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Abstract: A novel moving horizon control strategy for input-saturated nonlinear polynomial
systems is proposed. The control strategy makes use of the so called sum-of-squares (SOS) de-
composition, i.e. a convexification procedure able to give sufficient conditions on the positiveness
of polynomials. The complexity of SOS-based numerical methods is polynomial in the problem
size and, as a consequence, computationally attractive. SOS programming is used here to derive
an “off-line” model predictive control (MPC) scheme and analyze in depth his properties. Such
an approach may lead to less conservative MPC strategies than most existing methods based
on the global linearization approach. An illustrative example is provided to show the benefits

of the proposed SOS-based algorithm.
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1. INTRODUCTION

Model Predictive Control (MPC) in an optimization based
control strategy able to efficiently deal with plant con-
straints. At each control interval, the MPC algorithm
computes an open-loop sequence of inputs by minimizing,
compatibly with prescribed constraints, a cost index based
on future plant predictions. The first input of the optimal
sequence is applied to the plant and the entire optimization
procedure is repeated at subsequent time instants.

Though almost all processes are inherently nonlinear, the
vast majority of MPC applications and results are based
on linear or uncertain linear dynamic models (see (Kothare
et al. (1996); Mayne et al. (2000); Imsland et al. (2004);
Kouvaritakis et al. (2000); Angeli et al. (2001)) and
references therein). One of the main reason for this trend
is probably related to the huge on-line computational
burdens usually resulting from the utilization of nonlin-
ear, in some cases non-convex, programming techniques
(Allgéwer et al. (1999); Qin and Badgwell (2000); Chen
and Allgéwer (1998); Magni et al. (2001)).

Although such difficulties have been recently ameliorated
by the introduction of specialized solvers for nonlinear
MPC applications (Bock et al. (2005)), alternative ap-
proaches based on convex embedding have been investi-
gated in the past for their simplicity. In particular, un-
certain linear models can be identified, as an example, by
linearizing the plant at different operating points under
the hypothesis that the nonlinear trajectory is embedded
inside the tube obtained by evaluating each linear plant
vertex (linear embedding, see (Wan and Kothare (2003b)).
As a consequence, the use of an uncertain linear model
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and a quadratic/linear objective function makes it possible
to obtain a robust MPC framework which takes the form
of a highly structured semidefinite/QP/LP programming
problem, for which reliable algorithms and software can
easily be found (see (Scherer and Hol (2006); Bjornberg
and Diehl (2006); Pluymers et al. (2005))).

Nevertheless, there are cases when nonlinear effects are
significant enough to justify the use of direct nonlinear
MPC (NMPC) technologies. These include at least two
broad categories of applications:

e regulation problems where the plant is highly nonlin-
ear and subject to large frequent disturbances;

e servo problems where the set point changes frequently
and spans a sufficiently wide range of nonlinear pro-
cess dynamics.

The purpose of this paper is to consider a particular class
of nonlinear plants and constraints described by means
of polynomials. The formulation of the MPC problem in
such a case gives rise to polynomial optimization problems
for which solution efficient numerical methods have been
proposed in the literature: Grobner bases, cylindrical al-
gebraic decomposition etc. (see (Parrillo (2000); Scherer
and Hol (2006); Henrion and Garulli (2005); Henrion et
al. (2003))).

In particular, SOS decomposition and semidefinite pro-
gramming (Prajna et al. (2004); Fotiou et al. (2006);
Jarvis-Wloszek et al. (2003)) techniques will be used
here, whose computational complexity is polynomial in the
problem size. Strictly speaking, the SOS-based approach
is a powerful convexification method which generalizes the
well-known S-procedure (Parrillo (2000)) by searching
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for polynomial multipliers. As one of its major merits,
the SOS-based approach provides less conservative results
than most available methods.

On the other hand, the huge computational burden of a
SOS program advises against an implementation of the
related optimization procedure at each sampling instant.
Nonetheless, if the SOS relaxation polynomial problem is
off-line moved, the on-line controller could be relatively
easier to set up.

Then, we propose an off-line formulation of a Reced-
ing Horizon Control (RHC) problem for polynomial sys-
tems based on the computation of a nested sequence of
asymptotically stable invariant sets (see Wan and Kothare
(2003a) where a similar algorithm is detailed for uncertain
linear plants). With this off-line approach, the SOS compu-
tation time is not a limiting factor and increased control
performance can be achieved also for fast processes and
large scale nonlinear systems.

NOTATION

With the term p € Rlz] we denote a multivariate scalar
polynomial p(z), in the unknown z € R™.

