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Abstract: In this paper a general procedure for tuning multivariable model predictive 
controllers (MPC) with constraints is presented. It has been applied to tune the control 
system of an activated sludge process control in a wastewater treatment plant. Control 
system parameters are obtained by solving a mixed sensitivity optimization problem, defined 
in terms of the H∞ norms of different weighted closed loop transfer functions matrices of the 
system, and a set of constraints, some of them expressed using the l1 norm. The use of 
multiple linearized models for the control allows for the specification of many robust 
performance criteria.  The mathematical optimization for tuning all controller parameters is 
tackled in two iterative steps due to the existence of integer and real numbers. First, integer 
parameters are obtained using a special type of random search, and secondly a sequential 
programming method is used to tune the real parameters. 

 

1. Introduction 

Model Based Predictive Control (MPC or MBPC) has 
become the leading form of advanced multivariable control in 
the process industries. The popularity of MPC is due to the 
successful results, the natural way of incorporating 
constraints, and its simplicity for operators. 
 
MPC controllers have been tuned traditionally through a 
number of different parameters including prediction horizon, 
number of computer input moves, input and output weights in 
the objective function, and, in some cases, artificially 
imposed input/output constraints. The tuning task can be 
particularly difficult if the system is multivariable, since the 
whole set represents a formidable array of possible tuning 
combinations and also because many of these parameters 
have overlapping effects on the closed-loop performance and 
robustness. In these cases the advantages of using automatic 
MPC tuning methods is clear.  
 
In the literature, many works deal with the automatic tuning 
of MPC, but most of them without considering horizons in a 
systematic way or leaving apart some particular aspects of the 
problem ([2],[1],[6]). In [4] we have already proposed a 
methodology for the on-line automatic tuning of the whole 
set of parameters of linear Model Based Predictive Control 
Systems, and it was carried out by minimizing dynamical 
indexes as performance measures.  An important drawback of 
this work is that within the optimization procedure dynamical 

simulations have to be carried, making the procedure 
extremely slow.  
 
Frequency domain methods for tuning linear optimal 
controllers have been studied since the beginning of 1980’s 
(see Doyle and Francis [3] for a review) and they are a good 
alternative to speed up MPC automatic tuning procedures.  In 
[12] there is an example of how they can be employed using 
nominal linearized models. 
 
At the view of previous works, in this paper we propose a 
new approach for the optimal automatic tuning of MPC that 
uses multiple models and it is based on the frequency domain 
robust control and optimization theory [9]. The most relevant 
aspects of the proposal are: 
 
• It is based on the resolution of a mixed sensitivity 

optimization problem defined in terms of the H∞ norms 
of different weighted closed loop transfer functions of 
the system and a set of controllability and operation 
constraints, expressed by means of the l1 norm. Multiple 
models have been considered to give robustness to the 
obtained MPC.  

 
• The optimal tuning searches for linear MPC parameters 

by solving a MINLP/DAE optimization problem. 
 
• The use of the proposed automatic tuning approach 

within an Integrated Design framework is 
straightforward. 

 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6980 10.3182/20080706-5-KR-1001.0652



                                                                                                               .                       

 

• The approach has been validated on a simulated example 
based on a real wastewater treatment plant. Real 
scenarios have been considered in the simulated model 
by means of real data records of the main disturbances to 
make a more realistic analysis of the results. 

 
The paper is organized as follows. First, the method for 
automatic tuning of the MPC is posed and explained in detail. 
Second, the activated sludge process model, selected for 
validation, is described. Third, the control problem and the 
application of the tuning method are stated. Then, some 
results are presented, to end up with some conclusions. 
 

2. MPC formulation 

The MPC considered is based on a linear state space model of 
the plant and calculates manipulated variables by solving the 
following on-line constrained optimization problem subject 
to constraints on inputs, predicted outputs and changes in 
manipulated variables. 
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where k denotes the current sampling point, ˆ( | )y k i k+  is the 
predicted output vector at time k+i, depending of 
measurements up to time k, ( | )r k i k+  is the reference 
trajectory, ûΔ  are the changes in the manipulated variables, 
Hp is the upper prediction horizon, Hw is the lower prediction 
horizon, Hc is the control horizon, Wu is a vector representing 
the weights of the change of manipulated variables and Wy is 
a vector representing the weights of the errors of set-points 
tracking.   
 
