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Abstract: This paper is concerned with average-consensus control under directed topologies
and random measurement noises. To attenuate the measurement noises, time-varying consensus
gains are introduced in the protocol. It is shown that under the protocol designed, all agents’
states converge to a common Gaussian random variable, whose mathematical expectation is
just the average of the initial states, and the mean square static error vanishes as the number
of agents increases to infinity under certain topologies. In addition, for the noise-free case,
necessary and sufficient conditions are given on the network topology and consensus gains to
achieve average-consensus; and for the noisy measurement case, by combining algebraic graph
theory and stochastic analysis, necessary and sufficient conditions are given on the consensus
gains to achieve asymptotically unbiased mean square average-consensus.

1. INTRODUCTION

Recently, distributed coordination for multi-agent systems
has become a hot topic in the area of systems and control
(Bauso et al., 2006; Olfati-Saber et al., 2007; Li & Zhang,
2008), which is characterized by a basic requirement that
without central control stations, the whole group can
achieve consensus on the shared data only through local
communications. Consensus control generally means to de-
sign a network protocol such that all agents asymptotically
reach an agreement on their states. In some cases, the
common value to which the states converge is also required
to be the average of the initial states, which is often called
average-consensus and has wide applications in various
areas such as formation control (Sinha & Ghose, 2006),
distributed filtering (Olfati-Saber, 2005), multi-senor data
fusion (Xiao et al., 2005) and distributed computation
(Lynch, 1996).

Real networks are often in uncertain communication en-
vironments due to many random factors such as chan-
nel noises, output quantization, and the limit to chan-
nel capacity, therefore, distributed coordination in uncer-
tain environments is a key set of problems for the study
of large classes of multi-agent systems. As a first step,
consensus problems under random measurement noises
have attracted the attention of some researchers (Huang
& Manton, 2006; Carli et al., 2006; Ren et al., 2005;
Kingston et al., 2005). However, for average-consensus
problems under random measurement noises, there is still
lack of good results comparable with those obtained in the
noise-free cases (Olfati-Saber & Murray, 2004; Kingston
& Beard, 2006), even if the network topology is fixed.
Ren, Beard and Kingston (2005) and Kingston, Ren and
Beard (2005) introduced time-varying consensus gains and
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designed consensus protocols based on a Kalman filter
structure. They proved that consensus can be achieved un-
der those protocols for noise-free cases and the closed-loop
system is input-to-state stable from measurement noises
to consensus errors. Huang and Manton (2006) considered
the first-order discrete-time consensus control under fixed
topologies. They introduced decreasing consensus gains
a(k) (where k is the discrete time instant), and proved
that, if the network topology is a strongly connected cir-
culant graph, and a(k) = O(1/kγ), γ ∈ (0.5, 1], then the
static mean square error between the individual state and
the average of the initial states of all agents is in the same
order as the variance of the measurement noises.

The common features of the above literature include that
(i) balanced graphs play an important role in the average-
consensus protocols for noise-free cases. (ii) time-varying
consensus gains are introduced to attenuate measurement
noises; (iii) due to random measurement noises, the static
error of the closed-loop system is not zero as the noise-free
cases in Olfati-Saber and Murray (2004). These naturally
give rise to the following questions: (a) can we give a
necessary and sufficient condition on the consensus gains
and the network topology to ensure average-consensus?
(b) what is the relationship between the performances of
the closed-loop system (such as static error, convergence
rate) and the designed parameters (such as the weighted
adjacency matrix of the topology graph, the consensus
gains and the number of agents)? Can we give a quanti-
tative characterization on this relationship? These are all
fundamental problems to be investigated for distributed
coordination in uncertain environments. The purpose of
this paper is to answer these questions.

We consider the average-consensus control for networks of
continuous-time integrator agents under fixed and directed
topologies. The control input of each agent can use only
its local state and the states of its neighbors corrupted by
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white noises. Inspired by Ren, Beard and Kingston (2005)
and Kingston, Ren and Beard (2005) and Huang and
Manton (2006), we introduce time-varying consensus gains
in our network protocol to attenuate the measurement
noises, which leads to a time-varying stochastic differential
equation of the closed-loop system. The state matrix of the
closed-loop equation is a time-varying Laplacian matrix
of a digraph. Different from the cases of undirected and
circulant graphs (which are both special cases of digraphs),
this kind of state matrices, generally speaking, is neither
symmetric nor diagonalizable, which is the difficulty in the
convergence analysis.