With the term s € X[z], where

M
Yz = {s € Rlz]|IM < oo,ﬂ{pi}f\il ,pi € Rlz], s.t. s = Zp?}
=1
we denote a multivariate Sum-of-Squares s(z), in the
unknown z € R”.

With the term p € R™™™[z] we denote a multivariate
n-rows, m-columns matrix polynomial ie, p;; € Rzl
t=1,....,n,7=1,...,m.

2. PROBLEM FORMULATION

Consider the following nonlinear system with polynomial
vector field

w(t+1) = f(z(t) + g(z(t)) u(t) 1)
where f € R"[z], g € R"*™[z], with € R", denoting the
state and u € R™ denoting the control input subject to
the following component-wise saturation constraints

uel: ,m. (2)
It assumed in this paper that 0, € R™ is an equilibrium

point for (1) with u = 0 (Chen and Allgdwer (1998)). The
aim is to find a state feedback regulation strategy

u(t) = g(z(t)) 3)
which asymptotically stabilizes (1) to the origin under (2).
We introduce a cost function that penalizes the deviation

of the state and control action from zero
oo

lui| <ag, i=1,. ..

Ju20) 23 (2@, +le@l3,) @
t=0
v, = vl >0 U, = ¥T > 0, and we look for

guaranteed cost conditions, under which a state feedback
regulation strategy (3) can be derived. It has been proved
in (Jarvis-Wloszek et al. (2003)) that if, at a given time
instant ¢, a SOS V(x(t)) and a polynomial state-dependent
control law u(t) = K(z(t)), compatible with (2), are

found so that J(K(z(t)),z(t)) < V(x(t)) then the set
€ = {z e R"|V(z) <1} is a positive invariant region for
the regulated input constrained plant.

3. COMPUTATION OF (V(X), K(X))

The computation of a couple (V(z), K (z)) can be accom-
plished using standard machinery taken from the semi-
algebraic sets theory (Cox et al. (2004)). To this end, let
Ps an inner polynomial approximation of &£, viz. Pg :=
{zr e R"|p(z) < B}, Ps C &, for some given positive
definite polynomial p € R[z]. Then, the positive invariant
set £ can be derived by finding a value of § such that
all points in Pg converge to the origin under the control
law K and saturation constraints (2). Using a Hamilton-
Jacobi-Bellman (HJB) inequality argument, guaranteed
cost conditions ensuring satisfaction of input constraints
and closed-loop stability can be stated as: given an initial
state zg € R™, find a scalar 3, a SOSV € X[x] and poly-
nomial K € R[z] such that the following set of inclusions
hold

V(z) >0Vz € R"\ {0} and V(0) =0
{xr e R"|p(z) < B} C {x € R"|V(z) < 1}

{z e R™"V(z) < 1}\{0} S{z e R"|V((t + 1)) — V(z(t))
+2' Uy x4 K(z) Uy K(x) <0}

(5)
{zx e R"|V(z) <1} C{z e R"|K;(z) < 4y, i=1,...,m}

{z € R"V(2) < 1} C {w € R"[K (2) > —t,i = 1,....,m})

{zeR"|(z—20)" (z—m0) e} C{z € R"|V(z) < 1}

The above implications respectively show that V is posi-
tive definite, Pg is contained in a level set of V', the HJB
difference: V(z(t+1)) =V (z(t))+2' Y, 2+ K(z) ¥, K(x)
is strictly negative on all points contained in the level set
aside from z = 0, and the saturation input constraints
are satisfied. The last inclusion in the previous collection
rephrases the belonging of the initial state xy to the in-
variant region V(x) < 1, to be computed as a relaxed
semialgebraic subset for a sufficiently small scalar € > 0.

By resorting to a “Positivstellensatz” (P-satz) (Cox et
al. (2004)) argument, verification of (5) is equivalent to
emptyness of

{z e R*"|V(z) <0, li(z) # 0}
{z €R"|p(z) < B, V(z) > 1, V(z) #1}

{z € R" ‘ V(z) <1, la(z) #0, }
V(z(t+1) — V(z(t)) + 2’ Vox + K(z) Ty K(z) >0

{z e R"|K;(z) >, i=1,...,m, V(z) <1,}

{z e R"|K;(z) < -1, i=1,...,m, V(z) <1,}

{zer"|(z—20)" (¢ —20) <&, V(2) > 1}

(6)
where 11, lo € R[z] are positive definite polynomials.
Moreover, the inclusions inside (6) can be removed by
using the S-procedure and the related conditions can be
modified as: find 8 € R, K € Rlz]|, V € X[z], ki, ko, k3 €
Z+, S1y..+,810, S11,is S12,i, S14 € E[JEL i=1,...,m such
that
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—Vesy+12F =0

s3+(B—p)sa+(V=1ss+(6-p)(V—1)s6
+(V -1 =0

+(1=V)ss+ (V(f(z,K(2) = V(z) +2' U,z
+K(2) W, K(x))sg + (1 = V) (V(f(z, K(2)) - V(2)
42/ U,z + K(z) U, K(x)) s10 + 125 = 0

