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Abstract: Among the few methods available to solve bilinear matrix inequalities (BMIs) occurring in 

control design, the path-following method, published some years ago for continuous-time systems, 

appears to be one of the best approaches, as far as linearization methods are concerned. However few 

details are given in the literature about its implementation. Here, this method is applied to the design of 

mixed H2 / H∞ controllers, for continuous-time systems as well as for discrete-time systems, with full 

details of the algorithm and some improvements over the one which has been published for this kind of 

application in the continuous-time case a few years ago. The results obtained in both cases with a 

numerical example are compared with those given by a direct BMI-solving program. 

 

1. INTRODUCTION 

The mixed H2 / H∞ control problem consists in the design of 

a controller which minimizes the H2  norm of a given closed-

loop transfer function while satisfying an H∞ norm constraint 

on the same or some other closed-loop transfer function. 

This mixed H2 / H∞ control problem has been introduced in 

the early 1990’s by Khargonekar and Rotea (1991) and by 

Kaminer, Khargonekar and Rotea (1993), who transformed 

the problem of optimal control with robust stability constraint 

of Bernstein and Haddad (1989) into a convex optimization 

approach. Zhou et al. (1990) and Doyle et al. (1994) have 

proposed a solution based on coupled Riccati equations, 

which may not be very easy to solve. 

The formulation of this problem by means of linear matrix 

inequalities (LMIs) and bilinear matrix inequalities (BMIs) 

has been established later, for continuous-time systems and 

state-feedback first (Boyd et al. 1994), then extended to 

output feedback (Chilali & Gahinet 1996; Scherer & Gahinet 

1997; Leibfritz 2001), and was later applied to discrete-time 

systems (Hindi, Hassibi & Boyd 1998; de Oliveira, Geromel 

& Bernussou 1999). A nice compact presentation of the 

continuous and the discrete cases was given more recently by 

Kanev et al. (2003). Du et al. (2005) have proposed an LMI 

approach to the design of mixed H2 / H∞ control for discrete-

time systems, based on the introduction of additional slack 

variables, at the cost however of an increased formulation 

complexity, and applied it successfully to the design of disk 

drives. 

The formulation of the mixed H2 / H∞ control problem 

involves BMIs. In order to solve these matrix inequalities 

without having recourse to a BMI-solving program, an 

elegant step-by-step method, implying linearization at its 

central step, the Path-Following Method, has been published 

some years ago (Hassibi, How & Boyd 1999). One of the 

applications of this paper dealt with the design of mixed 

H2 / H∞ state-feedback controllers for continuous-time 

systems. A significant advantage of this approach, to solve 

the mixed control problem in terms of LMIs, is that it does 

not impose the use of a single Lyapunov matrix for both the 

H2 and the H∞ performances, which introduces usually 

conservatism in the design. The path-following algorithm for 

that design had however not been given in details in the paper 

of Hassibi, How and Boyd (1999), and it was also limited to 

continuous-time systems. 

The purpose of this paper is to present an improved version 

of this algorithm and its extension to discrete-time systems, 

with full details and an additional feature, which influences 

the speed and accuracy of the convergence towards a solution 

by means of an automatic adaptation of the perturbation sizes 

in the linearization step. 

The paper is organized as follows. Section 2 describes the 

H2 / H∞ control problem formulation and our path-following 

algorithm in detail. The continuous case and the discrete case 

are treated simultaneously, to ease comparisons of the 

formulas and avoid repetitions. Section 3 applies this 

algorithm, in the continuous case, to the numerical example 

of Hassibi, How and Boyd (1999) and compares the results 

with those given by these authors. Section 4 illustrates the 

application of the discrete-time version of our algorithm to an 

academic example. The results of Sections 3 and 4 are also 

compared with those obtained with a direct BMI-solving 

software. Finally Section 5 will conclude this work with some 

comments. 
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2. CONTINUOUS-TIME MIXED H2 / H∞  

