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Abstract: A well-known problem in indirect optimal control is to find a suitable initial guess
for the adjoint states which is sufficiently close to the optimal solution. This paper presents
a new homotopy approach to overcome this problem by deriving an auxiliary optimal control
problem (OCP) for which the adjoint states are simply zero. A continuation method is employed
to smoothly reach the original OCP. The auxiliary OCP can be derived with respect to any given
initial trajectory of the system, for instance obtained by forward integration. The approach is
applied to the space shuttle reentry problem, which represents a benchmark problem in optimal
control due to its high numerical sensitivity with respect to the initial solution.
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1. INTRODUCTION

Lately, optimal control problems (OCPs) have received
much attention especially in the context of Model Predic-
tive Control, which in turn has spurred interest in efficient
numerical methods for real-time applications (Allgower
et al., 1999; Kouvaritakis and Cannon, 2001; Diehl et al.,
2002).

The numerical methods for solving OCPs can roughly be
divided in two different classes. In the direct approach, the
model equations of the considered system are discretized
and the state and control trajectories are parametrized in
order to obtain a finite-dimensional parameter optimiza-
tion problem, see e.g. (Hargraves and Paris, 1987; Betts,
1998, 2001; Seywald, 1994; Nocedal and Wright, 1999).
The well-known advantage of the direct approach is the
good numerical robustness with respect to the initial guess
as well as the handling of constraints. On the other hand,
indirect approaches are based on Pontryagin’s maximum
principle (Pontryagin et al., 1962; Bryson and Ho, 1969)
and require the solution of a two—point boundary value
problem (BVP). Indirect methods are known to show a fast
numerical convergence in the neighborhood of the optimal
solution and to deliver highly accurate solutions, which
makes them particularly attractive in aerospace industries.
However, a main difficulty in the indirect method is the
requirement of a good initial guess of the trajectories,
especially of the adjoint states. If the initial guess is too
far away from the optimal solution, the numerical solution
of the BVP will in general fail to converge.

The problem of finding a suitable initial guess for the
adjoint states has attracted much attention. In particular,
von Stryk and Bulirsch (1992) proposed to use both direct
and indirect methods combined in a hybrid scheme to
overcome the initial guess problem and applied the method
to the reentry problem. Further approaches to calculate
the adjoint states based on trajectories obtained from
direct methods are proposed e.g. by Martell and Lawton
(1995) and Seywald and Kumar (1996). However, all these
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approaches still require the direct method to obtain initial
near—optimal guesses for the indirect solution.

The main contribution of this paper is to present a new
homotopy approach, which is based on an auxiliary OCP
for which the adjoint states are simply zero. Starting from
the auxiliary OCP, a continuation method is employed to
smoothly reach the original OCP. The auxiliary OCP can
be derived for any given initial trajectory of the system,
e.g. obtained by forward integration. Hence, the homotopy
approach can be seen as “self-contained”, since it does
not require any initial near—optimal trajectory from direct
optimization approaches.

For the sake of illustration, the homotopy approach is
applied to the space shuttle reentry problem, which is
a frequently used benchmark in optimal control due to
several challenging features like highly nonlinear dynamics
and a high numerical sensitivity with respect to the initial
guess of the trajectories. Direct optimization methods have
been used for various reentry problems by Betts (2001);
Bonnans and Launay (1998), and Neckel et al. (2003) in
the context of inverse dynamic optimization. The indirect
method based on Pontryagin’s maximum principle has
been applied to reentry problems e.g. by Pesch (1994);
Kreim et al. (1996); Bonnard et al. (2003).

The paper is organized as follows: In Section 2, the homo-
topy approach based on the auxiliary OCP is introduced
for a general class of OCPs. The reentry problem and the
optimal control objective is described in Section 3. Finally,
Section 4 shortly explains the collocation method, which is
used to solve the 2—-point BVP of the reentry problem and
presents the reentry trajectories by using the homotopy
approach via the auxiliary OCP.

