 (t) = x1 (t)
y2 (t) = x2 (t)

(1)

where xi ∈ R (i = 1, 2, 3, 4) are the states of the
system, m1 and m2 represent the messages, which for

⋆ This work is supported by Bourse region IDF.

the observation problem are considered as the unknown
inputs, and y1 and y2 represent the outputs of the system.

Assumption. 2.1. Firstly, the signals m1 and m2 are as-
sumed to be sufficiently small and with slow variations
in order to preserve the chaotic behavior and, secondly,
the signals must be undetectable by a simple frequency
analysis. Consequently, the state vector is in an open
bounded set D ⊂ R

4.

The goal of both observers to be proposed is to reconstruct
m1 and m2. This is a left invertible problem R90 [90] for
a system with relative degree strictly smaller than the
state dimension. This problem was studied recently by
two complementary approaches Barbot et al. [05] and
Fliess [07]. In the first one, a constructive algorithm was
given in order to determine if the system is left invertible
and a state and output transformation was given in order
to express the system in a well adapted observer form.
In the second one, an algebraic approach, introduced in
F89 [89], was used and all the states and inputs were
expressed in function of the outputs and their derivatives.
The purpose of this paper is not to determine if the system
(1) is left invertible or not because it was designed in order
to be left invertible thanks to the algorithm of Barbot et
al. [05]. The objective is to proposed two observers and
compare them with respect to the fact that the system
(1) has observation singularities in the point (x1 = 0),
which, in this case, implies left invertibility singularities in
the same point. The left invertibility problem of (1) was
studied in BFF07 [07] in an algebraic frame Fliess [07] and
a numerical differentiation was used in Mboup [07]. More-
over, the observation error dynamic is not linearizable by
output injection. Two observers were chosen: an observer
based on the Super-Twisting Algorithm (STA) and an
adaptive observer. The first one basically allows to obtain
information from the outputs and their derivatives and,

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4791 10.3182/20080706-5-KR-1001.0656



consequently, to reconstruct the states and the messages
(unknown inputs), this is a very closed way to that of the
algebraic approach and the algorithm proposed in Barbot
et al. [05]. The second observer allows to overcome the ob-
servability singularity difficulty if a condition of persistent
excitation is verified Hammouri [90], Ghanes [06].

3. SUPER-TWISTING OBSERVER

The following assumptions are requested by the STA.

Assumption. 3.1. a) The states of the system are bounded
for any bounded unknown input; b) the unknown inputs
m1 and m2 are bounded and with bounded derivatives and
their bounds are known.

Considering (1) and Assumption 2.1, it follows that As-
sumption 3.1 is verified.

3.1 Reconstruction of x3

To generate a new output, namely the variable x3, we
reconstruct x1x3 in the following way







ẋa,1 = b (x1 + x2) + x̂1,3 + λ1 |s1|1/2
sign s1

�

x̂1,3 = α1 sign s1

s
1

= x2 − xa,1

(2)

In this way, the derivative of s
1

takes the form

ṡ1 = −x1x3 − x̂1,3 − λ1 |s1|1/2
sign s1 (3)

Choosing the gains λ1 ≥ (α1 + M1) (1 + θ)

1 − θ

√
2

α1 − M1

and α1 > M1 ≥
∣
∣
∣
∣

d

dt
(x1x3)

∣
∣
∣
∣
(0 < θ < 1), we get, according

to Levant [93, 98], Davila [05], a second order sliding
motion, that is, s1 (t) = 0, ṡ1 (t) = 0 after some finite
time T1. Therefore, from (3), we get

x̂1,3 (t) ≡ −x1 (t)x3 (t) for all t ≥ T1. (4)

Thus, the state x3 can be obtained from (4) provided
x1 (t) 6= 0. Thus, the observer for x3 is designed in the
form

x̂3 (t) =







− x̂1,3 (t)

x1 (t)
if |x1 (t)| ≥ ε

x̂3 (t − τ) if |x1 (t)| < ε
(5)

where τ and ε are enough small constants 1 . Thus, we get
the identity

x̂3 (t) ≡ x3 (t) for all t ≥ T1 and |x1 (t)| ≥ ε.