The MPC prediction model used in this paper is a linear 
discrete state space model of the plant obtained by linearizing 
the model equations [8].  
 
When the MPC controller is linear and unconstrained, it can 
be represented by the block diagram of figure 1, i.e. 
 

1 3( )u K r y K d= − +     (2)  
 
where Ki  are the transfer functions between the control signal 
and the different inputs (r,y,d), and they depend on the 
control system tuning parameters (Wu, Hp, Hc).  
Consequently, the closed loop response can be obtained from 
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In order to define the automatic tuning problem, we define 
the sensitivity function S’ between  the load disturbances (d) 
and the outputs (y) and M’ the Control Sensitivity transfer 
function  defined between the load disturbances (d) and the 
control signals (u) when the reference is zero. Their 
calculation is straightforward applying block algebra to 
diagram of figure 1: 
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3. Automatic tuning of MPC 

3.1. Mixed sensitivity optimization problem 

The problem of finding an optimal MPC is stated as a mixed 
sensitivity optimization problem that takes into account both 
disturbance rejection and control effort objectives in the same 
tuning function. The problem definition is then 
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subject to the set of constraints explained below. K1 and K3 
are the MPC control compensators (see block diagram of 
Figure 1) which depend on the tuning parameter vector 
defined by ( ), ,p c uc H H W= . Wp and Wesf are suitable weights 
for optimization. Note that control efforts rather than 
magnitudes of control are included in the objective function 
by considering the derivative of the transfer function M’. 

3.2. Performance constraints 

In order to ensure that disturbances are properly rejected we 
impose   
 

1pW S
∞

′⋅ <      (7) 

 
Wp is selected for the specification of load disturbances 
rejection, what means that its inverse must be smaller in 
magnitude than the inverse of disturbances spectrums. 

Fig. 1: Equivalent closed loop system  
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3.3. Limits on control and output variables 

The maximum value of the control (umax) and the output 
variable (ymax) for the worst case of disturbances can be 
constrained to be less than certain limits by means of its l1 
norm and the following conditions:  
 

max1
M u′ <   max1

S y′ <    (8) 
 

3.4. Multiobjective optimization approach 

The optimization problems for optimal automatic tuning can 
be defined as multiobjective optimization problems by 
defining the following objectives: 
 

1f N
∞

= ; 2 1
f M ′= ; 3 1

f S ′=        (9) 
 
with the respective goals  f1

*, f2
*, f3

*. In order to keep 
satisfying constraints (8) when the solutions do not get the 
objectives exactly, goals are chosen in the following way: 
 

*
2 maxf u< ; *

3 maxf y<    (10) 

3.5. Multiple models for robustness 

The statement of the problem presented can be modified to 
include not only the nominal model but also linearized 
models around a set of working points. For instance, to obtain 
robust performance in the face of non linearities, the 
constraint (7) can be rewritten to in the following way: 
 

1p iW S
∞

′⋅ <  i= 1,…, N      (11) 

 
where Si’ are the sensitivity functions obtained with those  
linearized models, being N the number of multiple models 
considered. 

3.6. Algorithm description and implementation 

The main problem when solving this optimization problem is 
that involves real and integer variables (control and 
prediction horizons). In this work we propose a two iterative 
steps algorithm that combines a random search based on the 
Solis method [11] for tuning the horizons, and the classical 
goal attainment multiobjective method for tuning weights 
Wu., implemented in MATLAB function fgoalattain. Similar 
two steps approaches are presented in [5]. 
 
The random search basically generates new horizons by 
adding and subtracting random integers to the current point, 
and selects that with the lower cost. The gaussians variance to 
obtain those new points decreases with algorithm iterations.  
The multiobjective algorithm for the real part is stated as a 
sequential quadratic programming problem that minimizes 

parameter γ, that represents the deviation of objectives (fi) 
from goals (fi

*) 
 

,
min
x γ

γ
∈

    s.t. ( )i i if c w fγ ∗− ≤    (12) 

where wi are the weigths for every objective. In this work the 
values of these weights are such that the importance of all 
objectives is the same.  
 
