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1. INTRODUCTION

We present formulas for the optimal controller and optimal
cost for four classes of discrete-time finite horizon linear
optimal control problems: (i) the linear quadratic regulator
(LQR), (ii) the linear quadratic Gaussian (LQG), (iii)
the linear exponential-of-quadratic Gaussian (LEQG), and
(iv) the minimax LQG. In all cases, the formulas are
presented for the most general case of the problems under
consideration allowing for cross terms in the quadratic cost
function and for correlation in the noise covariances.

Our motivation for providing such a uniform presentation
of these formulas is that it allows for an easy comparison
between these different optimal control problems and thus
provides a way of understanding the relationship between
these methods. Also, for the general discrete time problems
being considered, the formulas being presented can become
quite complicated and by providing a comparison between
the different classes of problems, we can minimize the
chances of errors occurring in the formulas. The LQR and
LQG results presented can be found in standard linear
optimal control references such as Kwakernaak and Sivan
(1972); Whittle (1990). The LEQG and minimax LQG
results presented are extensions of results which can be
found in the references Whittle (1981, 1990); Collings et al.
(1996); Petersen et al. (2000a).

Throughout this paper, k = 0, 1, · · · , T − 1 is the time
horizon. The transpose of a matrix X is denoted by X ′,
its determinant is denoted by |X |, its spectral radius is

? This work was supported by grants from Australian Research

Council.

denoted by ρ(X), and its trace by Tr(X). The system state
is x ∈ Rn, the n-dimensional Euclidean space, the control
input is u ∈ Rm, the measured output is y ∈ Rp.

2. LQR PROBLEM

The system under consideration evolves according to the
recursion

xk+1 = Axk + Buk; k = 0, 1, · · · , T − 1. (1)

The cost functional for the LQR problem is

J(u) :=

T−1
∑

k=0

c(xk , uk) + x′
T MT xT , (2)

where

c(x, u) := x′Mx + u′Nu + 2x′Su. (3)

Hypothesis 1.

[

M S
S′ N

]

≥ 0, MT ≥ 0, N > 0. 2

We define the value function or the optimal cost as a
function of the initial state and time by

FT (x) := x′MT x,

and for k = T − 1, · · · , 1, 0,

Fk(x) := inf
u

[

c(x, u) + Fk+1(Ax + Bu)
]

. (4)
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Then, we have the result (e.g., see Chapter 3 of Whittle
(1990)):

Theorem 2. For the LQR problem defined by (1) and (2):
(i). The optimal control is given by

u∗
k = Kkxk;

Kk :=−(N + B′Pk+1B)−1(S′ + B′Pk+1A), (5)

where Pk is given by the Riccati recursion:

Pk = M + A′Pk+1A − (S′

+B′Pk+1A)′(N + B′Pk+1B)−1(S′ + B′Pk+1A);

PT = MT . (6)

(ii). The value function has the form Fk(x) = x′Pkx. 2

Remark: The recursion (6) can be written in the compact
form:

Pk = f(Pk+1),

where

f(P ) := M + A′PA − (S′ + B′PA)′ ×

(N + B′PB)−1(S′ + B′PA). (7)

It can also be established that

f(P ) = M − SN−1S′ + (A − BN−1S′)′ ×

(BN−1B′ + P−1)−1(A − BN−1S′),

Kk =−N1S′ − N−1B′ ×

(BN−1B′ + P−1
k+1)

−1(A − BN−1S′). (8)

Note that a version of (8) holds even if Pk is singular. If
Pk is singular, we can write P (I + BN−1B′P )−1 in place
of (BN−1B′ + P−1)−1. Hence, with this convention, we
might write the formulas in (8), even if P is singular. We
refer to Chapter 3 in Whittle (1990) for more details on
the results stated in this section.

3. LQG PROBLEM

3.1 State feedback case

The system is governed by the recursion

xk+1 = Axk + Buk + vk+1; k = 0, 1, · · · , T − 1. (9)

The system is defined on an underlying probability space
(Ω,F , P). In what follows, E will denote expectation w.r.t.
the probability measure P. The sequence {vk} is i.i.d., with
vk ∼ N(0, Σ). Furthermore it is assumed that, for each k,
xk is independent of vk+1.