Remark. 3.1. At a glance, it seems that, in (5), it is enough
to use x1 (t) 6= 0 instead of |x1 (t)| ≥ ε. However, it
is known that, in the practical situation, s1 and ṡ1 are
very close to zero, but they are not exactly zero; hence,
instead of having (4), we have the equality x̂1,3 (t) =
−x1 (t)x3 (t) + ∆ (t), where ∆ represents the estimation
error, which does not tend to zero. Then, the equality
x̂1,3

x1
= x3 − ∆

x1
induced an error between

x̂1,3

x1
and x3

1 The constant τ is chosen enough small but bigger than the
sampling time used during the realization of the observer. The
constant ε should be chosen sufficiently big to avoid the singularity,
but also should be notice that any estimation in this zone can not
be considered as an acceptable estimation.

of the form O (1/x1). This justifies that in a vicinity of
the point (x1 = 0) the value of x̂3 is chosen as in (5).

3.2 Reconstruction of x4

Now, the definition of ȳ3 (t) := x3 (t) allows to rewrite
(1) as a linear system with output injection and unknown
inputs, that is,






ẋ1

ẋ2

ẋ3

ẋ4




=






-a a 0 0
b b 0 0
0 0 -c -e
0 0 f -d






︸ ︷︷ ︸

A






x1

x2

x3

x4






︸ ︷︷ ︸

x

+






y2ȳ3

-y1ȳ3

y1y2

y1ȳ3






︸ ︷︷ ︸

φ(y1,y2,ȳ3)

+






1 0
0 0
1 0
0 1






︸ ︷︷ ︸

D

[
m1

m2

]

︸ ︷︷ ︸

w

[
y1

y2

ȳ3

]

︸ ︷︷ ︸

ȳ

=

[
1 0 0 0
0 1 0 0
0 0 1 0

]

︸ ︷︷ ︸

x

C

(6)

Now, let z be defined by the solution of the following
differential equation

ż = Az + φ (y1, y2, ȳ3)

Thus, defining ez = x− z we obtain the dynamic equation
for ez

ėz (t) = Aez (t) + Dw (t)
yz = Cez

(7)

Then, for the reconstruction of x4 we follow in essence,
but with a little modification, the algorithm proposed in
Bejarano [07]. That is, we will find an algebraic expression
for ez in terms of the output yz and its derivatives. Thus,
we get the equalities 2

yz = Cez

d

dt
(CD)⊥ yz = (CD)⊥ CAez

which yields the following algebraic expression for ez
3

ez (t) =

[
C

(CD)
⊥

CA

]+
[

yz (t)
d

dt
(CD)

⊥
yz (t)

]

(8)

After denoting ez,4 as the four state of ez, we obtain

ez,4 =
1

e
[ėz,1 − ėz,3 + a (ez,1 − ez,2) − cez,3] (9)

By expanding the terms in (9), we get,

x4 − z4 =
1

e
[a (y1 − y2) + y2ȳ3 + y1y2 − cȳ3]

+
1

e

(

ẏ1 −
�

ȳ3

)

− z4

(10)

The equation (10) gives an algebraic expression for x4−z4

in terms of the output ȳ and its derivatives.

As ẏ1 and
�

ȳ3 are not measurable directly, to obtain
these derivatives the STA will be used again. Before

2
Y

⊥ is a full row rank matrix such that Y
⊥

Y = 0. The matrix Y
⊥

is not unique, but this not affect the final result and any of those
matrices can be used.
3 The matrix X+ is defined to be the pseudo-inverse of X. The
extended matrix considered in (8) belongs to the sort of matrices of

full column rank, and , in such a case, X+ =
(
XT X

)
−1

XT .
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reconstructing x4, to reduce the fast dynamics and have
smaller gains in the ST algorithm, we design the following
like-linear observer whose dynamics is governed by the
following differential equation

�

x̃ =

[
−c −e
f −d

]

︸ ︷︷ ︸

Ā

x̃ +

[
y1y2

y1ȳ3

]

+ L (x̂3 − ỹ3)