2. HOMOTOPY APPROACH WITH AUXILIARY OCP

The considered OCP is to minimize a cost functional
T

J(z,u,t) = p(z(T),T) —l—/o L(z,u,t)dt (1)
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with the free end time T, subject to the system equations
and initial conditions

&= f(z,u), x(0)=z9€R", weR™ (2a)
and the partial final conditions
.Iﬁl(T) :.’I,’TJ‘7 Z: 1,,q (2b)

for the first ¢ states z;, 7 = 1,...,q of the state vector
r = (z1,...,2,)". Due to the final conditions (2b), it
is generally assumed that the final cost term ¢(x(T),T)
in (1) only depends on the remaining n — ¢ states, i.e.

o= (T),T), i=q+1,...,n
2.1 Necessary optimality conditions

The OCP (1), (2) can be solved with the indirect method
in optimal control using the calculus of variations (Bryson
and Ho, 1969). By defining the Hamiltonian

H(z, A u,t) = Lz, u,t) + AT f (2, ),
the first—order necessary conditions for an optimal solu-
tion of the OCP (1), (2) concern the minimization of
H(x, A, u,t) with respect to u,

OH _ 0L\ +0f

Eia TR T ®)
and the adjoint equations
: OH 0L of
T T
= o= AT 4
A or  Ox A ox’ (42)
with the final conditions
dp .
(T) = —— = 1,... 4
MDD = G2 imat e )

to be satisfied. The free (unknown) end time T is taken
into account by the transversality condition

Oy
3t |, (5)

The ordinary differential equations (ODES) and bound-
ary conditions (2), (4), (5) together with the algebraic
equation (3) form a two—point BVP. Its numerical solution
yields the optimal state trajectories x*(t), A*(t), the opti-
mal control w*(t), t € [0,7*] and the optimal end time T*.

H(z, A\ u,t)|p =

2.2 Auziliary optimal control problem

A main obstacle for solving the above BVP (2)—(5) is the
initial guess of the adjoint trajectories A(t), t € [0,T] and
the guess of the free end time 7. If A(t) and T are not
sufficiently close to the optimal solution \*(t) and T,
the numerical solution of the BVP may not converge. As
mentioned in the introduction, several approaches exist in
the literature to address this problem, see e.g. (von Stryk
and Bulirsch, 1992; Martell and Lawton, 1995; Seywald
and Kumar, 1996). However, they typically require a near—
optimal trajectory (usually by involving direct optimiza-
tion methods) to calculate an initial trajectory for the ad-
joint state, which is sufficiently close to the optimal one. In
contrast to this, the focus of this section is to construct an
auxiliary OCP for a given (not necessarily near—optimal)
trajectory of the system for which the optimal solution of
the adjoint state can easily be derived. This auxiliary OCP
is then used in a homotopy approach to reach the original

OCP (1), (2).

In a first step, it is assumed that an initial trajectory
(2°(t),u’(t)), t € [0,T°] with a certain final time T° is

known, which satisfies the system equations and initial
conditions in (2a):
i% = f(2°u®), 2000) = a0, (6a)

In general, the partial final conditions (2b) will not be
satisfied but evaluate to a residual

29(T°%) = 2. (6b)
at the end time 7. One possibility to derive the trajectory
(2°(t),u’(¢)) is, for instance, a numerical forward inte-
gration of the system over the time interval ¢ € [0,77].
The final time 7° should be reasonably chosen within the
range of the expected optimal final time T of the original
OCP (1), (2), while keeping the distance between the final
values in (2b) and (6b) sufficiently small.

The idea of the homotopy approach is to derive an auxil-
iary OCP for which the optimal solution is exactly the
initial trajectory (z°(¢),u°(t)),t € [0,7°]. This can be
achieved by minimizing the cost

T

JO(u,t) = (T +/ LO(u,t)dt (7)
0
with the functions !
1 1 2
P(0) = LT, L0, 1) = ¢ ut)—® (¢ TYT))
and the free end time T, subject to the system (2a)
z = f(ac,u), 1’(0) = Zo (83)
and the modified final conditions
i(T)=a%,, i=1,....q (8b)

adapted from (6b). Obviously, the optimal solution to the
OCP (7), (8) is the end time T = T° and the previous
trajectory (z°(t),u°(t)) which results in the minimal cost
J%(u,t) = 0 and satisfies the final conditions (8b).