The cost function for the LQG problem is

J(u) := E
[

T−1
∑

k=0

c(xk, uk) + x′
T MT xT

]

. (10)

If x0 is normal, so is xk for k = 1, 2, · · · , T . Let xk ∼
N(µk, Rk). Then, from (9), we obtain

µk+1 = Aµk + Buk,

Rk+1 = Σ + ARkA′.

Theorem 3. (See Chapter 3 in Whittle (1990)) For the
state feedback LQG problem defined by (9) and (10):
(i). The optimal control is

u∗
k = Kkxk,

where Kk is as in (5);
(ii). The value function is

F̄k(x) = x′Pkx + rk,

where Pk is defined by (6), rT = 0, and

rk :=

T
∑

j=k+1

Tr(ΣPj); k = 0, 1, · · · , T − 1. 2

3.2 Output feedback case

The state equation is (9). Let x0 ∼ N(µ0, R0). The
observation equation is

yk+1 = Cxk + wk+1. (11)

The covariance matrix of [vk, wk]′ is ∆ =

(

Σ Υ
Υ′ Γ

)

.

Hypothesis 4. The matrix Γ > 0. 2

The cost function is again defined as in (10). In this
subsection, by µk, we mean the conditional expectation
of xk given y1, · · · , yk, u0, · · · , uk−1. The associated con-
ditional covariance matrix is denoted by Rk. Also let
χk = (µk, Rk). We then have the Kalman filter recursion
(See Chapter 4 in Whittle (1990)):

µk+1 = Aµk + Buk + Hk+1(yk+1 − Cµk), (12)

and the following Riccati recursion for the covariance
matrices Rk:

Rk+1 = Σ + ARkA′ − (Υ + ARkC ′)(Γ + CRkC ′)−1 ×

(Υ + ARkC ′)′, (13)

where

Hk+1 := (Υ + ARkC ′)(Γ + CRkC ′)−1. (14)

Theorem 5. (See Chapter 4 in Whittle (1990)) For the
LQG output feedback problem defined by (9), (11)
and(10):
(i). The optimal control is

u∗
k = Kkµk;

(ii). The value function is a function of the information
state χ = (µ, R), and is given by

F̄k(χk) = µ′
kPkµk + sk

where sT = Tr(RT MT ), and for k = 0, 1, · · · , T − 1,

sk = sT +

T−1
∑

j=k

Tr[RjM + (Σ + ARjA
′ − Rj+1)Pj+1

]

.

In this theorem, Kk, µk, Pk, Rk are given by (5), (12), (6),
(13) respectively. 2
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Remark: We can write the recursion (13) in the compact
form:

Rk+1 = p(Rk),

where

p(R) = Σ + ARA′

−(Υ + ARC ′)(Γ + CRC ′)−1(Υ + ARC ′)′.

We also have the alternate forms:

p(R) = Σ − ΥΓ−1Υ′ + (A − ΥΓ−1C) ×

(C ′Γ−1C + R−1)−1(A − ΥΓ−1C)′,

Hk+1 = ΥΓ−1 + (A − ΥΓ−1C)(C ′Γ−1C + R−1)−1C ′Γ−1.

(15)

In a similar fashion to the remark at the end of Section
2, a version of this alternate form is valid even if R is
singular. In this case, one can replace (C ′Γ−1C + R−1)−1

with (RC ′Γ−1C + I)−1R. For more details, we refer to
Chapter 4 in Whittle (1990).

4. LEQG PROBLEM

4.1 State feedback case

The state equation is (9). The cost functional for the
LEQG problem is

γθ(u) :=
2

θ
logEe

θ

2
{
∑

T−1

k=0
c(xk,uk)+x′

T
MT xT }

. (16)

Here θ is the risk-sensitive parameter. Note that γ0(·) =
J(·), where J is the cost function of the LQG problem as
defined in (10).

As for the LQG Problem, if xk ∼ N(µk, Rk), then from
the state equation (9), it follows that

µk+1 = Aµk + Buk,

Rk+1 = Σ + ARkA′.