We combine stochastic analysis and algebraic graph theory
together, by introducing the concept and tools of sym-
metrized graph (Olfati-Saber & Murray, 2004) in stochas-
tic Lyapunov analysis. Firstly, for the noise-free case,
necessary and sufficient conditions are given on the net-
work topology and consensus gains to achieve average-
consensus. Then for the noisy measurement case, necessary
and sufficient conditions are given on the consensus gains
to achieve asymptotically unbiased mean square average-
consensus.

We prove that under the protocol designed, the state
of each agent converges in mean square to a common
Gaussian random variable, whose mathematical expecta-
tion is just the average of the initial states. It is shown
that the variance of the random variable, which gives the
static maximum mean square error between the individual
state and the average of the initial states, vanishes as
the number of agents increases to infinity. We use the
decibel changing rate of the mean square consensus error
as the transient performance index and give the estimates
of the upper and lower bounds of the transient perfor-
mance index, respectively. When the protocol designed
here degenerates to the time-invariant protocol given for
noise-free systems by Olfati-Saber and Murray (2004),
the estimate of the upper bound degenerates to that of
the convergence rate given by Olfati-Saber and Murray
(2004) correspondingly. It is quantitatively shown that
enlarging consensus gains can speed up the convergence
rate of consensus, but will worsen the static error in the
meantime. Therefore, the key point of the design of a
consensus protocol under measurement noises consists in
a trade-off between the transient and static performances
by choosing the consensus gains properly.

It is worth pointing out that Moreau and Belgium (2004)
studied the stability of linear continuous-time systems
whose state matrices are time-varying Laplacian matrices
and gave a sufficient condition to ensure the state com-
ponents to achieve consensus. In this paper, for the noise-
free case, the closed-loop equation degenerates to a special
case of those studied by Moreau and Belgium (2004),
however, we give necessary and sufficient conditions on
the network topology and the consensus gains to ensure
average-consensus.

The remainder of this paper is organized as follows. In
section 2, some concepts in graph theory and the problem
to be investigated are formulated. In section 3 and 4, the
convergence and performances of the closed-loop system
are analyzed respectively. In section 5, two numerical
examples are given to illustrate our results. Due to the

space limit, only the proofs of Theorems 2-3 are presented,
which are put in Appendix A.

The following notations will be used throughout this
paper: 1 denotes a column vector with all ones. Im denotes
the m dimensional identity matrix. For a given set S,
|S| denotes its number of elements. For a given vector
or (square) matrix A, AT denotes its transpose; tr(A)
denotes its trace. For a given random variable X , E(X)
denotes its mathematical expectation; V ar(X) denotes its
variance. For a given positive number x, log(x) denotes the
common logarithm of x. For a family of random variables
(r.v.s) {ξλ, λ ∈ Λ}, σ(ξλ, λ ∈ Λ) denotes the σ-algebra
σ({ξλ ∈ B}, B ∈ B, λ ∈ Λ), where B denotes the 1-
dimensional Borel sets. For a σ-algebras F and a r.v. ξ,
we say ξ is adapted to F , if ξ is F measurable.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminary Concepts in Graph Theory

Let G={V , E ,A} be a weighted digraph, where V={1,2,
...,N} is the set of nodes, node i represents the ith agent;
E is the set of edges, and an edge in G is denoted by an
ordered pair (j, i). (j, i)∈E if and only if the jth agent
can send information to the ith agent directly. In this
case, j is called the parent of i, and i is called the child
of j. The neighborhood of the ith agent is denoted by
Ni = {j ∈ V | (j, i) ∈ E}, which is the set of all parents of
i. i is called a source, if it has no parent but only children.

