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Abstract: The time domain maximum likelihood (TML) method and the sample maximum
Likelihood (SML) method are two approaches for identifying errors-in-variables models. Both
methods may give the optimal estimation accuracy (achieve Cramér-Rao lower bound) but in
different senses. In the TML method, an important assumption is that the noise-free input signal
is modeled as a stationary process with rational spectrum. For SML, the noise-free input needs
to be periodic. It is interesting to know which of these assumptions contain more information
to boost the estimation performance. In this paper, the estimation accuracy of the two methods
is analyzed statistically. Numerical comparisons between the two estimates are also done under
different signal-to-noise ratios (SNRs). The results suggest that TML and SML have similar
estimation accuracy at moderate or high SNR.
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1. INTRODUCTION

The dynamic errors-in-variables (EIV) identification prob-
lem has been a topic of active research for several decades.
Till now, many solutions have been proposed with differ-
ent approaches. For example, the Koopmans-Levin (KL)
method Fernando and Nicholson (1985), the Frisch scheme
Beghelli et al. (1990), the Bias-Eliminating Least Squares
methods Zheng and Feng (1989), Zheng and Feng (1992),
the prediction error method Söderström (1981), frequency
domain methods Pintelon et al. (1994), and methods based
on higher order moments statistics Tugnait and Ye (1995),
etc. See Söderström (2007) and references therein for a
comprehensive survey in this respect.

In system identification, besides system properties and
method performances, experimental conditions also play
an important role. For example, periodic input signals will
give many interesting advantages in identification. The
sample maximum likelihood (SML) method Schoukens
et al. (1997) works under the assumption that the noise-
free signal is periodic, and it provides optimal estimation
accuracy under that assumption. If periodic data are not
available, among the possible methods for identifying EIV
systems, the time domain maximum likelihood method
(TML), also called the joint output approach, Söderström
(1981), will achieve the Cramér-Rao lower bound. This

⋆ This research was partially supported by The Swedish Research
Council, contract 621-2005-4207.

property is conditioned on the prior information that the
true input is an ARMA process.

The comparison of the TML and SML methods is of
general interest. When the input can freely be chosen it
is important to know whether a random (filtered white
noise) input or a periodic input will lead to the smallest
uncertainty of the estimated plant model parameters. If
there is no significant difference then other issues are
important such as the ease of generating starting values,
the optimization complexity, etc.

In general, the TML method and the SML method work
under different experimental situations. An essential as-
sumption for the TML method is that the noise-free input
signal is a stationary stochastic process with rational spec-
trum, so that it can be described as an ARMA process.
Also, in the TML method, the input and output noises
are usually described as ARMA processes. In contrast,
the SML method works under more general noise-free
input signals and noise conditions, but with another neces-
sary assumption: the noise-free signal is periodic. Further,
for the SML method cross-correlation between the noise
sources is allowed.

In this paper, we focus on comparing the asymptotic
covariance matrix of these two methods. The paper is
organized as follows. In Section 2 we describe the EIV
problem and introduce notations. The main idea of the
TML and SML methods are reviewed in Section 3 and 4.
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In Section 5, we make a statistical comparison for TML
and SML under high SNR cases. Numerical comparisons
between the asymptotic covariance matrices of these two
methods under different SNR are shown in Section 6. Fur-
ther, discussions on how to optimally utilize the periodic
data are given in Section 7 before we draw conclusions in
Section 8.

2. NOTATIONS AND SETUP

As a typical model example, consider the linear single-
input single-output (SISO) system depicted in Figure 1
with noise-corrupted input and output measurements.
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Fig. 1. The basic setup for a dynamic errors-in-variables
problem.

Let the noise-free input and output processes u0(t) and
y0(t) be linked by a linear stable, discrete-time, dynamic
system

A(q−1) yo(t) = B(q−1)uo(t), (1)
where A(q−1) = 1 + a1 q−1 + · · · + an q−n

B(q−1) = b1 q−1 + · · · + bn q−n

are polynomials 1 in the backward shift operator q−1.