The control Riccati recursion for the LEQG Problem takes
the form:

Pθ,k = M + A′P̃θ,k+1A − (S′ + B′P̃θ,k+1A)′ ×

(N + B′P̃θ,k+1B)−1(S′ + B′P̃θ,k+1A),

P̃θ,k+1 = (P−1
θ,k+1 − θΣ)−1; k = 0, 1, · · · , T − 1,

Pθ,T = MT . (17)

Hypothesis 6. The risk-resistance condition is satisfied;
that is, for all k = 0, 1, · · · , T − 1,

P−1
θ,k+1 − θΣ > 0. 2

Theorem 7. (Chapter 7 in Whittle (1990)) For the LEQG
state feedback problem defined by (9) and (16):
(i). The optimal control is

u∗
θ,k = Kθ,kxk,

where

Kθ,k := −(N + B′P̃θ,k+1B)−1(S′ + B′P̃θ,k+1A);

(ii). The value function is

Fθ,k(x) = x′Pθ,kx + rθ,k,

where Pθ,k is given by the recursion (17), rθ,T = 0, and

rθ,k = −
1

θ

T
∑

j=k+1

log |I − θΣPθ,j |.; k = 0, 1, · · · , T − 1.

2

Remark: The expression for Kθ,k and the recursion (17)
have alternative representations in a similar way to those
in Sections 2 and 3. More precisely, we can write

Pθ,k = M − SN−1S′ + (A − BN−1S′)′ ×

(BN−1B′ + P̃−1
θ,k+1)

−1(A − BN−1S′),

Kθ,k =−N1S′ − N−1B′(BN−1B′ + P̃−1
θ,k+1)

−1 ×

(A − BN−1S′). (18)

4.2 Output feedback case

The state equation is (9), and the observation equation is
(11). Let x0 ∼ N(µ0, R0). The cost function is (16).

The LEQG estimation Riccati recursion has the from:

Rθ,k+1 = Σ + AR̃θ,kA′ − (Υ + AR̃θ,kC ′) ×

(Γ + CR̃θ,kC ′)−1(Υ + AR̃θ,kC ′)′,

R̃θ,k := (R−1
θ,k − θM)−1; k = 0, 1, · · · , T − 1,

Rθ,0 = R0. (19)

Hypothesis 8. A4 For all k = 0, 1, · · · , T − 1,

R−1
θ,k − θM > 0. 2

We then have the filter equation (See Chapter 8 in Whittle
(1990)):

µθ,k+1 = Aµ̃θ,k + Buk + Hθ,k+1(yk+1 − Cµ̃θ,k),

µ̃θ,k := R̃θ,k(R−1
θ,kµθ,k + θSuθ,k), (20)

where

Hθ,k+1 := (Υ′ + CR̃θ,kA′)′(Γ + CR̃θ,kC ′)−1.

We require:

Hypothesis 9. For every k, ρ(Rθ,kPθ,k) < 1
θ . 2

Theorem 10. (See Shaiju and Petersen (2007) and Chap-
ters 7, 8 in Whittle (1990)) For the LEQG output feedback
problem defined by (9), (11) and (16):
(i). The optimal control is given by

u∗
θ,k = Kθ,k(I − θRθ,kPθ,k)−1µθ,k;

(ii). The value function is a function the information-state
χ = (µθ, Rθ), and is given by

F̄θ,k(µθ,k, Rθ,k) = µ′
θ,kPθ,k(I − θRθ,kPθ,k)−1µθ,k

−
1

θ
log

|Rθ,k||I − θRθ,T MT |

|Rθ,T |

−
1

θ

T−1
∑

j=k

log |∆|.|Gθ,j |.|Ψθ,j |,

where
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Gθ,j = R̃−1
θ,j + C ′Γ−1C

+(A − ΥΓ−1C)′(Σ − ΥΓ−1Υ′)−1(A − ΥΓ−1C),

Ψ−1
θ,j = Γ + CR̃θ,jC

′ − (Υ + AR̃θ,jC
′)′ ×

(−
P̃−1

j+1

θ
+ AR̃θ,jA

′)−1(Υ + AR̃θ,jC
′). 2

Remark: The expression for Hθ,k+1 and the recursion
(20) have alternate forms:

Rθ,k+1 = Σ − ΥΓ−1Υ′ + (A − ΥΓ−1C) × (21)

(C ′Γ−1C + R̃−1
θ,k)−1(A − ΥΓ−1C)′,

Hθ,k+1 = ΥΓ−1 + (A − ΥΓ−1C) ×

(C ′Γ−1C + R̃−1
θ,k)−1C ′Γ−1. (22)

For more details, we refer to Chapter 8 in Whittle
(1990) 2

5. MINIMAX LQG PROBLEM

5.1 State feedback case

The uncertain system model is

xk+1 = Axk + Buk + B0ξk + B0wk+1,

zk = C1xk + D1uk. (23)

Here ξk is the uncertainty input, and zk is the uncer-
tainty output (Formally, as in Petersen et al. (2000b),
the uncertainties are in probability measures). The noise
wk ∼ N(0, I).