The derivation of the corresponding adjoint state solution
A(t) = AO(t) requires a closer look at the optimality
conditions. The Hamiltonian

HO(x, N\, u,t) = LO(u, t) + AT f(x,u) 9)
yields
L,
ou ou ou
0 0 T T0f (10)
= (u—u"(t T%T)) +A 8—u:0,

whereby 0L°/9u simplifies due to |u — u®? = 37" (u; —
u?)2. The symbol I,,, denotes the (m x m) unit matrix.
The adjoint system is defined accordingly by

‘ oH" of
A= =-AT 11
ox oz (11a)
with the homogeneous final conditions
X (T) = 0% o icgil..m (11b)
7 _axiT_ ) =q PR
In view of the fact that z(t) = 2°(¢ u(t) = u¥(t) is

the optimal solution to the OCP
that the trivial adjoint state A(¢
optimality conditions (10) and (

) an
7), (8), tdlrectly follows
= \0(t) = 0 satisfies the
)

1 The time normalization ¢t T?/T in the running cost L% (u,t) in (7)
is necessary, since u®(t T°/T) is only defined on ¢ € [0,T°] and not
on the (free) time interval [0, T7.

(
)
11
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In addition, the transversality condition

e

ot |
must hold for the free end time T, which is consistent with
the previous statement that u(t) = u%(t) is the optimal
control with 7 = T°: for u(t) = u°(#) and the trivial
optimal adjoint state A(t) = A\°(t) = 0, the Hamiltonian
(9) evaluates to zero and the transversality condition (12)
yields T = T° as the optimal end time.

H(z, M\ u,t)|, = =—(T-7% (12)

2.8 Continuation towards original OCP

The auxiliary OCP (7), (8) defined in the previous section
can be used as starting point for a continuation scheme to
eventually reach the original OCP (1), (2). Hence, the cost

to be minimized
T

J(x, N\ u,t) = o°(2(T), T) +/0 Le(z,u,t)dt  (13a)
with the cost functions
S (D). T) = o)1) + (L= o) T), o

L¢(x,u,t) = ¢; L(z,u,t) + (1 — 1) L°(u, t)

depends on a first continuation parameter ¢; € [0, 1] which
is used to smoothly transform J¢(z, A, u,t) from the aux-
iliary cost (7) for ¢; = 0 to the original one (1) for ¢; = 1.
The system equations and initial conditions (2a) remain
unchanged, i.e.

&= f(z,u), z(0) = xo, (14a)
whereas the final conditions (2b) and (8b) are coupled by
a second continuation parameter ¢y € [0, 1]:

2 (T) =coxp; + (1 —c2) xOT’Z-, (14b)

Hence, both parameters ¢ = (c1,cq) separately affect
the cost (13) and the final conditions (14b). Starting at
¢ = (0,0) corresponds to the auxiliary OCP (7), (8),
whereas ¢ = (1, 1) yields the original one (1), (2).

1=1,...,q.

The optimality conditions are derived with the Hamilto-
nian

He(z,\,u,t) = L¢(x,u, t) + A f(z,u)

af
Ti =
A ou

and yield
OH® OL°

ou Ju
as well as the adjoint system

COH®  OL°  1Of

0 (15)

3T
= = = 1
A o o " b’ (16a)
0p° Jp )
MN(T) = = — =1,... 16b
z( ) al’z . C1 8%‘1 Ta ? ) 4 ( 6 )
and the transversality condition
Hc(a:,)\,u,t)|T =— ¢
ot |p
9o (17)
=—c—| —(1—e)(T-T7.
“ |, (I —c)( )

Note the simplification of the right-hand sides of (16b)
and (17) due to the specific structure of the final cost
©°(x(T),T) in (13b).

The ODEs and boundary conditions (14), (16), (17) to-
gether with the algebraic equation (15) define a two—point
BVP for the states z(t), A(t), the optimal control w(¢),
and the end time T in dependence of the continuation
parameters ¢ = (¢, ¢2).

The optimal solution (z*(t), A*(t), u*(t), T*) of the original
OCP (1), (2) can be obtained for ¢ = (1,1) by following a
homotopy map in N steps and successively increasing the
two continuation parameters ¢ = (¢, ¢2) according to

OSC%S...SC{V_lgci\[:l,

0<eh<... <t <y =1.

The first run of the homotopy is initialized with the
auxiliary trajectory (z°(t),u°(t)), t € [0,T9] and A\°(¢) =
0, whereas the subsequent steps use the solution of the
previous run as initialization.

