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Abstract: We design an exponentially stabilizing feedback controller and observer for the
Rayleigh beam using noncollocated measurement and actuation. Our strategy is to use a
damping boundary feedback combined with a backstepping-like coordinate transformation to
transform the system into an exponentially stable system. The same idea is used to design our
observer. Simulation results are included to illustrate the performance of the closed-loop system.

1. INTRODUCTION

The dynamic behavior of many physical systems can be
described by partial differential equations and boundary
controller design for these systems is a topic of considerable
interest. In this paper, we consider a boundary controller
design for the Rayleigh beam.

The Rayleigh beam model is the beam model which adds
the rotary inertia effects to the Euler-Bernoulli beam,
and is the formal limit of the Timoshenko beam when
neglecting the shear distortion [1]. This model can be
found in some mechanical systems such as the rotor-
bearing systems [2], [3]. Previous works on the control
of the Rayleigh beam include [4]-[8] and most of them
use the Riesz basis approach. In this paper, we use the
idea of damping boundary feedback [9] combined with
the backstepping approach [10]-[11] to design a stabilizing
controller and observer using noncollocated measurement
and actuation which is more implementable to several
applications than collocated control.

Our paper is organized as follows. In Section 2, we present
the Rayleigh beam model and a change of variable that
reduces the beam model to a wave equation. In Section
3, we design a boundary controller using a backstepping-
like integral transformation that transforms our reduced
model into an exponentially stable system. In Section 4,
we use the same idea to design an observer, which employs
measurement only at the beam tip. In Section 5, simulation
results are presented to illustrate the performance of
the closed-loop system. Finally, conclusions are given in
Section 6.

2. MODEL

The mathematical model of the Rayleigh beam is a second-
order in time, fourth order in space PDE
ρAwtt(x, t) + wxxxx(x, t) − ρIwxxtt(x, t) = 0 x ∈ [0, 1](1)

Here, we consider the clamped-end boundary conditions
w(0, t) = wx(0, t) = 0 (2)

where w(x, t) denotes the tranverse displacement of the
beam at the position x for time t, ρ is the density of the

beam, A is the cross sectional area of the beam, and I is
the mass moment of inertia of the beam’s cross section.
All parameters are dimensionless [1].

Fig 1: A Rayleigh beam clamped at x = 0.

We introduce a new variable
u(x, t) = ρIwxx(x, t) − ρAw(x, t) (3)

Then,

utt(x, t) = ρIwxxtt(x, t) − ρAwtt(x, t) = wxxxx(x, t)

=
1
ρI

(
uxx(x, t) + ρAwxx(x, t)

)

=
1
ρI

(
uxx(x, t) +

A

I

(
u(x, t) + ρAw(x, t)

))

=
1
ρI

uxx(x, t) +
A

ρI2
u(x, t) +

A2

I2
w(x, t) (4)

By solving an ODE in the spatial variable (3), we get

w(x, t) = w(0, t) cosh

√
A

I
x + wx(0, t)

√
I

A
sinh

√
A

I
x

+
1

ρ
√

AI

x∫
0

sinh

√
A

I
(x − y)u(y, t)dy

=
1

ρ
√

AI

x∫
0

sinh

√
A

I
(x − y)u(y, t)dy (5)

Substituting (5) into (4) yields

utt(x, t) =
1
ρI

uxx(x, t) +
A

ρI2
u(x, t)

+
A3/2

ρI5/2

x∫
0

sinh

√
A

I
(x − y)u(y, t)dy (6)
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with the boundary condition
u(0, t) = ρIwxx(0, t) (7)

Thus, we transform the beam model (1)-(2) into a wave
equation (6)-(7). In the next section, we will stabilize (6)-
(7) using a backstepping-like coordinate transformation,
which transforms (6)-(7) into an exponentially stable sys-
tem.

3. CONTROLLER DESIGN

We are going to stabilize (6)-(7) by employing a feedback
control at the end x = 1 through two control inputs
wx(1, t) and wxxx(1, t). It should be noted that our orig-
inal model (1)-(2) is fourth-order in space. Therefore, it
requires two boundary conditions at each end.
Consider the target system

vtt(x, t) =
1
ρI

vxx(x, t) (8)

with boundary conditions

v(0, t) = 0 (9)

vx(1, t) =−cvt(1, t) (10)
where c > 0 is a design parameter. It was proved in [9]
that (8)-(10) is exponentially stable in the L2 sense.
We look for a backstepping-like coordinate transformation

v(x, t) = u(x, t) −
x∫

0

k(x, y)u(y, t)dy (11)

which transforms (6)-(7) into (8)-(10).
From (11), we get

v(0, t) = u(0, t) (12)