Definition 11. An uncertainty ξ = (ξ0, · · · , ξT−1) is admis-
sible if the following Sum Quadratic Constraint (SQC) is
satisfied:

E

T−1
∑

k=0

‖ξk‖
2 ≤

1

2

(

E

T−1
∑

k=0

‖zk‖
2 + d

)

. (24)

Here d is a given positive constant. We denote the set of all
admissible uncertainties, for a controller u(·), by Ξu. 2

The cost functional for the minimax LQG problem is

L(u(·), ξ(·)) :=
1

2
E

[

x′
T MT xT +

T−1
∑

k=0

[x′
kMxk +

+2x′
kSuk + u′

kNuk]
]

. (25)

Let

V := inf
u(·)

sup
ξ(·)∈Ξu

L(u(·), ξ(·))

be the minimax cost and for τ > 0 define

Lτ (u(·), ξ(·))

:= L(u(·), ξ(·)) +
τ

2

(

E

T−1
∑

k=0

[‖zk‖
2 − 2‖ξk‖

2] + d
)

.

We note that

Lτ (u(·), ξ(·)) =
1

2
E

(

T−1
∑

k=0

cτ (xk , uk) + x′
T MT xT

)

−τE

T−1
∑

k=0

‖ξk‖
2 +

τ

2
d,

where

cτ (x, u) := x′Mτx + 2x′Sτu + u′Nτu,

Mτ := M + τC ′
1C1,

Sτ := S + τC ′
1D1,

Nτ := N + τD′
1D1.

Using the duality between relative entropy and free energy
(see e.g. Petersen et al. (2000b,c), we can establish that

sup
ξ(·)∈P

Lτ (u(·), ξ(·)) =
1

2

[

γ1/τ (u(·)) + τd
]

.

Note that here the sup is over all uncertainties in P and not
just admissible uncertainties in Ξu. Also note that γ1/τ is
the cost function of the risk-sensitive control problem with
state given given by

xk+1 = Axk + Buk + B0wk+1

(26)

and cost functional given by

γ1/τ (u(·)) = 2τ logEe
1

2τ

{

∑

T−1

k=0
cτ (xk,uk)+x′

T
MT xT

}

. (27)

If

Vτ := inf
u(·)

sup
ξ(·)∈P

Lτ (u(·), ξ(·))

then, we obtain

Vτ =
1

2

[

inf
u(·)

γ1/τ (u(·)) + τd
]

.

Let

T :=
{

τ > 0 : Vτ < ∞
}

.

Hypothesis 12. For every non-anticipating control u(·),

sup
ξ(·)∈P

L(u(·), ξ(·)) = ∞ 2

As in Section 8.4 of Petersen et al. (2000c) (where the
analogous continuous time result is proved), we can prove
the following theorem.

Theorem 13. (i). V is finite if and only if T 6= ∅.
(ii) If T 6= ∅, then V = infτ∈T Vτ .
(iii). Assume T 6= ∅. Let V = Vτ∗ and u∗(·) is the optimal
control for the risk-sensitive problem defined by (26)
and (27) with parameter 1

τ∗
. Then u∗(·) is the minimax

controller for the constrained stochastic optimal control
problem.
(iii). If uτ (·) is the optimal control for the risk-sensitive
problem defined by (26) and (27) with parameter 1

τ , then

sup
ξ(·)∈Ξuτ

L(uτ (·), ξ(·)) ≤ Vτ . 2
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As a consequence, we have the result:

Corollary 14. Let x̆0 := Ex0 and Y0 := E(x0 − x̆0)(x0 −
x̆0)

′. Assume that,for some τ > 0, the following Riccati
recursion has nonnegative definite solution:

Xk = Mτ + A′X̃k+1A

−(S′
τ + B′X̃k+1A)(Nτ + B′X̃k+1B)−1

×(S′
τ + B′X̃k+1A);