For errors-in-variables systems, the input and the output
are measured with additive noises:

u(t) = uo(t) + ũ(t),
y(t) = yo(t) + ỹ(t).

The system has a transfer function

G(q−1) =
B(q−1)

A(q−1)
. (2)

The unperturbed input is modeled as an ARMA process
driven by white noise

uo(t) =
C(q−1)

D(q−1)
v(t). (3)

The noise ũ(t) and ỹ(t) are assumed to be mutually inde-
pendent zero mean white noise sequences both indepen-
dent of uo(t)

2 .

The noise variances are denoted

Eũ2(t) = λ2

u, Eỹ2(t) = λ2

y, Ev2(t) = λ2

v. (4)

Problem: The task is to consistently estimate the system
parameter vector

θ = (a1 . . . an b1 . . . bn)T (5)

1 It can be generalized to include a b0 term, or to allow different
degrees of A and B.
2 For SML, ũ and ỹ might be correlated. TML can also be extended
to accommodate cases with rather arbitrarily correlated noises. The
assumptions here will simplify the analysis. However, it will be not
crucial for the analysis.

from the measured noisy data {u(t), y(t)}N
t=1.

3. REVIEW OF THE TML METHOD

In the TML method, we consider the EIV system as a
multivariable system with both u(t) and y(t) as outputs.
An important assumption for this method is that the signal
uo(t) is stationary with rational spectrum, so that uo(t)
can be described as an ARMA process of the type (3).

In this way the whole errors-in-variables model can be
rewritten as a system with a two-dimensional output

vector z(t) = (y(t)u(t))
T

and three mutually uncorrelated
white noise sources v(t), ũ(t) and ỹ(t):

z(t)=

(

y(t)
u(t)

)

=









B(q−1)C(q−1)

A(q−1)D(q−1)
0 1

C(q−1)

D(q−1)
1 0









(

v(t)
ũ(t)
ỹ(t)

)

. (6)

By transforming the model to a general state space model
and then using the well-known techniques Anderson and
Moore (1979) to convert it into the innovations form, we
will get

z(t) = S(q−1, ϑ) ε(t, ϑ) , (7)

where S(q−1) is a stable transfer function matrix which
can be computed from the Riccati equation for Kalman
filters, and ε(t, ϑ) is the prediction error ε(t, ϑ) = z(t) −
ẑ(t|t − 1;ϑ), which depends on the data and the model
matrices. Note that the parameter vector ϑ contains not
only the system parameters θ but also the noise param-
eters and parameters of uo(t), i.e. the coefficients of the
polynomials C and D.

The parameter vector ϑ is consistently estimated from a

data sequence z(t)
N

t=1
by minimizing the loss function:

ϑ̂N = arg min
ϑ

1

N

N
∑

t=1

ℓ(ε(t, ϑ), ϑ, t), (8)

with
ℓ(ε(t,ϑ), ϑ,t)=

1

2
log detQ(ϑ)

+
1

2
εT(t, ϑ)Q−1(ϑ)ε(t,ϑ), (9)

where Q(ϑ) denotes the covariance matrix of the predic-
tion errors. For Gaussian distributed data, the covariance
matrix of the TML estimates parameters turns out to be
asymptotically (N → ∞) equal to the Cramér-Rao bound
Söderström (2006).

4. REVIEW OF THE SML METHOD

The ML estimate can also be computed in the frequency
domain, Pintelon and Schoukens (2001). Let U(wk) and
Y (wk), with wk = 2πk/N , k = 1, . . . , N , denote the
discrete Fourier transforms of the input and output mea-
surements, respectively. Write the transfer function as
G(eiwk) = B(eiwk)/A(eiwk) (note that there is no need
to assume that A is stable as long as the system has
stationary input and output signals, e.g. an unstable plant
captured in a stabilizing feedback loop is allowed). The ML
criterion in the frequency domain can be written as
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V(θ)=
1