A=[aij ] ∈ R
N×N is called the weighted adjacency matrix

of G. For any i, j∈ V , aij≥0, and aij>0⇔j∈Ni. degin(i) =∑N
j=1 aij is called the in-degree of i; degout(i) =

∑N
j=1 aji

is called the out-degree of i; LG = D−A is called the Lapla-
cian matrix of G, where D = diag(degin(1), ..., degin(N)).

G is called a balanced digraph, if degin(i) = degout(i),
∀i ∈ V . G is called an undirected graph, if A is a symmetric
matrix. It is easily shown that an undirected graph must
be a balanced digraph. G is called a regular graph, if it is
an undirected graph and |Ni| = |Nj |, ∀i, j ∈ V .

A sequence (i1, i2), (i2, i3), ..., (ik−1, ik) of edges is called a
directed path from node i1 to node ik. G is called a strongly
connected digraph, if for any i, j ∈ V , there is a directed
path from i to j. A directed tree is a digraph, where every
node, except the root, has exactly one parent, and the root
is a source. A spanning tree of G is a directed tree, whose
node set is V and whose edge set is a subset of E .

2.2 Consensus Protocols

In this paper, we consider the average-consensus control
for a network of continuous-time integrator agents with
the dynamics

ẋi(t) = ui(t), i = 1, 2, ..., N, (1)

where xi(t)∈R
1 is the state of the ith agent, and ui(t)∈R

1

is the control input. The initial state xi(0) is deterministic.
Denote X(t) = [x1(t), ..., xN (t)]T .

The ith agent can receive information from its parents:
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yji(t) = xj(t) + σjinji(t), j ∈ Ni, (2)

where yji(t) denotes the measurement of the jth agent’s
state xj(t) by the ith agent. {nji(t), i, j=1, 2,..., N} are
independent standard white noises (∅ksendal, 2000), where
σji ≥ 0 is the noise intensity. (G, X) is usually called a
dynamic network (Olfati-Saber & Murray, 2004).

We call the group of controls U={ui, i=1, 2..., N} a
measurement-based distributed protocol, if ui(t) is adapted
to σ(xi(s), ∪j∈Ni

yji(s), 0≤s≤t), ∀t≥0, i = 1, 2, ..., N .
The so-called average-consensus control means to design a
measurement-based distributed protocol for the dynamic
network (G, X), such that the states of all the agents

converge towards the value 1
N

∑N

j=1 xj(0) in some sense,
when t → ∞. Below we give the definition of average-
consensus protocol in mean square for stochastic systems.

Definition 1. A distributed protocol U is called an
asymptotically unbiased mean square average-consensus
protocol if it renders the system (1)-(2) has the following
properties: for any given X(0) ∈ R

n, there is a r.v. x∗,

such that E(x∗) = 1
N

∑N

j=1 xj(0), V ar(x∗) < ∞, and

lim
t→∞

E[xi(t) − x∗]2 = 0, i = 1, 2, ..., N.

Remark 1. Here the term “asymptotically unbiased”
is borrowed from mathematical statistics, since average-
consensus can be viewed as a distributed estimation prob-

lem for the group decision value 1
N

∑N

j=1 xj(0). If U is an
asymptotically unbiased mean square average-consensus
protocol, then xi(t) is the asymptotically unbiased esti-

mate of 1
N

∑N

j=1 xj(0), that is,

lim
t→∞

E[xi(t)] =
1

N

N∑

j=1

xj(0), i = 1, 2, ..., N.

If there is no measurement noise, and U is an asymp-
totically unbiased mean square average-consensus proto-

col, then V ar(x∗) = 0, that is, x∗ = 1
N

∑N
j=1 xj(0). In

this case, Definition 1 is equivalent to the definition of
average-consensus protocol for deterministic systems given
by Olfati-Saber and Murray (2004).

For the dynamic network (G, X), we propose the dis-
tributed protocol as

ui(t) =






0, |Ni| = 0,

a(t)
∑

j∈Ni

aij [yji(t) − xi(t)], |Ni| > 0, (3)

where a(·) : [0,∞) → (0,∞) is piecewise continuous, called
consensus-gain function.