ỹ3 = [ 1 0 ]
︸ ︷︷ ︸

C̄

x̃
(11)

The matrix L is chosen so that the eigenvalues of the
matrix

(
Ā − LC̄

)
have negative real part. The dynamic

equations for ē := [x3 x4]
T − x̃ are

�

ē =
(
Ā − LC

)
ē (t) + w (t)

where w is defined in (6). Hence some upper bounds for

the norm of ē and for the norm of
�

ē are obtained by

‖ē (t)‖ ≤ γ exp (−λt) ‖ē (0)‖ + µ ‖w (t)‖
Where γ, λ, µ are positive constants. Hence, ē is con-
strained to remain in a zone depending on the amplitude
of m1 and m2.

The expression in the right side of (10) must appear on
the derivative of the sliding surface; that is why, we design
the finite time observer for x4 in the following form







ẋa,2 =
1

e
[a (x2 − x1) + cx̂3 − x1x2 + x2x̂3]

+ x̃4 + v2 + λ2 |s2|1/2
sign s2

v̇2 = α2 sign s2

s2 =
1

e
(x1 − x3) − xa,2

x̂4 (t) =

{
x̃4 + v2 if |x1 (t)| ≥ ε

x̂4 (t − τ) if |x1 (t)| < ε

where x̃4 is the second component of the vector x̃ defined
in (11). Then, the time derivative of s2 is

ṡ2 =
1

e
(ẋ1 − ẋ3) −

1

e
[a (x2 − x1) + cx̂3 − x1x2 + x2x̂3]

−x̃4 − v2 − λ2 |s2|1/2
sign s2

Thus, from the (10), ṡ2 takes the form

ṡ2 = x4 − (x̃4 + v2) − λ2 |s2|1/2
sign s2

Thus, for λ2 ≥ (α2 + M2) (1 + θ)

1 − θ

√
2

α2 − M2
and α2 >

M2 ≥
∣
∣
∣
∣

d

dt
(x4 − x̃4)

∣
∣
∣
∣

(0 < θ < 1), after some finite time

T2 > T1, we get s2 = 0 and ṡ2 = 0; therefore,

x̂4 ≡ x4 for |x1 (t)| ≥ ε.

3.3 Messages reconstruction

The reconstruction of m1 is made in the following way






ẋa,3 = a (x2 − x1) + x2x̂3 + v3 + λ3 |s3|1/2 sign s3

v̇3 = α3 sign s3

m̂1 =

{
v3 if |x1 (t)| ≥ ε

m̂1 (t − τ ) if |x1 (t)| < ε

s3 = x1 − x3
a

Thus, for λ3 ≥ (α3 + M3) (1 + θ)

1 − θ

√
2

α3 − M3
and α3 >

M3 ≥ |ṁ1| (0 < θ < 1), there exists a finite time T3 so

that the equalities s3 = 0, ṡ3 = 0 hold. Thus, we get the
equality

m̂1 ≡ m1, for |x1 (t)| ≥ ε

The reconstruction of m2 is made in a similar way, that is,






ẋa,4 = b (x1 + x2) + fx3 − dx̂4 + v4 + λ4 |s4| sign s4

v̇4 = α4 sign s4

m̂2 =

{
v4 if |x1 (t)| ≥ ε

m̂2 (t − τ) if |x1 (t)| < ε
s4 = x2 + x̂4 − xa,4

Thus, taking into account (1) and the derivative of xa,4,
the gains α4 and λ4 are chosen to satisfy the inequalities

λ4 ≥ (α4 + M4) (1 + θ)

1 − θ

√
2

α4 + M4
and α4 > M4 ≥ |ṁ2|

(0 < θ < 1) (see, Levant [93, 98], Levant [98]). After some
finite time T4 > T2 > T1 the equalities s = 0 and ṡ = 0
are verified. Therefore, from the equation of ṡ, we obtain

m̂2 ≡ m2 for |x1 (t)| ≥ ε

4. INTERCONNECTED ADAPTIVE OBSERVER

Before introducing the observer, the following assumptions
are requested.