CONTROLLER DESIGN 

2.1  Problem Formulation 

Consider the following linear system: 

 

w u

z zw zu

y yw

x Ax B w B u

z C x D w D u

y C x D w

σ = + +


= + +
 = +


 (1) 

where σ  represents the time-derivative operator, 

( ) ( )x t dx t dtσ = , for continuous-time systems, and the one 

sample-time forward-shift operator, ( ) ( 1)x t x tσ = + , for 

discrete-time systems, and where ( ) x
n

x t ∈ ℝ  is the system 

state, ( ) z
n

z t ∈ ℝ is the controlled outputs vector, ( ) yny t ∈ ℝ  

contains the measured outputs, ( ) u
n

u t ∈ ℝ  is the control 

signal and ( ) w
n

w t ∈ ℝ  is a vector of exogenous inputs, which 

may be reference, disturbance or noise signals. It will be 

assumed in the remaining of this paper that there exists no 

direct path from control input and measured output, 0
yu
D = , 

as is the case in most practical situations. 

In the following, only static state feedback control will be 

taken into account, which is obtained by setting, in (1), 

y
C I= , 0

yw
D = , which yields ( ) ( )y t x t= , and 

( ) ( )u t Kx t= . The closed loop has then the following state-

space description: 

 
( )

( )
u w w

z zu zw zw

x A B K x B w Ax B w

z C D K x D w Cx D w

σ = + + = +


= + + = +

ɶ

ɶ
 (2) 

where the closed-loop matrices Aɶ  and Cɶ  have been defined. 

The aim is to compute the gain matrix K  such that the H2 

norm 
2 2 2
( ( ) )

zw
L s D Rη = −T  of the closed-loop transfer 

function from an input to an output, determined respectively 

by the selection matrices 
2
R  and 

2
L , is minimized, while the 

closed-loop H∞ norm on an input-output channel determined 

by R
∞
 and L

∞
 is less than some imposed level γ , thus 

satisfies the inequality ( )L s R γ
∞ ∞ ∞

<T   

According to Kanev et al. (2003), from whom we borrow the 

use of the •  symbol to denote matrix entries that follow from 

symmetry, and that of boldface letters to denote variable 

matrices (decision variables) appearing in the inequalities, the 

BMI optimization formulation is as follows, for the 

continuous-time and the discrete-time cases: 

 :

minimize 

subject to

(a)

(b)

Tr (c)

2

2

2

2 2

0, 0,

0,:

0,

:

0, ( ) .

T T T

w

T T T

zw

T

w

T T

B R L

I R D L

I

B R

I

L

η

γ

η

∞ ∞

∞ ∞∞

2

 +
 

• − 
 

• • −  

  +
  

• −    


 
  < •   

1 2

1 1 1

2 2 2

2

P P

A P PA P C

A P PA P

P C

Z
Z

≻ ≻

≺

≺

≻

ɶ ɶ ɶ

ɶ ɶ

ɶ

H

H

Continuous case

 (3) 

 :

minimize 

subject to

(a)

(b)

Tr (c)

2

2

2

2 2

0, 0,

0

0
: 0,

0 0,

:

0, ( ) .

w

T T

T T T

zw

w

T T

B R

L

I R D L

I

B R

I

L

η

γ

η

∞

∞

∞

∞ ∞

2

 −
 

• − 
 

• • − 
 • • • −
 

  −
  −•  
  • • −
  
  
   <
 •  

1 2

1 1 1

1

22 2

2

2

P P

P PA P

P C

PAP P

P

P C

Z
Z

≻ ≻

≺

≺

≻

ɶ

ɶ

ɶ

ɶ

H

H

Discrete case

 (4) 

In both of these inequalities, the matrices ɶA  and ɶC  are also 

typed in boldface since they contain the variable matrix K . 

2.2  Path-Following Algorithm Steps 

The path-following algorithm used to solve the BMI (3) is 

basically the approach of Hassibi, How and Boyd (1999) for 

the continuous-time case and uses the same five steps. 