From (3) and (5), we get

wx(x, t) =
1

ρ
√

AI
{ρIwxx(0, t) − u(0, t)} sinh

√
A

I
x

+
1
ρI

x∫
0

cosh

√
A

I
(x − y)u(y, t)dy (13)

Setting x = 1 in (13), we can find an expression of u(0, t)
as follows.

u(0, t) =
−ρ

√
AI

sinh
√

A
I

[
wx(1, t) −

√
I

A
sinh

√
A

I
wxx(0, t)

− 1
ρI

1∫
0

cosh

√
A

I
(1 − y)u(y, t)dy

]
(14)

Thus, from (12) and (14) we choose our boundary feedback
controller as

wx(1, t) =

√
I

A
sinh

√
A

I
wxx(0, t)

+
1
ρI

1∫
0

cosh

√
A

I
(1 − y)u(y, t)dy (15)

Then, we choose another boundary feedback controller in
the form of the Neumann actuation.
By differentiating (11) with respect to x, we get

vx(x, t) = ux(x, t) − k(x, x)u(x, t) −
x∫

0

kx(x, y)u(y, t)dy

(16)
Setting x = 1 in (16) and using (10) to find an expression
of ux(1, t), we get

ux(1, t) =−cvt(1, t) + k(1, 1)u(1, t) +

1∫
0

kx(1, y)u(y, t)dy

= k(1, 1)u(1, t) − cut(1, t) +

1∫
0

kx(1, y)u(y, t)dy

+c

1∫
0

k(1, y)ut(y, t)dy (17)

Therefore, from (3) and (15) we have our boundary feed-
back controller as

wxxx(1, t) =

√
A

I
sinh

√
A

I
wxx(0, t) +

k(1, 1)
ρI

u(1, t)

− c

ρI
ut(1, t) +

1
ρI

1∫
0

(
kx(1, y)

+
A

I
cosh

√
A

I
(1 − y)

)
u(y, t)dy

+
c

ρI

1∫
0

k(1, y)ut(y, t)dy (18)

By differentiating (11) twice with respect to x and dif-
ferentiating (11) twice again with respect to time, then
substituting the result into (8), we get

0 =

x∫
0

{
kxx(x, y) − kyy(x, y) − A

I
k(x, y)

+(
A

I
)3/2 sinh

√
A

I
(x − y)

−(
A

I
)3/2

x∫
y

k(x, ξ) sinh

√
A

I
(ξ − y)dξ

}
u(y, t)dy

+
[A

I
+ 2

d

dx
k(x, x)

]
u(x, t) + k(x, 0)ux(0, t) (19)

Because (19) holds for all u(x, t), the kernel k(x, y) must
satisfy the following PDE

kxx(x, y) = kyy(x, y) +
A

I
k(x, y) − (

A

I
)3/2 sinh

√
A

I
(x − y)

+(
A

I
)3/2

x∫
y

k(x, ξ) sinh

√
A

I
(ξ − y)dξ (20)
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with boundary conditions

k(x, x) = − A

2I
x, k(x, 0) = 0 (21)

The well-posedness of the PDE (20)-(21) and the invert-
ibility of the transformation (11) were proved in [12].
Hence, the closed-loop behavior of u(x, t) is equivalent to
the behavior of v(x, t), which decays exponentially. From
(5), we see that w(x, t) also decays exponentially. Thus,
we conclude that (1)-(2) with the controllers (15) and
(18) is exponentially stable in the L2 sense. However, the
controllers (15) and (18) need the measurements of u(x, t)
and ut(x, t) along the whole beam. In the next section,
we will show that such measurements are not necessary
by using the same idea as in this section to design our
observer.

4. OBSERVER DESIGN

We will design an observer to estimate the state u(x, t)
by employing measurement only at the end x = 0. Then,
instead of (15) and (18), we use the boundary feedback
controllers

wx(1, t) =

√
I

A
sinh

√
A

I
wxx(0, t)

+
1
ρI

1∫
0

cosh

√
A

I
(1 − y)û(y, t)dy (22)

wxxx(1, t) =

√
A

I
sinh

√
A

I
wxx(0, t) +

k(1, 1)
ρI

û(1, t)

− c

ρI
ût(1, t) +

1
ρI

1∫
0

(
kx(1, y)

+
A

I
cosh

√
A

I
(1 − y)

)
û(y, t)dy

+
c

ρI

1∫
0

k(1, y)ût(y, t)dy (23)

where û(x, t) is generated by an observer to be designed.
The observer equation is given by