Comparing with the protocol given by Olfati-Saber and
Murray (2004), in protocol (3), the measurement noises are
explicitly considered and the time-varying consensus gain
a(·) is introduced. In this paper, we will prove that under
mild conditions, the control law (3) is an asymptotically
unbiased mean square average-consensus protocol.

3. CONVERGENCE ANALYSIS

Denote the ith row of the matrix A by αi, and Σi
△
=diag(σ1i,

...,σNi), i=1, ..., N , where σji=0, j /∈Ni. Σ
△
=diag(αT

1 Σ1,

...,αT
NΣN ) is an N×N2 dimensional block diagonal matrix.

ni(t)
△
=[n1i(t),...nNi(t)]

T , η(t)
△
=[nT

1 (t), ..., nT
N (t)]T . Substi-

tuting protocol (3) into system (1) leads to

dX(t)

dt
= [−a(t)LGX(t)] + a(t)Ση(t). (4)

It is a system driven by an N2 dimensional standard white
noise, which can be written in the form of the Itô stochastic
differential equation

dX(t) = [−a(t)LGX(t)]dt + a(t)ΣdW (t), (5)

where W (t)
△
= [W11(t), ...WN1(t), ...., W1N (t), ..., WNN (t)]T

is an N2 dimensional standard Brownian motion.

To get the main results, we need the following assump-
tions.

A1) Network Topology: G is a balanced digraph containing
a spanning tree.

A2) Convergence Condition:
∫ ∞

0
a(s)ds = ∞.

A3) Robustness Condition:
∫ ∞

0
a2(s)ds < ∞.

Remark 2. It can be seen that if there are constants
β1 ≤ 1, β2 > −0.5, γ1 ≤ 1, γ2 > 0.5, C1 > 0, C2 > 0

such that C1

tγ1 [log(t)]β1
≤ a(t) ≤ C2[log(t)]β2

tγ2
for sufficiently

large t, then A2)-A3) hold.

For simplicity of problem formulation, we introduce the
following assumption:

A4) In the dynamic network (G, X), there is an edge
(j, i) ∈ E such that σji > 0.

The intuitive meaning of Assumption A4) is that, there is
at least one noisy communication channel in the dynamic
network. The negative proposition of A4) is given by

A4′) In the dynamic network (G, X), for any (j, i) ∈ E ,
we have σji = 0.

When A4′) holds, the dynamic network degenerates to the
noise-free case, and protocol (3) can be written as

ui(t) =






0, |Ni| = 0,

a(t)
∑

j∈Ni

aij [xj(t) − xi(t)], |Ni| > 0. (6)

Firstly, we will give a necessary and sufficient condition to
ensure average-consensus under protocol (3) for the noise-

free case. Denote J
△
= 1

N
11T , δ(t)

△
= X(t) − JX(t), and

V (t)
△
= δT (t)δ(t). δ(t) is called the consensus error, and

V (t) = 1
N

∑
1≤i<j≤N (xi(t)−xj(t))

2 is the energy function
of consensus error. These concepts are widely used in the
relevant literature (Olfati-Saber & Murray, 2004; Xiao et
al., 2007). We have the following theorem.

Theorem 1. Apply the protocol (3) to the system (1)-(2)
and suppose that Assumption A4′) holds. Then,

lim
t→∞

‖X(t) − JX(0)‖ = 0, ∀X(0) ∈ R
N , (7)

if and only if A1)-A2) hold.
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Remark 3. Substituting the protocol (6) into the system
(1), we get the closed-loop system for the noise-free case:

Ẋ(t) = −LG(t)X(t), t ≥ 0, (8)

where G(t) = {V , E , a(t)A} is a digraph with the time-
varying weighted adjacency matrix a(t)A. The system (8)
can be regarded as a special case of a kind of time-varying
systems described by

Ẋ(t) = −LG(t)X(t), t ≥ 0, (9)

where G(t)={V , E(t),A(t)} is a digraph with time-varying
topologies.