However it will be described here with full details and 

contains a few corrections of some of their formulas and an 

improvement in terms of speed and accuracy of convergence 

(Ostertag 2008). Furthermore this algorithm will be extended 

here to discrete-time systems, as already mentioned. 

 

Step 1: Initialization 

An initial, suboptimal value of K  is computed according 

to the method of Khargonekar and Rotea (1991), with the 

assumption that a common Lyapunov matrix is searched 

for the H2 and the H∞ problems ( =
2 1
P P ). This 

restrictive choice permits the bilinear matrix inequalities 

of (3) to be converted to equivalent LMIs. This is done in 
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the continuous case by multiplying (3)(a) from right and 

left by the symmetric matrix diag 1( , , )I I−

1
P  and its 

transpose, (3)(b) and (3)(c) by diag 1( , )I−

1
P  and its 

transpose, and by applying the change of variables 
1−=
1

Y P  and 1−= =
1

W KY KP , as is now common 

practice (Khargonekar & Rotea 1991; Boyd et al. 1994; 

El Ghaoui & Balakrishnan 1994). In the discrete case, the 

conversion consists in multiplying (4)(a) and (4)(b) 

respectively by diag 1 1( , , , )I I− −

1 1
P P , diag 1 1( , , )I− −

1 1
P P  

and their transposes, (4)(c) being treated as (3)(c). 

 

The BMIs (3) are thus replaced by the following set of 

LMIs in Y , W  and Z : 

:

minimize 

subject to

Tr

2

2

2

2

( )

0,

0,

( )
0, ( ) , 0.

T

T T

w z zuT T

u u

T T T

zw

T T T

u u w

T T

z zu

B R C D L
B B

I R D L

I

B B B R

I

C D L

η

γ

η

∞ ∞

∞ ∞

2

  + +
   +
  + +
  

• − 
 

• • −  

 + + +
 

• −  

 +
  <

•  

AY YA
Y W

W W

AY YA W W

Y Y W
Z Y

Z

≺

≺

≻ ≻

Continuous case 

 (5) 

:

minimize 

subject to

Tr

2

2

2

2

0

0 ( )
0,

0 0,

( )
0, ( ) , 0.

u w

T T

z zu

T T T

zw

u w

T T

z zu

B B R

C D L

I R D L

I

B B R

I

C D L

η

γ

η

∞

∞

∞ ∞

2

 − +
 

• − + 
 

• • − 
 • • • −
 

 − +
 

• − 
 • • −
 

 +
  <

•  

Y AY W

Y Y W

Y AY W

Y

Y Y W
Z Y

Z

≺

≺

≻ ≻

Discrete case 

 (6) 

These LMIs are solved for Y  and W , from which 
1

1
P −=Y  and 

ini

1
1

K K P−= = =WY W  are obtained. 

 

Step 2: Computation of η  and 
2
P  

Let u Kx= . The H2 norm η  of the closed-loop system 

and the corresponding Lyapunov matrix 
2
P  are then 

determined by solving (3)(b) and (3)(c) in the continuous 

case, respectively (4)(b) and (4)(c) in the discrete case, 

where the matrices Aɶ  and Cɶ  have been recalculated for 

the present value of K  according to their expressions (2) 

and are thus again constants, the decision variables being 

this time 
2
P  and Z . 

 

Step 3: Linearization 

The BMI (3) is then linearized to a first order 

approximation around K , 
1
P , 2η  and 

2
P  by means of 

perturbations Kδδδδ , 
1
Pδδδδ , 2δ ηδ ηδ ηδ η  and 

2
Pδδδδ . The first one 

induces in turn on two of the matrices of the closed-loop 

system (2) the following perturbations: 

 ,  
u zu
B D= =A K C Kɶ ɶδ δ δ δδ δ δ δδ δ δ δδ δ δ δ , 

the two other ones, 
w
B  and 

zw
D , remaining unaffected. 