N

N
∑

k=1

|B(eiwk, θ)U(wk)−A(eiwk, θ)Y (wk)|2

×{σ2

U (wk)|B(eiwk , θ)|2 + σ2

Y (wk)|A(eiwk , θ)|2

−2Re [σY U (wk)A(eiwk, θ)B(e−iwk, θ)]}−1, (10)

where σ2
U (wk), σ2

Y (wk) and σY U (wk) are the variance or
covariance of the input and output noise at frequency wk,
respectively. If these (co)variances are known a priori, it
is easy to minimize the cost function (10) to get good
estimates. However, knowing exactly the noise model is not
realistic in many practical cases. Then we have to consider
the (co)variances of the noises as additional parameters
which should also be estimated from the data. In this case,
a high dimensional nonlinear optimization problem should
be solved, which leads to infeasible situations. Instead of
doing so, another way is to replace the exact covariance
matrices of the disturbances by sample estimates obtained
from a small number (M) of repeated experiments. This
is the fundamental idea of the sample ML method. An
important assumption is utilized in SML, namely to have
periodic excitation signals, where each period plays the
role of an independent repeated experiment. The defini-
tions for the sample (co)variances of σ̂2

U (wk), σ̂2
Y (wk), and

σ̂Y U (wk) are:

σ̂2

U (wk) =
1

M − 1

M
∑

l=1

|Ul(wk) − Ū(wk)|2,

σ̂2

Y (wk) =
1

M − 1

M
∑

l=1

|Yl(wk) − Ȳ (wk)|2,

σ̂YU(wk)=
1

M−1

M
∑

l=1

(

Yl(wk)−Ȳ(wk)
)(

Ul(wk)−Ū(wk)
)

∗,

where ∗ indicates the complex conjugate and Ū(wk) and
Ȳ (wk) denote the sample mean of input and output which
are similarly defined as:

Ū(wk)=
1

M

M
∑

l=1

Ul(wk), Ȳ (wk)=
1

M

M
∑

l=1

Yl(wk) .

The parameter vector θ is estimated by minimizing

V̄(θ)=
1

N

N
∑

k=1

|B(eiwk, θ)Ū(wk)−A(eiwk, θ)Ȳ (wk)|2

×{σ̂2

Ū
(wk)|B(eiwk , θ)|2 + σ̂2

Ȳ
(wk)|A(eiwk , θ)|2

−2Re [σ̂Ȳ Ū (wk)A(eiwk, θ)B(e−iwk, θ)]}−1, (11)

where σ̂2

Ū
= σ̂2

U/M , σ̂2

Ȳ
= σ̂2

Y /M and σ̂Ȳ Ū = σ̂Y U/M .
The cost function (11) is an approximation of (10) by
replacing the exact covariances of the noise by their sample
estimates. The major advantage of this approach is that
the plant parameters remain as the only unknowns to be
estimated, which leads to a low dimension of the nonlinear
optimization problem.

It is clear that this SML estimator is no longer an exact
ML estimator. However, it was proved in Schoukens et al.
(1997) that the estimator is consistent if the number
of experiments M ≥ 4. For M ≥ 6 the covariance

matrix of the model parameters cov(θ̂SML) is related to

the covariance matrix cov(θ̂ML) of the estimates assuming
known noise variances by

cov(θ̂SML) =
M − 2

M − 3
cov(θ̂ML)

(

1 + O((Mλ2

v)−1)
)

(12)

i.e. for sufficiently large signal-to-noise ratios the loss in
efficiency of SML is (M − 2)/(M − 3) 3 which is not a
large factor even for small values of M .

5. STATISTICAL ANALYSIS OF THE ACCURACY
OF TML AND SML ESTIMATES

In this section, we will analyze the normalized asymptotic
covariance matrices of SML and TML and try to reveal
the behaviors of the two methods for high SNRs. We will
express in terms of the noise variances λ2

v, λ2
u, λ2

y rather
than in the SNR values.

From the reviews above, it can be seen that the TML
method and the SML method work under different as-
sumptions. We assume here that NM periodic data are
available, where M is the number of periods and N denotes
the number of data points in each period. Also assume
that in each period the noise-free input signal is the same
realization of a stationary process. This experimental con-
dition is suitable for both approaches. The TML method
uses all data points and the information that the input
signal is an ARMA process, but does not exploit the
periodicity of the data. However, the SML method uses the
periodic information but disregards that the input signal is
an ARMA process and does not use any parametric models
of the noise terms.