(ai_Ki)_(]-_V)Sll,i:Oa i:L...,m

(ﬂi+Ki)—(1—V)8127i:O, i=1,....m

(—e+(x—z0)T (x —20)s04a+(1=V)=0

(7)
Because (7) cannot be treated with a semidefinite pro-
gramming procedure (Jarvis-Wloszek et al. (2003)), we
will employ an iterative approach to solve the above SOS
conditions in the unknowns V and K, consisting of holding
one of these polynomials fixed while adjusting the other.
Nonetheless, (7) can be further simplified by removing the
multipliers s;, ¢ = 1,...,5 and s7 (see (Jarvis-Wloszek et
al. (2003))). The following proposition summarizes the
previous discussion.
Proposition 1. A pair (V(z), K(x)) satistfying conditions
(5) is determinable if there exist § € R, K € R[z], V €

2[17], kh k2, ks € Z+756;58759;5107 S11,is S12,i, S14 €
Y[z], i=1,...,m can be found such that

V-l eXlz] (8)

—((B=p)se+(V—1)) €Xz] (9)

— (1 =V)ss + (V(f(z, K(z)) = V(2)

' Uy a4 K(z) Uy K(2)) so + z“s) eXfa] (10)

(@, —K;)—(1—=V)sn;€X[z], i=1,...,m (11)

(;+K;) —(1—=V)s12;, €X[z], i=1,....m (12)

—+ (. —20)T(x —20) s34 + (1 = V) € [z] (13)

under the following necessary requirements on the degrees
of the involved polynomials

(V) =09()
d(pse) = (V)

max (0 (V sg),0(V sg)) >

max (9 (V(f(2), K(2))s9),0 (27 Wazsy) ,0 (K(2)" Wy K (2)s9))

8(‘/31171') 26(1(2), i:l,...,m

d(s14)+2>0(V)

Proof - By referring to standard SOS arguments (Parrillo
(2000)) and collecting the above derivations. |
Note that the decision polynomials s¢, s3, S9, S11,i, S12,i;
s14 € X[z], i = 1,...,m do not enter linearly in the
constraints, so we will employ an iterative algorithm to
achieve a feasible solution.

4. A SOS PROGRAMMING ALGORITHM FOR THE
COMPUTATION OF (V(X), K(X))

In what follows, we propose a numerical bisection pro-
cedure to derive an admissible pair (V, K) matching the
conditions outlined in the statement of Proposition 1.

Procedure - SOS-V-K(z)

Setup: Given the initial state x(0) € R™. Set I; =)z
for some small € > 0 and m the maximum degree of V.
Each step of the iteration, indexed by k, consists of four
substeps, three of which also involve iterations. These inner
iterations will be indexed by j. The procedure starts by
choosing a Vj, that is a Control Lyapunov Function (CLF)
(Henrion and Garulli (2005)) for the linearized system
around the desired set point and a control law Ky(z) that
asymptotically stabilizes (1). The algorithm is initialized

with V#=0) = v, K(+=0) = [,.

(1) Polynomials derivation - Set V = V-1 K =
K®=1 " and the inner iteration index j = 1. Solve
the following SDP:

{5157 élgv égv{élﬁ,iv §If2,i};11} =
14
arg36,58,8918$3ﬁ12,162[9€]7ﬁ (14)
i=1,..., m
s.t.

—((B=p)ss+(V—-1) €Xlz] (15)

(A =V)ss+ (V(f(z, K(2) = V(z) + 2’ Vo w
+K (o) Wy K (2)) 59 +12) € 2[z]  (16)
Ki)—(1-
(wi + K;) — (1 -

(a; — V)si1 € Xlz],i=1,...,m (17)

V)S127,' 62[13]77::1,...,77’1 (18)

(2) Controller synthesis - Set V = V(=1 solve the
following SDP:

5 ok ok ok km 2 -
{ﬂkaSy 811,40 {511,¢: 512,1'}1:17 K} =

arg max 8 (19)
58,511,i,512,i,514€X[x], KER[z]

s.t.
—((B-p)se +(V —1)) €X[z] (20)
— (A =V)ss + (V(f(z, K(2)) = V(z) + 2 Vo m

+KP (@) W, KE TN (@) 80+ 12) € Dla] (21

(1 —K;) —(1—=V)s11€3z], i=1,....,m (22
(w; + KG) — (1 -

(—&+ (@ — 2(0))7 (z — 2(0))) s14 + (1 —

V)S127,' EZ[J?], i=1,...,m (23

V)eS] (24

(3) Lyapunov Function Synthesis - Solve the follow-
ing SDP:
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~ ok sk ok ok ok ¥ —
{akv 565 58> {Sll,i’ 312,1'}17'11, S14» Vk} =

TE e s o s vese B

s.t.
V-1 €S[z] (26)
—(Be=p)se + (V—a)) €X[z] (27)

—((@=V)ss + (V(f(z, K(2)) = V(2) +2' Vo m
+K(z) U, K (2)) 59 +12) € B[z]  (28)
(@, —Ki) —(a=V)én, €Xz], i=1,....,m (29)
(@ + K)—(a=V)é12, €2z], i=1,...,m (30)
(e + (& = 2(0))" (z — 2(0))) s14 + (« = V) € £[z] (31)

redefine Vk = ‘A/k/dk,
(4) Stopping Criterion If

|Bk - ﬁk—1| <e
stop else k «— k + 1 and goto Step 1.

5. A LOW-DEMANDING RECEDING HORIZON
CONTROL ALGORITHM

This section is devoted to exploit the proposed procedure
SOS-V-K(x) within a RHC framework. To this end, we
will follow the algorithm proposed in (Wan and Kothare
(2003a)) for the robust linear case.

We will first state the following problem:

RHC Problem - Given the non-linear system (1),
determine, at each time instant, on the basis of the current
state (), a stabilizing control law K (z((t)) and a positive
invariant region

E={zeR"V(z) <1}
which minimizes a suitable upper bound V'
J(K(x((2)), z(t)) < V(x(t))
to the cost index (4) under the prescribed constraints (2).
O
All the arguments developed in the previous sections al-

lows one to write down a computable RHC scheme,denoted
as WK-SOS, which consists of the following algorithm:

Algorithm-WK-SOS
Off-line

0.1 Given an initial feasible state z;, put r =
1

0.2 Generate a sequence of control laws K,(-),
invariant regions &, by solving the SOS
program SOS-V-K(z,) with the additional
constraint &, C &,_; translated as an extra
S0S condition in the above Lyapunov function
synthesis phase (3)

—((a — V) S16 + (kal — 1)) S E[(E]
S16 € E[IE], 3(V 816) > 8(Vk,1)
Store in a lookup table K.,.(:), &.(-);
If » < N, choose a new state z,4; s.t.
Try1 €&, Let r=r+1 and go to step 0.2

(32)

loNe)
S W

On-line

1.1 Given an initial feasible state z(0)
s.t. z(0) €&, put t=0;

1.2 Perform a bisection search over
the sets &, in the look-up table to find

7 := argmin
T

s.t.
x(t) € &,
1.3 Feed the plant by the input
K (x(t)) (33)
Compute the future state
2(t+1) = f(a(t) + g(x(t)) K (x(t)) (34)

1.4 t+—1+1 and go to step 1.2

Next lemma ensures that the proposed MPC scheme
admits a feasible solution at each time t and the SOS-
based input strategy (33) is a stabilizing control law for
(1) under (2).

Lemma 1. Given the system (1), let the off-line steps of
proposed scheme have solution at time ¢ = 0. Then, it has
solution at each future time instant t, satisfies the input
constraints and yields an asymptotically stable closed-loop
system.

Proof - Existence of the sequence of K., &, ensures that
any initial state x(0) € & can be steered to the origin
without constraints violation. In particular, because of
the additional constraint &£. C &£._1, the regulated state
trajectory emanating from the initial state satisfies
x(t) € &,
Fa(t) + g(w(®) Ko (o(t) i  a(t) ¢ &

2(t+1) = ré N
fa() +g(x(t) Kn(x(t)) if 2(t) € En

(35)

Then, under both conditions x(t) € & and z(t) ¢ &41,
r=1,...,N — 1, the control law K,.(-) is guaranteed to
ultimately drive the state from &, into the ellipsoid &,11
because the Lyapunov difference V (f(z, K,.(z)) — V(x) is
strictly negative (eq. (28)). Finally, the positive invariance
of &y and contractivity of K guarantee that the state
remains within £y and converges to the desired set point.
O