The convergence properties of the system (9) and its cor-
responding discrete-time model have been widely studied
(Moreau & Belgium, 2004; Tsitsiklis et al., 1986; Moreau,
2005; Blondel et al., 2005). Moreau and Belgium (2004)
gave a sufficient condition to guarantee that all state
components of the system (9) converge to a common value
as time goes on. From Theorem 1, it can be seen that,
the condition given by Moreau and Belgium (2004) is not
necessary. It is easy to verify that if A1) is satisfied, and
a(t) = 1

t+1 , then by Theorem 1, all state components of

(8) converge to 1
N

∑N
j=1 xj(0), but the condition given by

Moreau and Belgium (2004) is not satisfied (See Theorem
1 of Moreau and Belgium (2004)).

Remark 4. From Theorem 1, it can be seen that for
the fixed topology case, when there is no measurement
noise, Assumption A1) is the weakest condition on the
network topology for protocol (3) to achieve average-
consensus. For A1), containing a spanning tree is to ensure
the connectivity of the network to some extent, such that
different agents may asymptotically agree on their states;
while the balance of the digraph is to make the state
average be a constant, such that the final group decision
value is the average of the initial states.

Assumption A2) is to ensure that the consensus error
converges to zero with a certain rate. In fact, when
a(t) ≡ 1, the protocol (6) degenerates to the time-invariant
protocol (A.1) in Olfati-Saber and Murray (2004) where
A2) holds naturally, and the consensus error converges to
zero exponentially. Therefore, we call A2) the convergence
condition on consensus gains.

Below we will prove that under Assumptions A1)-A3),
the control law (3) is an asymptotically unbiased mean
square average-consensus protocol. The following theorem,
in which we combine stochastic analysis and algebraic
graph theory together, is a key result to prove Theorem 3.

Theorem 2. Applying the protocol (3) to the system (1)-
(2), if Assumptions A1)-A3) hold, then

lim
t→∞

E[V (t)] = 0. (10)

Remark 5. Theorem 2 is to say that under Assumptions
A1)-A3), protocol (3) leads to

lim
t→∞

E[xi(t) − xj(t)]
2 = 0, ∀ i, j = 1, 2, ..., N.

So it is a mean square weak consensus protocol (Huang &
Manton, 2006).

Theorem 3. Applying the protocol (3) to the system (1)-
(2), if Assumptions A1)-A3) hold, then

lim
t→∞

max
1≤i≤N

E[xi(t) − x∗]2 = 0,

where x∗ is a Gaussian random variable whose math-
ematical expectation is 1

N

∑N

j=1 xj(0), and variance is

N−2
∑N

j=1

∑
j∈Ni

σ2
jia

2
ij

∫ ∞

0
a2(s)ds, that is, (3) is an

asymptotically unbiased mean square average-consensus
protocol.

Theorem 4. Apply the protocol (3) to the system (1)-(2)
and suppose that Assumptions A1) and A4) hold. Then,
(3) is an asymptotically unbiased mean square average-
consensus protocol if and only if A2)-A3) hold.

Remark 6. Combing Theorem 3 and Theorem 4, one
can see the important role played by A3). When there is
no measurement noise, to achieve average-consensus, it is
only required that the consensus gains satisfy the condition
A2). However, in the noisy environment, the state average
of the closed-loop system is not a constant any more, and
A2) itself is no longer sufficient. A3) ensures that the state
average of the closed-loop system converges in mean square
rather than diverges. Theorem 3 and Theorem 4 also tell us
that the time-invariant protocol (A.1) proposed by Olfati-
Saber and Murray (2004) is not robust with respect to
Gaussian noises. The purpose of the introduction of time-
varying consensus gains and Assumption A3) is just to
attenuate the measurement noises, such that the consensus
protocol is robust with respect to measurement noises. We
call A3) the robustness condition on consensus gains.

4. PERFORMANCE ANALYSIS

For single-agent systems, the performance indexes can be
roughly divided into two categories: transient indexes and
static indexes. A transient index (such as rising or setting
time for a unit step response) often reflects the convergence
rate of the closed-loop system to the steady state, while
a static index often reflects the final error between the
steady state of the system and the target state of the
control objective. For average-consensus problems under
measurement noises, we can also choose some transient
or static indexes to evaluate the system performances. A
transient index should reflect the rate of different agents
converging to the agreement on their states, while a static
index should reflect the final error between the steady state
of each agent and the average of the initial states of all
agents.