Assumption. 4.1. 1. The outputs of chaotic system (1)
y1 and y2 are regularly persistent (see more details in
Hammouri [90], Ghanes [06]).
2. The system (1) is Lipschitz in the considered domain D
defined in section 2 with respect to the states xi, i = 1, 4.

The assumption 4.1.1 is satisfied due to the chaotic behav-
ior of (1). y1 and y2 are equal to zero during a very short
time.
The assumption 4.1.2 is verified by the fact that the state
of the chaotic system (1) stays in the domain D.

Assumption. 4.2. The messages m1 and m2 are considered
constants and unknown parameters.

This is the only extra assumption requested by this
method.

Now, we present an observer design for the chaotic system
(1) that is based on the interconnection between two
observers, and satisfying a particular property called input
persistency introduced in assumption 4.1. This persistency
condition is sufficient to guarantee the observer design.
Furthermore, the idea of interconnected observers is to
design a set of observers for the whole system, from the
separate synthesis of set observers for each subsystem. The
key is assuming that, for each of these separate set of
observers, the states of the other subsystem are available.

The chaotic system (1) can be rewritten in the following
interconnected extended (x5 = m1, x6 = m2) compact
form

{

Ẋ1 = A1(y2)X1 + g1(y, X1, X2)
y1 = C1X1

(12)

{

Ẋ2 = A2(y1)X2 + g2(y, X2, X1)
y2 = C2X2

(13)

where X1 = (x2, x3, x5)
T is the state of the first subsystem,

X2 = (x1, x3, x4, x6)
T is the state of the second subsystem.

y = [x1, x2]
T are the output of the whole system, and

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4793



A1(y2) =

(
0 −y2 0
0 0 1
0 0 0

)

, A2(y1) =






0 y1 0 0
0 0 −c 0
0 0 0 1
0 0 0 0






g1(y, X1, X2) =

(
b(y1 + y2)

−cx3 − ex4 + y1y2

0

)

g2(y, X1, X2) =






a(y1 − y2) + x5

−ex4 + y1y2 + x5

fx3 − dx4 + y1x3

0






C1 = ( 1 0 0 ) , C2 = ( 1 0 0 0 ) .

Remark. 4.1. 1. The same state x3 is used in the subsys-
tems (12) and (13). From this, the subsystems (12) and
(13) are on the affine system form. It is for this class of
nonlinear systems that we interest for which an observer
can be designed under some hypothesis such that the
property of inputs persistency Hammouri [90].
2. The choice of the variables of each subsystem has been
considered in order to be able to consider m1 (respectively
m2) as parameter to adapt for subsystem (12) (respec-
tively for subsystem (13)).

Next, let us introduce an adaptive observer in order to
estimate the system’s state and the unknown parameters
simultaneously.
At first, let us introduce the following assumptions in order
to establish the results concerning the adaptive observer
design (see more details in Ghanes [06]).

Assumption. 4.3. -g1 (y, X1, X2) is Lipschitz in the consid-
ered domain D with respect to X1 and X2.
-g2 (y, X1, X2) is Lipschitz in the considered domain D
with respect to X1 and X2.
This assumption is satisfied from the assumption 4.1.1.

Then, an adaptive observer for interconnected subsystems
(12) and (13) estimating the state and unknown parame-
ters is given by






Ż1 = A1(y2)Z1 + g1(y, Z1, Z2) + S−1
1 CT

1 (y1 − ŷ1)

Ṡ1 = −θ1S1 − AT
1 (y2)S1 − S1A1(y2) + CT

1 C1

ŷ1 = C1Z1

(14)






Ż2 = A2(y1)Z1 + g2(y, Z2, Z1) + S−1
2 CT

2 (y2 − ŷ2)

Ṡ2 = −θ2S2 − AT
2 (y1)S2 − S2A2(y1) + CT

2 C2

ŷ2 = C2Z2

(15)
where Z1 = (x̂2, x̂3, x̂5)

T , Z2 = (x̂1, x̂3, x̂4, x̂6)
T ; Si =

ST
i > 0, i = 1, 2. Note that S−1

1 CT
1 and S−1

2 CT
2 are

the gains of the observers (14) and (15), respectively. θ1

and θ2 are positive constant parameters of the observer
convergence tuning.