Consider the case when SNRs at both input and output
are high. This is achieved by keeping λ2

u and λ2
y fixed, and

letting λ2
v tend to infinity. We have the following theorem.

Theorem 1: The normalized asymptotic covariance ma-
trices of the SML and TML estimators have the relation:

lim
λ2

v→∞

λ2

vcov(θ̂SML) = lim
λ2

v→∞

λ2

vcov(θ̂TML) = λ2

vCRBA,

(13)
where CRBA is an asymptotic Cramér-Rao lower bound
when data number tends to infinity. It holds

CRBA = M−1

1
, (14)

where the (j, k) elements of the matrix M1 is defined as

M1(j, k)=
1

2πi

∮

GjG
∗

kφ0

1

λ2
y+GG∗λ2

u

dz

z
. (15)

Here φ0 is the spectrum of the noise-free input, and Gj

denotes the derivative of the system transfer function G(z)
with respect to the system parameters θj .

Proof: See Hong et al. (2007) Appendix A.

The theorem states that, for large SNR’s,

cov(θ̂SML) ≈ cov(θ̂TML) ≈ CRBA. (16)

The asymptotic estimation accuracy for SML and TML
will be very similar when the SNRs at both the input and
output sides are large. Both will be approximately equal
to an asymptotical CRB, which is directly proportional
to 1/λ2

v. As stated in Pintelon and Hong (2007), this
result can be weakened for SML. It is enough that for

3 In Theorem 1 below, the factor (M − 2)/(M − 3) is disregarded.
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SML, either the input SNR or the output SNR becomes

large, the cov(θ̂SML) will reduce to CRBA. The covariance
expressions in Theorem 1 can be simplified. The details
are given in Hong et al. (2007) Appendix B.

The situation of high SNR is of limited practical im-
portance, as the bias effects will vanish as SNR → ∞.
However, high SNR seems so far to be the only case where
a more explicit analysis is possible.

6. NUMERICAL COMPARISONS OF TML AND SML
ESTIMATES

We will show some numerical experiments for the TML
and SML methods for different signal-to-noise ratios
(SNR). A second order system and a sixth order system are
illustrated in this paper. The polynomials of this second
order system are

A(q−1) = 1 − 1.5 q−1 + 0.7 q−2,
B(q−1) = 2 + 1.0 q−1 + 0.5 q−2,

(17)

and the sixth order system is

A(q−1) = 1 − 1.1q−1 + 0.5q−2 − 0.12q−3

+0.23q−4 − 0.235q−5 + 0.175q−6,
B(q−1) = 0.1 + 1.0q−1 + 0.85q−2 + 0.06q−3

−0.534q−4 + 0.504q−5 +0.324q−6.

(18)

The polynomials of the noise-free input signal model are

C(q−1) = 1 + 0.5 q−1,
D(q−1) = 1 − 0.5 q−1.

(19)

All the comparisons are based on the asymptotic case
where the data number N is assumed to be large enough,
and we assume M = 6 periods data are available. For
comparison, we also give the asymptotic covariance ma-
trix of the frequency domain maximum likelihood (FML)
method calculated under the assumption of knowing the
input-output noise variances and the period information.
See Schoukens et al. (1997) for details. The standard
deviations (std) are calculated from the theoretical co-
variance matrices of the estimation parameters, which
have been proved to well meet their relevant Monte-
Carlo simulations. Details on these formulas can be found
in Söderström (2006), Pintelon and Schoukens (2001),
Schoukens et al. (1997) and Pintelon and Hong (2007).

In the following numerical analysis, we fix the noise vari-
ance at both input and output sides to be 1 (for white
noises cases), and let the noise variance of v(t) firstly
be 10 and then decrease to 0.1. For these two cases, the
estimation results for the second order system (17) and
the sixth order system (18) are shown in Figure 2 and
3. In each figure, the upper part give the spectra of the
noises and noise-free signals at the input and output sides.
In the lower part of the figures, the standard deviation
of the estimated system transfer function under different
frequencies are plotted for different estimating methods.
Besides, the amplitude of the true transfer function G are
also given for convenience.