4.1 Static Performance Analysis

Definition 2. Applying the distributed protocol U to the
system (1)-(2),

Js(U , N)
△
= lim sup

t→∞
max

1≤i≤N
E[xi(t) −

1

N

N∑

j=1

xj(0)]2

is called the static maximum mean square error for
average-consensus.
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Theorem 5. Applying the distributed protocol U to the
system (1)-(2), if the conditions of Theorem 3 hold, then

Js(U , N) = V ar(x∗), (11)

where x∗ and V ar(x∗) are given by Theorem 3.

Remark 7. From Theorem 5 it is known that under the
conditions of Theorem 3, V ar(x∗) can also be viewed as a
static performance index of the system.

In some application of the information fusion of wireless
sensor networks, the number N of network nodes is usually
quite large. This gives rise to investigating the impact of
N on the information fusion and the asymptotic property
of the system when N increases to infinity. In this case, we
have the following theorems.

Theorem 6. Applying the protocol (3) to the system (1)-
(2), if maxij aij = O(1) and maxi |Ni| = o(N), N → ∞,
then under Assumptions A1)-A3), we have

lim
t→∞

max
1≤i≤N

E[xi(t) −
1

N

N∑

j=1

xj(0)]2 = o(1), N → ∞.

Theorem 7. Applying the protocol (3) to the system (1)-
(2), if G is an equally weighted and connected regular
graph, then under Assumptions A2)-A3), we have

lim
t→∞

max
1≤i≤N

E[xi(t) −
1

N

N∑

j=1

xj(0)]2 = O(N−1), N → ∞.

Remark 8. Theorem 6 and Theorem 7 say that, under
Assumptions A1)-A3), if the weighted adjacency matrix
and the network degree do not diverge too fast with respect
to N , then the more the network nodes are, the better the
effect of the information fusion is. Especially, for equally
weighted regular networks, the static error of the system
is inversely proportional to the number of network nodes.
Though more nodes can be added, a large number of nodes
will result in a high cost for running and maintenance of
the whole network, so the choice of N is a trade-off between
the fusion accuracy and the cost.

4.2 Transient Performance Analysis

The mean square consensus error E[V (t)] can be used to
represent the degree of deviation between agents’ states,
so the rate of E[V (t)] converging to zero can be viewed as
a transient performance index of the system.

Definition 3. Applying the distributed protocol U to the
system (1)-(2),

Jt(U , s0, h)
△
=

10 log(E(V (s0 + h))) − 10 log(E(V (s0)))

h
is called the average decibel changing rate of the mean
square consensus error from s0 to s0+h, where s0>0, h>0.

Theorem 8. Applying the protocol (3) to the system (1)-
(2), if V (0) > 0, then under Assumption A1), we have

lim sup
0<h→0

Jt(U , t, h)

≤
(10 log(e))C0a

2(t) exp{2λN(L̂G)
∫ t

0
a(s)ds}

V (0)

−20(log(e))λ2(L̂G)a(t), ∀ t ≥ 0, (12)

lim inf
0<h→0

Jt(U , t, h)

≥−20(log(e))λN (L̂G)a(t), ∀ t ≥ 0, (13)

where C0 = tr[(I − J)2ΣΣT ], λN (L̂G) is the largest eigen-

value of L̂G , and λ2(L̂G) is the second largest eigenvalue

of L̂G .

Remark 9. When there is no measurement noise in
the network, we have C0 = 0. Take a(t) ≡ 1. Then,
protocol (6) degenerates to the time-invariant protocol
(A.1) proposed by Olfati-Saber and Murray (2004), and
(12) in Theorem 8 becomes

lim sup
0<h→0

Jt(U , t, h) ≤ −20 log(e)λ2(L̂G).

This is nothing but the estimate of the upper bound of
the convergence rate obtained in Olfati-Saber and Murray
(2004).