To keep these perturbations small, two additional LMIs 

expressing the constraints 
1
Pα<

1
Pδδδδ  and 

2
Pα<

2
Pδδδδ  are introduced. At the difference to 

(Hassibi, How & Boyd 1999), the “smallness” of the 

perturbations is determined by this parameter α , which, 

after an initial value of 0.2, will be adjusted during the 

iterative process, as will be seen below. The decision 

variables being now the four perturbations 
1
Pδδδδ , 

2
Pδδδδ , 

Aɶδδδδ  and Cɶδδδδ , the linearized problem is expressed by the 

following LMIs to be solved in this step: 

 

:

minimize 

subject to

2

1 2

1 2

1 2

1

1 1

2

0, 0,

0, 0,

( )

( ) ( ) ( )

T

T T

w

T

T T T

zw

P P

P P

P P

A P

P A P B R C L

A A

I R D L

I

δη

α α

α α

γ

∞ ∞

∞ ∞

+ +

   
   

• •      

  + +
 
 + + + + 
 
 + 


• −
 • • −
 

1 2

1 2

1

1 1

P P

P P

A

A P C

P P

≻ ≻

≻ ≻

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

Continuous case 

δ δδ δδ δδ δ

δ δδ δδ δδ δ

δδδδ

δ δ δδ δ δδ δ δδ δ δ

δ δδ δδ δδ δ

Tr

2 2
2 2

2 2 2 2

0,

( ) ( )
( )

0,

( )
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T

wT

T T

A P P A
P B R

A A

I

P C L
η δη









  + + + +
  + 
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 

• −  

 + +
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•  

2

2 2

2

A A
P

P P
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Z
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≺

≺
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:

minimize 

subject to

2

1 2

1 2

1 2

11
1

1

1

2

0, 0,

0, 0,

( )( )
( ) 0

( ) 0 ( )

w

T T

T T T

zw

P P

P P

P P

PP A
P
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P C L

I R D L

I

δη

α α

α α

γ

∞

∞

∞ ∞

+ +

   
   

• •      

    ++
  − +  

   ⋅+   
• − + +

• • −

• • • −


1 2

1 2

11

1

1

P P

P P
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P

A

P C

≻ ≻

≻ ≻

ɶ

ɶ

ɶ ɶ

Discrete case

δ δδ δδ δδ δ

δ δδ δδ δδ δ

δδδδδδδδ
δδδδ

δδδδ

δ δδ δδ δδ δ

Tr

2 2 2 2 2

2

2 2 2 2

0,

( ) ( ) ( )

( ) 0 0,

( )
0, ( ) .

w

T T

P P A P P B R

P

I

P C L
η δη






 
 
 
 



 − + + + +
 − +• 
 • • −
 

 + +
  < +

•  

2 2 2

2

2

AP P P

P

P C

Z
Z

≺

≺

≻

ɶɶ

ɶ ɶ

δ δ δ δδ δ δ δδ δ δ δδ δ δ δ

δδδδ

δ δδ δδ δδ δ

 

Step 4: Update 

Let :K K Kδ= + , :
u

A A B Kδ= +ɶ ɶ , :
zu

C C D Kδ= +ɶ ɶ . 

 

Step 5: Computation of a New 
1
P  

Solve the SDP 

 

 :

minimize 

subject to

2

1 1

0,

( ) , 0.

T T T

w

T T T

zw

t

A A B R C L

I R D L

I

t I P P t I

γ

δ

∞ ∞

∞ ∞

 +
 

• − 
 

• • −  
− − +

P P P

P P

≺

≺ ≺ ≻

ɶ ɶ ɶ

Continuous case

 (7) 

 

 :

minimize 

subject to

2

1 1

0

0
0,

( ) , 0.

w

T T

T T T

zw

t

A B R

C L

I R D L

I

t I P P t I

γ

δ

∞

∞

∞ ∞

 −
 

• − 
 

• • − 
 • • • −
 
− − +

P P P

P

P P

≺

≺ ≺ ≻

ɶ

ɶ
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 (8) 

• If this SDP is feasible and no numerical problems 

have occurred, the obtained Lyapunov matrix P 

proves a level γ  in the H∞ norm for the closed-loop 

system and is closest to the first-order perturbed 
1
P . 