Comparison results show that when the SNR at both the
input and the output side are high or moderate, the two
methods always give very similar performance both for
low and high order systems. See Figure 2. When the SNR
becomes very low, the difference of the TML method and
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Fig. 2. Comparison of the TML, SML and FML estimates
for a second (left) and a sixth (right) order system
with λ2

ũ = 1, λ2
ỹ = 1, and λ2

v = 10.
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Fig. 3. Comparison of the TML, SML and FML estimates
for a second (left) and a sixth (right) order system
with λ2

ũ = 1, λ2
ỹ = 1, and λ2

v = 0.1.

the SML method are observable only in the low SNR
frequency regions especially for the high order dynamic
systems. See Figure 3. It seems that, in regions where
SNR is poor, the benefit of using periodic information
in the SML method is more pronounced, which results in
the SML having a lower covariance matrix than that of
the TML. In Figure 4, new comparison results under the
same condition as in Figure 3 are shown except adding the
periodic information to TML by simple averaging of the
data over the M periods. It can be seen that the difference
between TML and SML estimation results in the low SNR
area has disappeared.

Besides, several examples with colored output measure-
ment noises were also studied. They give similar results as
for the white noise cases.
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The preceeding theoretical and numerical studies show
that, when the SNR level is large or modest, the es-
timation accuracy of SML and TML method are quite
similar. However, we should note that they are not iden-
tical, since the two methods are based on different con-

ditions/assumptions. The matrices cov(θ̂SML), cov(θ̂TML)
and CRBA are only approximately equal to each other.
It means that the difference between the two covariance
matrices is not necessarily positive definite, and there
are not any order relation between these three matrices.
For example, let us check the eigenvalues of the matrix
difference between the asymptotic covariance matrices of
TML and SML. Let the vector Λ denote the eigenvalues
of the difference matrix of the covariance matrices of the
two methods. For the second order system as (17) with the
noise-free input signal model as (19), it holds

Λ =
(

−1.96 × 10−3, 1.13 × 10−4,−1.48 × 10−4,

1.48 × 10−8, 2.97 × 10−6
)

.

It can be seen that the eigenvalues of the difference
matrix have both positive and negative values. Hence
the difference between the two covariance matrices is
indefinite. None of the two methods, SML and TML, is
uniformly better than the other.

7. USING PERIODIC DATA

When the unperturbed input is periodic, the way the
estimation problem is treated so far, both for SML and
for TML, is to average over the M periods. In this way we
get a new data set, where the data length is N (not NM
as for the original data series). The effect is also that the
variance of the measurement noise decreases with a factor
M , both on the input side and on the output side.

However, using the averaged data in this way to compute
the covariance matrix of estimates does not give the true
CRB. The true CRB is lower. The reason can be explained
as follows. Let the measured data series be a long vector,
that is partitioned into M blocks each of size N ,

Z = ( Z1 Z2 . . . ZM )
T

. (20)

Let us then make a linear (nonsingular) transformation of
the full data vector as

W =













1

M

∑

k

Zk

Z1 − Z2

. . .
ZM−1 − ZM













∆
=







W1

W2

. . .
WM






. (21)

To compute the CRB from Z must be the same as to
compute the CRB from W . However, in the simplified
form we use only W1 for computing the CRB and neglect
the remaining part of the data. The parts W2, . . . , WM

do not depend on the noise-free input, but on the noise
statistics (say the variance λ2

u of the input noise ũ(t) and
the variance λ2

y of the output noise ỹ(t)). As the CRB of
the system parameters (that is, the A and B coefficients)
and the noise parameters is not block-diagonal, it will be
beneficial from the accuracy point of view, to make use of
also the remaining data W2, . . . , WM .