Remark. 4.2. It is worth noticing that ‖S1‖ and ‖S2‖ are
such that 0 < αi,2 ≤ ‖Si‖ ≤ αi,1, i = 1, 2 for θ1 and θ2

large enough due to the persistency of input considered
in assumption 4.1.1. αi,1 and αi,2 are positive constants,
i = 1, 2.

Now, in order to guarantee the convergence of the pro-
posed observer, sufficient conditions are established in the
following result. Denote the estimation errors:

ǫ1 = X1 − Z1 and ǫ2 = X2 − Z2

whose dynamics are given by
{

ǫ̇1 = [A1(y2) − S−1
1 CT

1 C1]ǫ1
+ g1(y, X1, X2) − g1(y, Z1, Z2)

{

ǫ̇2 = [A2(y1) − S−1
2 CT

2 C2]ǫ2
+ g2(y, X2, X1) − g2(y, Z2, Z1).

Proposition. 4.1. Under the assumptions 4.1 and 4.3, the
system (14)-(15) is an exponential observer for system
(12)-(13).

Proof. Consider the following Lyapunov function candi-
date: Vo := V1 + V2 = ǫT

1 S1ǫ1 + ǫT
2 S2ǫ2. From assumption

4.3 and remark 4.2, the following inequalities hold

‖S1‖ ≤ α1,1

‖{g1(y, X1, X2) − g1(y, Z1, Z2)}‖ ≤ k1 ‖ǫ1‖ + k2 ‖ǫ2‖
‖S2‖ ≤ α2,1

‖{g2(y, X2, X1) − g2(y, Z2, Z1)}‖ ≤ k3 ‖ǫ1‖ + k4 ‖ǫ2‖
Computing the time derivative of Vo, by using the above
inequalities it follows that

V̇o ≤ − θ1ǫ
T
1 S1ǫ1 + 2µ1 ‖ǫ1‖ ‖ǫ1‖ + 2µ2 ‖ǫ1‖ ‖ǫ2‖(16)

− θ2ǫ
T
2 S2ǫ2 + 2µ3 ‖ǫ2‖ ‖ǫ1‖ + 2µ4 ‖ǫ2‖ ‖ǫ2‖

where µ1 = α1,1k1, µ2 = α1,1k2, µ3 = α2,1k3, and
µ4 = α2,1k4. k1, k2, k3 and k4 are positive constants.

Now, the following inequalities are satisfied

λ min(Si) ‖ǫi‖2 ≤ ‖ǫi‖2
Si

≤ λmax(Si) ‖ǫi‖2
, i = 1, 2

where λmin(Si) and λmax(Si) are respectively the mini-
mal and maximal eigenvalues of Si, i = 1, 2 and

‖ǫi‖2
Si

= ǫT
i Siǫi, i = 1, 2.

By writing (16) in terms of the functions V1 and V2, it
follows

V̇o ≤ − (θ1 − 2µ̃1)V1 − (θ2 − 2µ̃2)V2

+ 2(µ̃3 + µ̃4)
√

V1

√

V2

where µ̃1 = µ
1

λmin(S1)
, µ̃2 = µ

2

λmin(S2)
,

µ̃3 = µ
3√

λmin(S1)
√

λmin(S2)
, and µ̃4 = µ

4√
λmin(S1)

√
λmin(S2)

.

Next, by using the following inequality
√

V1

√
V2 ≤ υ

2 V1 +
1
2υ V2, ∀υ ∈]0, 1[, one get

V̇o ≤ − (θ1 − 2µ̃1)V1 + (µ̃3 + µ̃4)υV1

− (θ2 − 2µ̃2)V2 +
(µ̃3 + µ̃4)

υ
V2.

Then

V̇o ≤ − [θ1 − (2µ̃1 + (µ̃3 + µ̃4)υ)]V1

− [θ2 − (2µ̃2 +
(µ̃3 + µ̃4)

υ
)]V2.