Remark 10. Theorem 3 and Theorem 8 give quantitative
characterizations on the relationship between the perfor-
mances of the closed-loop system and the designed param-
eters. From Theorem 8, it can be seen that for average-
consensus protocol design under measurement noises, en-
larging consensus gains can decrease the transient index,
or is helpful to speed up the convergence rate of consensus.
Unfortunately, from Theorem 3, one can see that the static
error V ar(x∗) is proportional to

∫ ∞

0 a2(s)ds, which means
that enlarging consensus gains will inevitably worsen the
static performance of the system. Therefore, the key point
of the consensus protocol design consists in a trade-off
between the transient and static performances by choosing
the consensus gains properly. This is in agreement with the
similar classical observation made for single-agent feed-
back systems.

5. NUMERICAL EXAMPLES

Example 1. In this example we investigate the neces-
sity of A3) when there are measurement noises by a
two-agent interacting system with topology graph G1 =
{{1, 2}, {(1, 2), (2, 1)},A1 = [aij ]2×2}, where A1 is a 2 × 2
nonnegative matrix with positive element a12 = a21 = 1.
The intensity of the measurement noises σ21 = σ12 = 1,
and the initial states of the agents are x1(0) = 1 and
x2(0) = −1, respectively. The consensus-gain function a(t)
is taken as a(t) ≡ 1, ∀t ≥ 0. In this case, Assumptions A1)
and A2) hold, but A3) does not hold. Under the control of
the protocol (3), the states of the closed-loop system are
shown in Fig. 1. It can be seen that the closed-loop system
is divergent and so the protocol (A.1) in Olfati-Saber and
Murray (2004) fails for the case under measurement noises.

Example 2. Consider a dynamic network under the
topology of a strongly connected balanced digraph G2 =
{{1, 2, 3}, {(1, 2), (2, 3), (3, 1)},A2 = [aij ]3×3}, where A2

is a 3× 3 nonnegative matrix with positive element a13 =
a32 = a21 = 1. The intensity of the measurement noises
σ12 = σ23 = σ31 = 1. The initial states of agents are
given by x1(0) = −2, x2(0) = −4 and x3(0) = 6,
respectively. The consensus-gain function a(t) is taken as
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a(t) = log(t+2)
t+2 , t ≥ 0. Both A2) and A3) hold. Under

the protocol (3), the states of the closed-loop system are
shown in Fig. 2. It can be seen that as time goes on, the
states of the group asymptotically achieve consensus, and
approach the average of the initial states of all agents.
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Fig. 1. Curves of states of Example 1
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Fig. 2. Curves of states of Example 2
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Appendix A. PROOFS OF THEOREMS 2-3

To prove Theorems 2-3, we need the following results.

Lemma A.1. (Olfati-Saber & Murray, 2004) Let LG be
the Laplacian matrix of digraph G = {V , E ,A}. Then,
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LG+LT
G

2 is the Laplacian matrix of Ĝ, the symmetrized
graph of G, if and only if G is a balanced digraph.

Lemma A.2. (Olfati-Saber & Murray, 2004) G={V , E ,
A} is a balanced digraph if and only if 1T LG = 0.

Lemma A.3. (Godsil & Royle, 2001) If G={V , E ,A} is
a strongly connected undirected graph, then LG is a
symmetric matrix, and has N real eigenvalues, in an
ascending order:

0 = λ1(LG) < λ2(LG) ≤ ... ≤ λN (LG) ≤ 2∆,

and

min
x 6=0,1T x=0

xT LGx

‖x‖2
= λ2(LG),

where ∆ = max1≤i≤N degin(i), and λ2(LG) is called the
algebraic connectivity of G.

Lemma A.4. Applying the protocol (3) to the system
(1)-(2), if Assumption A1) holds, then

E

∫ t

t0

a(s)δT (s)(I − J)ΣdW (s) = 0, ∀t ≥ t0. (A.1)

Due to the space limit, the proof of Lemmas A.4 is omitted.
We now begin to prove Theorems 2-3.

Proof of Theorem 2 Denote L̂G =
LG+LT

G

2 . Then, by

A1) and Lemma A.1, L̂G is the Laplacian matrix of the

symmetrized graph Ĝ, and Ĝ is strongly connected. Thus,

by Lemma A.3, λ2(L̂G) > 0.