The controller implementation is based on the MPC Toolbox 
of MATLAB and some modifications of Maciejowski [8].  

4. Activated sludge process and Model Based Predictive 
Controller 

4.1. Plant description 

The plant layout is represented in Figure 2, consisting of one 
aerobic tank and one secondary settler [13]. The basis of the 
process lies in maintaining a microbial population (biomass) 
into the bioreactor that transforms the biodegradable 
pollution (substrate) when dissolved oxygen is supplied 
through aeration turbines. Water coming out of the reactor 
goes to the settler, where the activated sludge is separated 
from the clean water and recycled to the bioreactor to 
maintain there an adequate concentration of microorganisms. 
 

PREDICTIVE 
CONTROLLER 
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Fig. 2: Plant and controller layout 
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Fig. 3:  Substrate disturbances at the influent (si) 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6982



                                                                                                               .                       

 

The whole set of variables is presented also in Figure 2. 
Generically, “x” is used for the biomass concentrations 
(mg/l), “s” for the organic substrate concentrations (mg/l), 
“c” for the oxygen concentrations (mg/l) and “q” for flow 
rates (m3/h).  The complete set of differential equations and 
model parameters are given in [10]. 

4.2. Control problem 

The control of this process aims to keep the substrate at the 
output (s1) below a legal value despite the large variations of 
the flow rate and the substrate concentration in the incoming 
water (qi and si), which are the input disturbances and one of 
the main problems when trying to control the plant properly. 
Another control objective is to keep dissolved oxygen 
concentration (c1) around 2 mg/l, concentration that is 
necessary for the proper working of activated sludge process.  
 
The set of disturbances used in dynamic simulations (Figure 
3) has been determined by COST 624 program and its 
benchmark. 
 
The general structure of a multivariable controller applied to 
the activated sludge process can be seen in figure 4. Three 
manipulated variables are considered: recycling flow (qr1), 
purge flow (qp) and aeration factor (fk1); and three outputs: 
substrate (s1), biomass (x1) and dissolved oxygen (c1) in the 
reactor. Here the biomass is only a constrained variable for a 
good performance of the process and it is not controlled. In 
this work we will focus on substrate control, although the 
methodology proposed is general and could be also extended 
to oxygen control. 
 

Ref. s1 

Ref. c1 c1 

fk1 

Controller 

qr1 s1 

x1 
 

PROCESS qp 

 

Fig. 4: General controller structure 

5. Tuning Results 

The controller considered is a linear MPC with constraints 
applied to the nonlinear plant model, with sample period of 
T=0.5 hours, suitable for representing the process dynamics.  
Disturbances si and qi are assumed to be measured and scaled 
to make methodology improvement clearer. Biomass 
concentration x1 is only a constrained variable. The selected 
plant is fixed with dimensions V1=7668 m3 (reactor volume) 
and A=2970.88 m2 (settler area) and a steady state point 
defined by s1=58.445 and qr1=220.  

5.1. H∞  mixed sensitivity problem with  multiple models 

In this point some results are shown when several linear 
models are considered in the MPC tuning procedure in order 
to give some robustness to operating variations. Weights Wp 
and Wesf are kept constant. 
 
The first case of study of MPC tuning considering multiple 
models consists of including performance constraints for two 
new models obtained changing the nominal operation point 
20 mg/l around s1=58.445 mg/l. The optimal MPC obtained 
produces better disturbance rejection than the controller 
obtained considering only one model for those plants 
working even on the edge of the region (s1+20, s1-20 mg/l). 
Simulations and numerical results are shown in figure 5 and 
Table I, for the case of the working point s1-20 (which is the 
worst case) 
 

TABLE I 
RESULTS FOR MULTIPLE MODELS CHANGING S1 

 Single model Multiple models 
Operating point s1-20 mg/l s1-20 mg/l 
Wu 0.008 0.003 
Hp 7 10 
Hc 2 5 
Max(qr1_linear) 3033.6 3683 
Max(s1_linear) 48.5 44.21 
N

∞
 2.48 3.02 

1
M ′  3284 5258 

pW S
∞

′  1.84 0.9899 
Computational 
time (min) 