Finally, by choosing θ1 and θ2 such that the following
inequalities (17) and (18) are satisfied

δ1 = θ1 − (2µ̃1 + (µ̃3 + µ̃4)υ) > 0 (17)

and

δ2 = θ2 − (2µ̃2 +
(µ̃3 + µ̃4)

υ
) > 0 (18)
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and by taking δ such that δ = min(δ1, δ2) one has

V̇o ≤ −δVo.

Thus the estimation error converges exponentially to zero
as t tends to ∞. 2

With respect to the original system (1), the proposition
4.1 gives as a result the following corollary.

Corollary 4.1. Under the assumptions 4.1 and 4.3 and for
θ1 and θ2 satisfying the inequalities (17) and (18) respec-
tively, the system (14)-(15) is an exponential observer for
system (1). Furthermore, the observer (14)-(15) exponen-
tially reconstruct the unknown parameters m1 and m2 of
the system (1).

5. NUMERICAL EXAMPLE AND DISCUSSIONS

In the simulations, we use the parameters a = 42.5, b = 24,
c = 13, d = 20, e = 50, and f = 40, which ensure a chaotic
behavior of the system (1) (see Qi [05]). The parameters
used for the observer with the STA are α1 = 7 × 107,
λ1 = 7 × 103, α2 = 300, λ2 = 100, α3 = 1000, λ3 = 200,
α4 = 600, and λ4 = 300. For the adaptive observer, the
parameters are θ1 = θ2 = 600. The messages m1 and m2

are considered to have a slow dynamics for satisfying the
assumption persistency condition required by the AO.

The chaotic behavior of the system is shown in the 3-D
portrait 1.

The sampling period used in the simulations is 10−6

seconds. Due to the fast behavior of the system, a larger
sampling time yields an unacceptable estimation of the
messages when the super-twisting observer is used.

Figure 2 shows the trajectories of the state x3 as well as
the ones of x̂3 for both the super-twisting and the adaptive
observers. There one can see that the trajectories of the
ST observer converge much faster than the ones of the AO.

The message m1 and its estimation m̂1 are depicted in
Fig. 3, where we can note that the singularity in the point
(x1 = 0) (see, e.g., on t ≃ 1.42, 2.65, 8.15) affects more
the estimation done with the SA than the one done with
the AO. This is clear due to the explanation of Remark
3.1. The adaptive observer performs worse than the super-
twisting observer if their high gains are insufficiently large,
i.e., the persistency condition is not satisfied.

In order to test both observers with respect to parameter
uncertainties, we introduce a variation of 0.01% into the
nominal parameters. The figure 4 illustrates how this
uncertainty in the parameters affects the estimation of
the message m1. In the case of the adaptive observer, the
parameter uncertainty destroys completely the estimation
of the messages. Obviously, in the case of the observer
based on the STA, the parameter uncertainty increases
the sensibility of the observer to the singularities.

To test both observers with respect to the noise appearing
in the outputs of the system, we added to the each output
of the system a chirp signal. A signal with initial frequency
of 10 Hz, frequency of target time of 12 Hz, and an
amplitude of 0.015 for the first output, and 12 Hz to
15 Hz and an amplitude of 0.001 for the second output.
The figure 5 compares both observers by the estimation of
m2. In this case we see that the adaptive observer is quite
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Fig. 1. 3-D portrait showing the chaotic behavior of the
system.
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Fig. 2. x3 (solid line) and its estimation x̂3 using the super-
twisting (dot line) and adaptive (dash line) observers.
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Fig. 3. Message m1 (solid line) and its estimation m̂1 using
the super-twisting (dot line) and adaptive (dash line)
observers.

sensible to the noises, while the STA observer is sensible
to the noises, but we can consider that it still estimates
(perhaps poorly) the message.
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Fig. 4. Message m1 (solid line) and its estimation m̂1 (dot
line) for the system with 0.01% of uncertainty in the
parameters. Above with the super-twisting observer,
below with the adaptive observer.
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Fig. 5. Message m2 (solid line) and its estimation m̂2

(dashed line) for the system with noise in the output.
Above with the super-twisting observer, below with
the adaptive observer.
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