From (5), A1) and Lemma A.2 it follows that

dJX(t) =−a(t)JΣdW (t),

dδ(t) = [−a(t)LGX(t)]dt − a(t)(I − J)ΣdW (t)

=−a(t)LGδ(t)dt − a(t)(I − J)ΣdW (t).

Thus, by A1), Lemma A.3 and the Itô formula, we have

dV (t) = {−2a(t)δT (t)LGδ(t) + a2(t)C0}dt

−2a(t)δT (t)(I − J)ΣdW (t)

= [−2a(t)δT (t)L̂Gδ(t) + a2(t)C0]dt

−2a(t)δT (t)(I − J)ΣdW (t)

≤ [−2λ2(L̂G)a(t)V (t) + a2(t)C0]dt

−2a(t)δT (t)(I − J)ΣdW (t), (A.2)

which together with Lemma A.4 gives

E[V (t)] − E[V (t0)]≤−2λ2(L̂G)

∫ t

t0

a(s)E[V (s)]ds

+C0

∫ t

t0

a2(s)ds,

∀t ≥ t0 ≥ 0. (A.3)

Denote

I1(t) =

∫ t

0

exp{−2λ2(L̂G)

∫ t

s

a(u)du}a2(s)ds,

I2(t) = V (0) exp{−2λ2(L̂G)

∫ t

0

a(s)ds}.

Then, by (A.3) and the comparison theorem (Michel &
Miller, 1977) we have

E[V (t)] ≤ C0I1(t) + I2(t). (A.4)

From A2) and λ2(L̂G) > 0, one can get limt→∞ I2(t) = 0.
Thus, to prove (10), we need only to show limt→∞ I1(t) =
0. In fact, for any given ǫ > 0, by Assumption A3), there
is s0 > 0 such that

∫ ∞

s0

a2(s)ds < ǫ. Therefore,

I1(t)

=

∫ s0

0

exp{−2λ2(L̂G)

∫ t

s

a(u)du}a2(s)ds

+

∫ t

s0

exp{−2λ2(L̂G)

∫ t

s

a(u)du}a2(s)ds

≤ exp{−2λ2(L̂G)

∫ t

s0

a(u)du}

∫ ∞

0

a2(s)ds +

∫ ∞

s0

a2(s)ds

≤ exp{−2λ2(L̂G)

∫ t

s0

a(u)du}

∫ ∞

0

a2(s)ds

+ǫ, ∀ t ≥ s0. (A.5)

From A2) and λ2(L̂G)>0 it follows that limt→∞exp{−2

λ2(L̂G)
∫ t

s0

a(u)du}=0. Thus, by the arbitrariness of ǫ and

(A.5), we have limt→∞ I1(t) = 0. 2

Proof of Theorem 3 By (5), Assumption A1) and

Lemma A.2, we have d( 1
N

∑N

j=1 xj(t))=a(t) 1
N

1T ΣdW (t),
or equivalently,

1

N

N∑

j=1

xj(t) =
1

N

N∑

j=1

xj(0) +
1T Σ

N

∫ t

0

a(s)dW (s).(A.6)

From
∫ ∞

0
a2(s)ds < ∞, we know that

∫ ∞

0
a(s)dW (s)

is well defined (Friedman, 1975). Let x∗= 1
N

∑N
j=1 xj(0)

+1
T Σ
N

∫ ∞

0
a(s)dW (s). Then, by (A.6) and the Itô equality

(Friedman, 1975), we have

lim
t→∞

E(
1

N

N∑

j=1

xj(t) − x∗)2

= lim
t→∞

E(
1

N
1T Σ

∫ ∞

t

a(s)dW (s))2

=
tr(ΣΣT )

N2

∫ ∞

t

a2(s)ds = o(1), t → ∞. (A.7)

Noticing that

E(x∗) =
1

N

N∑

j=1

xj(0),

V ar(x∗) = E(
1

N
1T Σ

∫ ∞

0

a(s)dW (s))2

=

∑N

j=1

∑
j∈Ni

σ2
jia

2
ij

N2

∫ ∞

0

a2(s)ds,

from (A.7) and Theorem 2, we can get the conclusion of
Theorem 3. 2
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