X̃k+1 := (X−1
k+1 −

1

τ
B0B

′
0)

−1, XT = MT . (28)

Suppose we apply the following linear feedback controller
(denoted by K) to the uncertain system (23).

uk = Kc
kxk;

where

Kc
k :=−(Nτ + B′X̃k+1B)−1(S′

τ + B′X̃k+1A). (29)

Then, for every admissible uncertainty ξ(·), we have the
cost-bound:

L(K, ξ(·)) ≤ Vτ =
1

2

[

x̆′
0X0x̆0 + τd

−τ

T
∑

k=1

log
(

|I −
1

τ
B0B

′
0Xk|

)]

. 2

Remark: As in previous sections, the Riccati recursion
(28) and the controller (29) can be replaced by their
alternate forms given by

Xk = Mτ − SτN−1
τ S′

τ + (A − BN−1
τ S′

τ )′ ×

(BN−1
τ B′ + X̃−1

k+1)
−1(A − BN−1

τ S′
τ ), (30)

Kc
k =−N1

τ S′
τ − N−1

τ B′(BN−1
τ B′ + X̃−1

k+1)
−1 ×

(A − BN−1
τ S′

τ ). (31)

5.2 Output feedback case

The uncertain system model is

xk+1 = Axk + Buk + B0ξk + B0wk+1,

zk = C1xk + D1uk,

yk+1 = Cxk + B2ξk + B2wk+1. (32)

Here ξk is the uncertainty input, and zk is the uncer-
tainty output (Formally, as in Petersen et al. (2000b),
the uncertainties are in probability measures). The noise
wk ∼ N(0, I).
The admissible uncertainties ξ ∈ Ξu are defined by the
SQC (24). The cost functional is (25). With the minimax
cost V , cτ (x, u) and Lτ are defined in a similar fashion as
in the previous subsection, we again have the result:

sup
ξ(·)∈P

Lτ (u(·), ξ(·)) =
1

2

[

γ1/τ (u(·)) + τd
]

.

Note that here the sup is over all uncertainties in P and not
just the admissible uncertainties in Ξu. Also note that γ1/τ

is the cost function of the risk-sensitive control problem
with state and observation equations given by

xk+1 = Axk + Buk + B0wk+1,

yk+1 = Cxk + B2wk+1, (33)

and

γ1/τ (u(·)) = 2τ logEe
1

2τ

{

∑

T−1

k=0
cτ (xk,uk)+x′

T
MT xT

}

. (34)

If

Vτ := inf
u(·)

sup
ξ(·)∈P

Lτ (u(·), ξ(·))

then, we obtain

Vτ =
1

2

[

inf
u(·)

γ1/τ (u(·)) + τd
]

.

Let

T :=
{

τ > 0 : Vτ < ∞
}

.

Hypothesis 15. For every non-anticipating control u(·),

sup
ξ(·)∈P

L(u(·), ξ(·)) = ∞. 2

As in Section 8.4 of Petersen et al. (2000c) (where the
analogous continuous time result is proved), we can prove
the following theorem.

Theorem 16. (i). V is finite if and only if T 6= ∅.
(ii) If T 6= ∅, then V = infτ∈T Vτ .
(iii). Assume T 6= ∅. Let V = Vτ∗ and u∗(·) is the optimal
control for the risk-sensitive problem defined by (33)
and (34) with parameter 1

τ∗
. Then u∗(·) is the minimax

controller for the constrained stochastic optimal control
problem.
(iii). If uτ (·) is the optimal control for the risk-sensitive
problem defined by (33) and (34) with parameter 1

τ , then

sup
ξ(·)∈Ξuτ

L(uτ (·), ξ(·)) ≤ Vτ . 2

Corollary 17. Let x̆0 := Ex0 and Y0 := E(x0 − x̆0)(x0 −
x̆0)

′. Let the matrices ∆ (defined in (39)) and B2B
′
2 be

positive definite. Assume that for some τ > 0, the following
two Riccati recursions have nonnegative definite solutions:

Yk+1 = B0B
′
0 + AỸkA′ − (B0B

′
2 + AỸkC ′) ×

(B2B
′
2 + CỸkC ′)−1(B0B

′
2 + AỸkC ′)′;

Ỹk := (Y −1
k −

1

τ
Mτ )−1. (35)

Xk = Mτ + A′X̃k+1A − (S′
τ + B′X̃k+1A) ×

(Nτ + B′X̃k+1B)−1(S′
τ + B′X̃k+1A);

X̃k+1 := (X−1
k+1 −

1

τ
B0B

′
0)

−1, XT = MT . (36)

Also assume that ρ(YkXk) < τ , for k = 0, 1, · · · , T − 1.