ûtt(x, t) =
1
ρI

ûxx(x, t) +
A

ρI2
û(x, t)

+
A3/2

ρI5/2

x∫
0

sinh

√
A

I
(x − y)û(y, t)dy

− 1
ρI

(
p(x, 0)p(0, 0) − py(x, 0)

)(
ρIwxx(0, t) − û(0, t)

)
− 1

ρI
p(x, 0)

(
ρIwxxx(0, t) − ûx(0, t)

)
(24)

û(0, t) = ρIwxx(0, t) +
1

p(0, 0) − c1

(
ρIwxxx(0, t) − ûx(0, t)

)
− c0

ρ(0, 0) − c1

(
ρIwxxt(0, t) − ût(0, t)

)
(25)

ûx(1, t) = ux(1, t) (26)

The observer employs the shear measurement wxxx(0, t),
the moment wxx(0, t) and its derivative wxxt(0, t). The
input ux(1, t) in (26) is substituted from the controller (17)
with u(x, t) replaced by û(x, t). Unlike [11], eq. (35), we
can avoid using the measurement at x = 1 in our observer.
Denoting the observer error as ũ(x, t) = u(x, t) − û(x, t),
then substituting (24)-(26) from (6), (7), we obtain the
observer error dynamics

ũtt(x, t) =
1
ρI

ũxx(x, t) +
A

ρI2
ũ(x, t)

+
A3/2

ρI5/2

x∫
0

sinh

√
A

I
(x − y)ũ(y, t)dy

+
1
ρI

(
p(x, 0)p(0, 0) − py(x, 0)

)
ũ(0, t)

+
1
ρI

p(x, 0)ũx(0, t) (27)

ũx(0, t) =−(p(0, 0) − c1)ũ(0, t) + c0ũt(0, t) (28)

ũx(1, t) = 0 (29)

We look for a backstepping-like coordinate transformation

ũ(x, t) = ṽ(x, t) −
x∫

0

p(x, y)ṽ(y, t)dy (30)

which transforms (27)-(29) into an exponentially stable
system in the L2 sense

ṽtt(x, t) =
1
ρI

ṽxx(x, t) (31)

with boundary conditions

ṽx(0, t) = c0ṽt(0, t) + c1ṽ(0, t) (32)

ṽx(1, t) = 0 (33)

where c0, c1 > 0 are design parameters.

Using (27)-(33), we get

0 =

x∫
0

{
pxx(x, y) − pyy(x, y) +

A

I
p(x, y)

−(
A

I
)3/2 sinh

√
A

I
(x − y)

+(
A

I
)3/2

x∫
y

p(ξ, y) sinh

√
A

I
(x − ξ)dξ

}
ṽ(y, t)dy

+

[
2

d

dx
p(x, x) − A

I

]
ṽ(x, t) (34)

px(1, y) = 0, p(1, 1) = 0 (35)
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Because (34)-(35) should hold for all ṽ(x, t), the kernel
p(x, y) must satisfy the following PDE

pyy(x, y) = pxx(x, y) +
A

I
p(x, y) − (

A

I
)3/2 sinh

√
A

I
(x − y)

+(
A

I
)3/2

x∫
y

p(ξ, y) sinh

√
A

I
(x − ξ)dξ (36)

with boundary conditions

p(x, x) =
A

2I
(x − 1), px(1, y) = 0 (37)

By the change of variable p(x, y) = p̄(x̄, ȳ), where x̄ = 1−y
and ȳ = 1 − x, (36)-(37) are transformed into

p̄x̄x̄(x̄, ȳ) = p̄ȳȳ(x̄, ȳ) +
A

I
p̄(x̄, ȳ) − (

A

I
)3/2 sinh

√
A

I
(x̄ − ȳ)

+(
A

I
)3/2

x̄∫
ȳ

p(x̄, ξ) sinh

√
A

I
(ξ − ȳ)dξ (38)

p̄(x̄, x̄) =− A

2I
x̄, p̄ȳ(x̄, 0) = 0 (39)

It was proved in [12] that (38)-(39) is well-posed. Hence,
the observer error dynamics (27)-(29) is exponentially
stable in the L2 sense.