To simplify things, the preceding sections consider only the
case when W1 is used. It is a reasonable thing to do and
worthwhile enough to focus on this ‘simplified or idealized
CRB’. In this section, we will further examine the effect
of additional data records W2, . . . WM . To this aim, it is
useful to use the Slepian-Bang formula, Stoica and Moses
(2005), for the CRB. It holds for Gaussian distributed data

FIMj,k =
1

2
tr
(

R−1RjR
−1Rk

)

, Rj =
∂R

∂θj

, (22)

where R denotes the covariance matrix of the full data
vector W .

Now split the covariance matrix R as

R = EWWT =

(

R11 R12

R21 R22

)

, (23)

where R11 corresponds to the data part W1 and the block
R22 is associated to W2 . . . WM .

It is easy to see that R12 = 0, and for large λ2
v

R =

(

O(λ2

v) 0
0 O(1)

)

. (24)

Write the data blocks in (20) as

Zk = Z0 + Z̃k, k = 1, . . . ,M, (25)

where Z0 denotes the effect of the noise-free input, and
the noise contributions {Z̃k}

M
k=1

are assumed to be uncor-
related between different periods. Introduce the notations

R0 = cov(Z0), R̃ = cov(Z̃k). (26)

Using the full data vector W , from (21) we have

R =



















R0 +
1

M
R̃ 0 0 . . . 0

0 2R̃ −R̃
... −R̃ 2R̃

. . .

0
. . .

. . . −R̃

0 . . . 0 −R̃ 2R̃



















=

(

R0 +
1

M
R̃ 0

0 J ⊗ R̃

)

∆
=

(

R1 0
0 R2

)

, (27)

where ⊗ denotes Kronecker product and
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J =













2 −1 0
−1 2 −1

0 −1 2
. . . −1
−1 2













. (28)

As R in (27) is block diagonal, we find directly that taking
the block R2 into account means that we get an additional
term in the Fisher information matrix. We get

FIMj,k =
1

2
tr

[

R−1RjR
−1Rk

]

=
1

2
tr

[

R−1

1
R1,jR

−1

1
R1,k

]

+
1

2
tr

[

R−1

2
R2,jR

−1

2
R2,k

]

. (29)

The first term in the RHS of (29) is the contribution when
only W1 is used. The second term can be expressed more
explicitly as

F̃j,k
∆
=

1

2
tr

[

R−1

2
R2,jR

−1

2
R2,k

]

=
1

2
tr

[

(J ⊗ R̃)−1(J ⊗ R̃j)(J ⊗ R̃)−1(J ⊗ R̃k)
]

=
1

2
tr

[

IM−1 ⊗
(

R̃−1R̃jR̃
−1R̃k

)]

=
M − 1

2
tr

[

R̃−1R̃jR̃
−1R̃k

]

. (30)

In particular, when both ỹ(t) and ũ(t) are white noise, we
have

R̃ =

(

λ2

yIN 0

0 λ2

yIN

)

. (31)

Then it is straightforward to derive

F̃λ2
y,λ2

y
=

(M − 1)N

2λ4
y

, (32)

F̃λ2
u,λ2

u
=

(M − 1)N

2λ4
u

, (33)

while all other elements of F̃ are zero. Note that due to
(13), the first term of (26) is O(λ2

v), while obviously the
second term is O(1), and is hence almost negligible for
large λ2

v.

8. CONCLUSIONS

In this paper, the asymptotic covariance matrices of the
TML method and the SML method for estimating the
EIV systems have been theoretically and numerically com-
pared. It was shown that, although these two estimates
are based on the different assumptions, they have very
similar estimation accuracy when the SNR values at both
input and output sides are not low. When the SNR is very
low (less than 0 dB), it seems that the benefit of using
the periodic information is more important than knowing
that both the signals and noises have rational spectra. A
notable accuracy difference can be observed at low SNR
regions especially for high order dynamic systems. From
the efficiency point of view, SML and TML have similar
estimation accuracy at moderate or high SNR cases.
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T. Söderström. On computing the Cramer-Rao bound and
covariance matrices for PEM estimates in linear state
space models. In Proc. 14th IFAC Symposium on System
Identification, Newcastle, Australia, March 29-31 2006.
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