Then, let 
1
P P=  and go to step 2. 

• If not, let : /2α α= , restore values of K , Aɶ  and Cɶ  

prior to step 4, and go to step 3. This gives the 

possibility to refine the convergence towards the 

minimum value of η  in step 3, since the infeasibility 

of (7) or (8), or the numerical problems encountered 

during the resolution of these LMIs, indicate that the 

value of K  obtained at step 4 may already be 

beyond its optimal value. This added feature 

improves significantly the ability of the algorithm to 

converge towards the final solution, as compared 

with the original one. 

The iterative loop from steps 3 to 5 is stopped when the 

relative improvement in η  at step 3 is inferior to a desired 

accuracy or when a preset number of iterations is reached. 

Several verifications are then performed. First the closed-loop 

system is built with the last value of the feedback matrix K  

obtained at step 4 of the algorithm. The obtained value of η  

is then verified by applying the norm(lti_sys, 2) instruction of 

the MATLAB Control Systems Toolbox to the closed-loop 

subsystem with input and output as given by 
2
R  and 

2
L . The 

corresponding value of γ  is then also computed, by solving 

for the obtained value of K  the inequalities (3)(a), 

respectively (4)(a), which are then LMIs, with the objective 

of minimizing 2γ , or by calculating the LTI model norm of 

the closed-loop subsystem determined by R
∞
 and L

∞
 with 

the norm(lti_sys, inf) instruction. 

All the LMIs of our algorithm are solved with either the 

SeDuMi-1.1 solver (Sturm 1999), or its improved version 

contained in the CVX toolbox (Grant, Boyd & Ye 2006), and 

have been programmed with the MATLAB-interface 

YALMIP (Löfberg 2004). 

3. CONTINUOUS-TIME EXAMPLE 

3.1  Example of Hassibi et al. 

The numerical example used here is the example given by 

Hassibi, How and Boyd (1999) in Subsection 4.3 of their 

paper, reproduced here with our notations: 

 

2 2 3 3 2

1.40 0.49 1.93 0.16 1.29

1.73 1.69 1.25 , 0.81 0.96 ,

0.99 2.08 2.49 0.41 0.65

0.25
0.41 0.44 0.68

0.41 , ,
1.77 0.50 0.40

0.65

1 1 , 0 , , 0 ,

w

u z

T

zu zw y yw

A B

B C

D D C I D

L

× ×

∞

   − − − − −
   

= − − − =   
   −
   
 

 − 
= =   

− −    
 

 = = = =
 

=  .
2 2 2 2

1 0 , , 0 1 , , 2R I L R I γ
∞

   = = = =
   
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With our algorithm, the initial (suboptimal) value obtained 

for K  at step 1 is 

 
ini

1.3434 0.2886 0.4851K  = −
 

, 

resulting in 1.0392η = . If the limit of relative improvement 

in η  in step 3 is set to 0.1%, the algorithm stops after 4 

iterations and the H2 norm is reduced to 0.7489η =  with 

 1.950 0.4011 0.2109K  = −
 

. 

These results differ significantly from the values obtained by 

Hassibi, How and Boyd (1999), probably due to the errors 

mentioned here in Section 2. 

At its output our algorithm gave the following Lyapunov 

matrices: 

 

1

2

0.6385 0.5027 0.0647

0.5027 0.6494 0.0200 ,

0.0647 0.0200 0.9839

8.3292 9.7819 1.6480

9.7819 12.3536 2.9923 .