6. ILLUSTRATIVE EXAMPLE

The aim of this section is to give a measure of the im-
provements achievable by exploiting the SOS program-
ming framework. To this end, the RHC algorithm of (Wan
and Kothare (2003a)) Algorithm-WXK will be contrasted
with the Algorithm-WK-SOS, described in Section 3.
The simulations are instrumental to show especially the
reduction of conservativeness in terms of achievable basins
of attraction, when compared with its linear counterpart
(WK). All the computations have been carried out on a
PC Pentium 4-based using the YALMIP Toolbox (Léfberg
(2004)).
A controlled Van Der Pol nonlinear oscillator (El Ghaoui
(1994)) is taken into consideration

Fa(t) = —1(t) — (1 = 21() 2a(t) + u(t)
It has an unstable limit cycle and a stable origin. The prob-
lem of finding its region of attraction have been extensively
studied (see Chiang and Thorpe (1989) and references
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therein), and more recently in (Papachristodoulou (2005))
where SOS programming and polynomial Lyapunov func-
tions have been used to find a provable basin of attraction.
The system (36) has been discretized using forward Euler
differences with a sampling time 7. = 0.1 sec. It has been
assumed: weighting matrices R, = diag ([0.01 0.01]), and
R, =1, input saturation constraint |u(t)] < 0.2, Vt.

As well-known, the region of attraction is enclosed by its
limit cycle, therefore initially we have chosen the candidate
function p(z) as p(x) = x2 + x3. The other design knobs
are here summarized:

e Candidate Lyapunov function degree: 9 (V(z)) = 6;
e Candidate stabilizing controller degree: 0 (K (x)) = 4.

The SOS free parameter polynomials have been chosen
such that

0 (36) = 2, 0 (38) = 4, 0 (59) = O, 0 (511) = 2,

O (s12) =2, O(s14) =2, 0(s16) =2,

in order to satisfy the degree solvability conditions (14).
Fin%Hy in (32), the quantity € has been chosen equal to
107°.

Fig. 1 reports the basins of attraction for the two con-
trol schemes. As expected, WK-SOS (continuous line)
enjoys an enlarged region of feasible initial states w.r.t.
WK (dashed). Moreover, when one computes the basins of
attraction under the more stringent saturation constraint
|u(t)| < 0.15 it results that no solutions exist for the WK
algorithm whereas a restricted region (dotted in Fig. 1) is
found for WK-SOS

0.8["

0.6

0.41

-
. ~ .
4 RN
| © T WKSOSHfult]<=02 "
\ /. WK-SOS:Ju(t)] <=015 T

Y = = WK:|u(t)]<=02 !
I8

N

0.2

~

Fig. 1. State Attraction Region with input bound con-
straints - WK-SOS, |u(t)| < 0.2 (Continuous line),
|u(t)] < 0.15 (Dash-dotted line); WK, |u(t)] < 0.2
(Dashed line)

In the following, only the input constraint |u(t)] < 0.2
will be considered. Four pairs (K;,&;) have been deter-
mined with the SOS-V-B(x) algorithm initialized each
time with four states of components respectively 3¢

[0.4 0.3 0.15 0.1] and 25 = [0 0 0 0], and the initial
state has been set to z(0) = [0.25 0.68}T.

Finally, Figs. 4-5 depict respectively: the cost, the regu-
lated phase portraits (with four invariant regions &;) and
time evolutions of the state and the input for the two
schemes.

Guaranteed cost

—— WK-SOS
- = = WK

R
1
1
n
1
1
3l
L)

0.8

6 8 10 12
Time (Steps)

Fig. 2. Guaranteed cost - WK-SOS - Continuous line,
WK - Dashed line

(x1,><2) phase—portrait

06| —— WK-SOS
— WK

04r

02

Fig. 3. Phase portrait with input bound constraints
lu(t)] < 0.2.

Time [s]

Fig. 4. State evolutions with input bound constraints
u(t)] < 0.2

7. CONCLUSIONS

In this paper, we have developed an off-line RHC algorithm
for constrained polynomial nonlinear systems by means of
SOS programming. The advantage of this algorithm is that
it provides off-line a set of stabilizing polynomial control
laws, corresponding to a nested set of positive invariant
regions. Up to our knowledge this is a first attempt in
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Input signal
0.04 T

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

-0.14

6
Time [s]

Fig. 5. Input signal with input bound constraints |u(t)| <
0.2

literature to formulate a RHC problem using SOS ma-
chinery. Numerical experiments have shown the benefits of
the proposed RHC strategy w.r.t. linear embedding MPC
schemes and makes SOS based MPC schemes potentially
attractive.
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