2.21 2.89 

Operating point s1-10 mg/l s1-10 mg/l 
Max(qr1) 1454.1 1511.3 
Max(s1) 54.95 53.21 

 
 

 
Fig. 5: Substrate (s1_linear) for plant and MPC tuned with 
multiple models (solid line) or single model (dashed dotted 

line) for the linearized system. 
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Fig. 6: Sensitivity function for MPC tuned with multiple 
models (solid line, Sm) and single model (dash dotted line, 
Ss), together with weight Wp

-1 and the inverse spectrum of 
influent disturbances 

 

 
 
Fig. 7: Substrate responses (s1) for plant and MPC tuned with 

multiple models (solid line) or single model (dashed dotted 
line) for the non linear system. 

 
In Fig. 6 a comparison of the sensitivity functions for both 
closed loop systems is shown, and it is clear that only the 
MPC tuned with multiple models satisfies the constraint 
imposed by Wp

-1. Finally, responses simulating directly the 
non linear closed loop systems around the point (s1-10 mg/l) 
have been performed (see Fig. 7).   
 
The second case consists of considering multiple models 
obtained changing the nominal operation point for the plant 
influent (si±120 mg/l, qi±230 m3/h). The optimal MPC 
obtained considering multiple models produces also better 
disturbance rejection even for worst case plants in the region 
(si+120 mg/l, qi+230 m3/h). For this working point numerical 
results are shown in Table II. 
 

 
 

TABLE II 
RESULTS FOR MULTIPLE MODELS CHANGING SI,QI 

 Single model Multiple models 
Operating point si+120, qi+230 si+120, qi+230 
Wu 0.008 0.0042 
Hp 7 9 
Hc 2 3 
Max(qr1_linear) 1976.9 2040.8 
Max(s1_linear) 66.629 63.279 
N

∞
 1.8593 1.9626 

1
M ′  3293.2 4272 

pW S
∞

′  1.3547 0.999 
Operating point si+60, qi+115 si+60, qi+115 
Max(qr1) 1242.2 1225.3 
Max(s1) 64.01 63.02 

 
TABLE III 

RESULTS FOR MULTIPLE MODELS CHANGING V1, A 
 Single model Multiple models 

Operating point V1-1100 
A-1100 

V1-1100 
A-1100 

Wu 0.008 0.003 
Hp 7 7 
Hc 2 2 
Max(qr1_linear) 2949.6 3331.6 
Max(s1_linear) 69.41 63.679 
N

∞
 4.09 4.0068 

1
M ′  6403.9 8448.2 

pW S
∞

′  1.917 0.96753 
Operating point V1-550, A-550 V1-550, A-550 
Max(qr1) 1302.7 1314.3 
Max(s1) 64.866 63.94 

 

 
 

Fig. 8: Substrate responses (s1_linear) for plant and MPC 
tuned with multiple models (solid line) or single model 

(dashed dotted line) for the linearized system 
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Fig. 9: Substrate responses (s1) for plant and MPC tuned with 

multiple models (solid line) or single model (dashed dotted 
line) for the non linear system  

 
In the last case the multiple models have been obtained 
changing the plant dimensions (V1±1100 m3, A±1100 m2) 
and the results are similar to the previous cases.  This case is 
particularly interesting because this tuning procedure is 
intended to be included in an Integrated Design framework in 
which the plant will change. Numerical results are shown in 
Table III and substrate evolution for linearized and non linear 
systems in figures 8 and 9 respectively. 
  

6. Conclusions 

In this work a method for tuning robust model predictive 
controllers has been developed, based on some frequency 
domain performance indexes. This method has been tested in 
MPC applied to the activated sludge process, and the closed 
loop responses for substrate concentration in the reactor show 
that obtained controllers are properly tuned, taking into 
account the large magnitude of influent disturbances. 
 
The methodology proposed here is a general one, and any 
other performance criteria can be considered. The use of 
multiple linear models also allows for the specification of 
many robust performance criteria and robust stability 
conditions. 
 
Finally it is important to show that the developed method is 
particularly suitable for its inclusion in the resolution of the 
Integrated Design optimization problem, which determines 
the optimum controller and the optimum plant at the same 
time. 
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