5. SIMULATION RESULTS

First, we consider the gain kernels k(1, y) and kx(1, y)
used in the controller (18) and given by (20)-(21). By the
method of successive approximations [12] we obtain the
recursive relation for k(x, y)

k(x, y) = lim
n→∞ kn(x, y) (40)

k0(x, y) =− A

2I
y cosh

√
A

I
(x − y) (41)

kn+1(x, y) = k0(x, y) +
A

I

x+y
2∫

x−y
2

x−y
2∫

0

kn(σ + s, σ − s)dsdσ

+(
A

I
)3/2

x+y
2∫

x−y
2

x−y
2∫

0

σ+s∫
σ−s

kn(σ + s, ξ)

× sinh

√
A

I
(ξ − σ + s)dξdsdσ (42)

The same idea is used to determine the observer gain
kernels p(x, 0) and py(x, 0) used in the observer (24) and
given by (36)-(37). Thus, we obtain

p̄(x̄, ȳ) = lim
n→∞ p̄n(x̄, ȳ) (43)

p̄0(x̄, ȳ) =− A

2I

(
ȳ cosh

√
A

I
(x̄ − ȳ)

+

√
I

A
sinh

√
A

I
(x̄ − ȳ)

)
(44)

p̄n+1(x̄, ȳ) = p̄0(x̄, ȳ)

+
A

I

x̄+ȳ
2∫

x̄−ȳ
2

x̄−ȳ
2∫

0

p̄n(σ + s, σ − s)dsdσ

+
2A

I

x̄−ȳ
2∫

0

σ∫
0

p̄n(σ + s, σ − s)dsdσ

+(
A

I
)3/2

x̄+ȳ
2∫

x̄−ȳ
2

x̄−ȳ
2∫

0

σ+s∫
σ−s

p̄n(σ + s, ξ)

× sinh

√
A

I
(ξ − σ + s)dξdsdσ

+2(
A

I
)3/2

x̄−ȳ
2∫

0

σ∫
0

σ+s∫
σ−s

p̄n(σ + s, ξ)

× sinh

√
A

I
(ξ − σ + s)dξdsdσ (45)

p(x, 0) = p̄(1, 1 − x), py(x, 0) = −p̄x̄(1, 1 − x) (46)

Using symbolic calculation in MATLAB with parameters
ρ = 100, A = I = 0.01, we get the numerical values of the
gain kernels k(1, y), kx(1, y), p(x, 0) and py(x, 0) as shown
in the Figures 2, 3, 4 and 5 respectively.

Next, we will simulate a dynamic behavior of the Rayleigh
beam model (1)-(2) in both the uncontrolled case and the
controlled case with and without the observer. However,
we simulate our transformed model (6) instead and use
the transformation (5) to convert back to (1)-(2). By
discretizing (6) in space using the step size h = 0.01, our
PDE system turns into a large system of linear ODEs
with constant coefficients. Finally, we use Zakian IMN

recursions [14] (see also [15]) which is A-stable for
N − 2 ≤ M ≤ N − 1. We choose M = 3, N = 4 and use
the step size ts = 0.05 sec. The parameters are chosen as
c = 0.5, c0 = 1 and c1 = 0.9 with the initial conditions

w(x, 0) = x2(1 − x)2, wt(x, 0) = 0

for the plant and

û(x, 0) =
u(x, 0)

2
, ût(x, 0) = 0

for the observer.

Figure 6 shows the beam response for the uncontrolled
case with the boundary conditions w(1, t) = wx(1, t) = 0.
It is obvious that the response is oscillatory.
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Fig 2: Gain kernel k(1, y) of the controller (18).
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Fig 3: Gain kernel kx(1, y) of the controller (18).
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Fig 4: Gain kernel p(x, 0) of the observer (24).
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Fig 5: Gain kernel py(x, 0) of the observer (24).

Fig 6: Beam response w(x, t) (uncontrolled case, clamped at x = 1).

Fig 7: Beam response w(x, t) (controlled case with controller (15),(18)).

Fig 8: Beam response w(x, t) (controlled case with observer).

Fig 9: Observer error response ũ(x, t) in (27)-(29).
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Figure 7 shows the asymptotic stability of the beam
response for the controlled-case without the observer,
while Figure 8 shows the asymptotic stability of the beam
response for controlled case with the observer (24)-(26).
The response shown in Figure 8 has a slower rate of decay
than the one in Figure 7.

Figure 9 shows the observer error response, which ap-
proaches zero as t → ∞.

6. CONCLUSIONS

In this paper, we design a boundary feedback stabilizing
controller for the Rayleigh beam. First, we transform
a fourth-order in space beam equation into a second-
order in space wave equation. To stabilize the transformed
model, we use a backstepping-like integral transformation
to transform it into an exponentially stable target system,
and solve the kernel equation for the controller gains. The
same idea is used to design an observer, which employs
measurement only the the beam tip. Simulation results
are presented, which show the stability of the closed-loop
system.
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