Consider applying the following controller (denoted by K)
to the uncertain system (32).

xc
k+1 = Ax̃c

k + Buk + Hc
k+1(yk+1 − Cx̃c

k); xc
0 = x̆0,

uk = Kc
k(I −

1

τ
YkXk)−1xc

k; (37)

where
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Hc
k+1 := (B0B

′
2 + AỸkC ′)(B2B

′
2 + CỸkC ′)−1,

x̃c
k = Ỹk(Y −1

k xc
k +

1

τ
Sτuk),

Kc
k :=−(Nτ + B′X̃k+1B)−1(S′

τ + B′X̃k+1A). (38)

Then, for every admissible uncertainty ξ(·), we have the
cost-bound:

L(K, ξ(·))≤ Vτ

=
1

2

[

x̆′
0X0(I −

1

τ
Y0X0)

−1x̆0 + τd

−τ log
( |Y0|.|I − 1

τ YT XT |

|YT |

)

−τ

T−1
∑

k=0

log
(

|∆|.|Gk |.|Ψk|
)]

,

where

∆ =

[

B0B
′
0 B0B

′
2

B2B
′
0 B2B

′
2

]

,

Gk = Ỹ −1
k + C ′(B2B

′
2)

−1C + (A − B0B
′
2(B2B

′
2)

−1C)′ ×
(

B0(I − B′
2(B2B

′
2)

−1B2)B
′
0

)−1

×

(A − B0B
′
2(B2B

′
2)

−1C),

Ψ−1
k = Γ + CỸkC ′ − (B0B

′
2 + AỸkC ′)′ ×

(−
X̃−1

k+1

θ
+ AỸkA′)−1(B0B

′
2 + AỸkC ′).

2

Remark: The recursion (36) and Kc
k have alternate forms

(30) and (31) respectively. Analogously the recursion (35)
and (38) have the alternate forms:

Yk+1 = B0

(

I − B′
2(B2B

′
2)

−1B2

)

B′
0

+(A − B0B
′
2(B2B

′
2)

−1C)(C ′ ×

(B2B
′
2)

−1C + Ỹ −1
k )−1(A − B0B

′
2(B2B

′
2)

−1C)′,

Ỹk := (Y −1
k −

1

τ
Mτ )−1.

Hc
k+1 = B0B

′
2(B2B

′
2)

−1 + (A − B0B
′
2(B2B

′
2)

−1C) ×

(C ′(B2B
′
2)

−1C + Ỹ −1
k )−1C ′(B2B

′
2)

−1. 2

REFERENCES

I. B. Collings, M. R. James, and J.B. Moore. An
information-state approach to risk-sensitive tracking
problems. J. Mathematical Systems, Estimation, and
Control, 6(3):1–24, 1996.

H. Kwakernaak and R. Sivan. Linear Optimal Control
Systems. Wiley, 1972.

I. R. Petersen, M. R. James, and P. Dupuis. Minimax
optimal control of stochastic uncertain systems with
relative entropy constraints. IEEE Transactions on
Automatic Control, 45(3):398–412, 2000a.

I. R. Petersen, M. R. James, and P. Dupuis. Minimax
optimal control of stochastic uncertain systems with
relative entropy constraints. IEEE Trans. Automatic
Control, 45(3):398–412, March 2000b.

I. R. Petersen, V. Ugrinovski, and A. V. Savkin. Robust
Control Design using H∞ Methods. Springer-Verlag
London, 2000c.

A. J. Shaiju and I. R. Petersen. Discrete-time LEQG prob-
lem: The general case with cross terms in cost and co-
variance. In Preprint, School of ITEE, UNSW@ADFA,
Canberra, 2007.

P. Whittle. Risk-sensitive linear/quadratic/gaussian con-
trol. Adv. Applied Probability, 13:764–777, 1981.

P. Whittle. Risk-sensitive Optimal Control. Wiley Chich-
ester, 1990.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8778