1.6480 2.9923 10.2801

P

P

 −
 

= − 
 − −
 

 −
 

= − 
 − −
 

 

These two matrices are significantly different and differ also 

from the common Lyapunov matrix 

 
1

1

0.5867 0.3977 0.0113

0.3977 0.5986 0.0147

0.0113 0.0147 0.8128

P Y −

 
 

= =  
 
 

, 

which is obtained as solution of (5) in Step 1 of the algorithm. 

This illustrates the suppression of the conservatism of the 

solution corresponding to a single Lyapunov matrix in the 

two constraints, which brings the reduction of η  form the 

initial value of 1.0392  to the final value of 0.7489 . 

3.2  Comparison with a Direct BMI-Solving Program 

The BMI (3) can also be solved directly by means of a BMI-

solver such as the program PENBMI, from PENOPT. This 

algorithm is based on a combination of penalty barrier 

methods with the Augmented Lagrangian method (Kočvara & 

Stingl 2003). The result obtained for the same numerical 

example as previously is 

 1.951 0.4015 0.2112K  = −
 

, 

with a corresponding H2 norm of 0.7489η = . This result is 

very close to ours, well within the relative accuracy chosen to 

stop our algorithm. 

4. DISCRETE-TIME EXAMPLE 

4.1  Academic example 

Assume that, for the discrete-time system 

4 1

2 2 1

2 2

2 0 0 1
, , ,

1 1 1 0

0 1 0

1 0 1
, , 0 ,

1 1 0

0 1 1

, 0 ,

1 0 0 0 0 0 1 0
, 1, , 1 ,

0 1 0 0 0 0 0 1

w u

z zu zw

y yw

A B B

C D D

C I D

L R L R

×

×

∞ ∞

     
= = =     
          
   
   
   

= = =   
   
      

= =

   
= = = =   
      

 

we want to calculate a state feedback controller which 

minimizes the H2 norm η  of the closed loop from w  to 

2 2
z L z=  while the H∞ norm of the closed loop from w  to 

z L z
∞ ∞

=  is less than some imposed level γ . 

For this example, the optimal H2 controller that we have 

calculated (with no constraint on 
wz∞ ∞
T ) provides the 

closed-loop performance 
min

2.3375η =  and the optimal H∞ 

controller (with no constraint on 
2 2

wz
T ) gives a closed-loop 

performance 
min

2γ = . We have thus applied our mixed-

objective, discrete-time algorithm with an upper bound of 

2.5γ =  and a desired accuracy for η  of 0.1 %. After four 

iterations, the following results were obtained: 

 2.398 0.6026K  = − −
 

, 

with and2.4179 2.3414η γ= = . 

The two following Lyapunov matrices are produced at the 

output of the algorithm: 

 
1

2

1.5776 0.9190

0.9190 0.7961

4.1138 1.4298

1.4298 0.9590

P

P

 
=  
  

 
=  
  

 

which had been initialized in step 1 with the following 

solution of (6): 
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1

2.3477 1.2117

1.2117 0.9836
P

 
=  
  

. 

The same comment applies here as in the continuous case 

example. 

4.2  Comparison with a Direct BMI-Solving Program 

Again, the direct resolution of (4) by PENBMI yields for this 

example the following results: 

 2.3972 0.6025K  = − −
 

, 

with  and 2.3418 2.4178η γ= = . 

5. CONCLUDING REMARKS 

In this work, we have presented the path-following method as 

an alternative to the solution of mixed H2 / H∞ state-feedback 

controller design, without having recourse to a BMI-solver 

code. The algorithm, described in details both for the 

continuous and the discrete case, is straightforward and can 

be implemented with pure LMI solving tools. The advantage 

over BMI solvers is that it gives a better overview during the 

convergence process, and that there exist very efficient LMI 

solvers, available freely. Two numerical examples, one 

coming from the original publication concerning the mixed 

H2 / H∞ state-feedback design in the continuous case and an 

academic example in the discrete case, have shown that the 

results given by our algorithm are as good as the ones yielded 

by a commercially available direct BMI-solving program, in 

both cases. A possible extension to our method to the design 

of full order dynamic output feedback is under investigation. 
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