Since two continuation parameters ¢ = (c1,ca) separately
affect the cost (13) and the boundary conditions (14b),
some freedom exists concerning how c¢; and co are in-
creased and how many steps N are used until ¢ = (1,1)
is reached. Moreover, the homotopy path as well as the
number of necessary steps N also strongly depends on
the system dynamics and the respective cost function
and are connected to the properties of controllability and
convexity.

The homotopy approach is simplified if the initial trajec-
tory (0(t),u’(t)), t € [0,T°] directly satisfies the desired
final conditions (2b), i.e. #.; = wr;. In this case, the

boundary conditions (14b) of the homotopy approach re-
duce to the original ones (2b). Hence, the second continua-
tion parameter ¢y is not required and only the cost (13) has
to be converted to the desired one (1) by means of ¢;. This
special case is always given if the considered system (2a)
is flat, such that the boundary conditions in (2) and the
initial trajectory (z°(¢),u°(t)), t € [0, T°] can be expressed
in terms of a flat output and its time derivatives (Fliess
et al., 1995). The flatness approach readily solves the
motion planning problem, i.e. (2b) can always be enforced
and the corresponding trajectory (z°(t),u’(t)) is easily
computed. Another method in the context of feedforward
control design is developed in (Graichen et al., 2005;
Graichen, 2006), which can be adapted to compute an
initial trajectory (z°(t),u°(t)), t € [0,TY] satisfying the
boundary conditions in (2).

3. SPACE SHUTTLE REENTRY PROBLEM

The homotopy approach presented in the last section is
applied to the space shuttle reentry problem, which is an
ideal benchmark example for the homotopy method due
to its high numerical sensitivity with respect to the initial
guess of the trajectories. This section describes the model
equations of the space shuttle before the optimal control
problem is adapted to the homotopy BVP (14)—(17).

3.1 Equations of motion and optimal control objective

Several versions and problem formulations of the reen-
try optimal control problem exist in the literature, see
e.g. (von Stryk and Bulirsch, 1992; Kreim et al., 1996;
Betts, 2001). The reentry problem used in this contribu-
tion is due to Betts (2001). The equations of motion of the
space shuttle are
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h=wvsin~y, (18a)
0= _W —g(h)sin~y, (18b)
ﬁ:Wcosﬁ—&—COS’y(Re_i_h—gg}m)’ (18¢)
0 = R:ir W cosycos (18d)
b= Rei N cosysinvy/ cosf (18f)

with altitude h, velocity v, flight path angle -y, latitude 6,
azimuth v, and longitude ¢ as the states of the system.
The controls of the space shuttle are the angle of attack a
and the bank angle 3.

The gravity g(h) and atmospheric density p(h) are mod-
eled by

g(h) = u/(Re + h)*,  p(h) = poexp[~h/h,]
and determine the lift and drag functions

L(h,v,a) = %CL(Q)Sp(h) v?,

(19)

1 (20a)
D(h,v,a) = 3 cp(a)Sp(h) v?
with
cr(o) =ag+a1é, a=180a/7,
cpla) = by + b1é + bad? .
The corresponding parameters are listed in Table 1.

(20D)

The shuttle reentry starts at the initial conditions
h(0) = 260000 ft, v(0) = 25600 ft/s,
~7(0) = —1 deg, 6(0) = 0 deg,
¥(0) = 90 deg, ¢(0) =0 deg .

The final point of the reentry trajectory occurs at the

unknown end time T at the so—called terminal area en-

ergy management (TAEM), which is defined by the con-
ditions (Betts, 2001)

h(T) = 80000ft, v(T)=25001t/s, v(T) = —5deg. (22)
The objective of the reentry problem is to maximize

the cross-range, which is equivalent to maximizing the
altitude 6(T).

(21)

Symbol Value Symbol Value
m 0.1407654 - 1017 ft /s2 £0 0.002378 Ibs /ft3
Re 20902900 ft hor 23800 ft
S 2690 ft2 m 6309.44 1bs
ag -0.20704 ay 0.029244
bo 0.07854 by —0.61592 - 10—2
by 0.621408 - 10~3 o 1.06723181

Table 1. Parameters of the shuttle model taken from
(Betts, 2001; Neckel et al., 2003).

3.2 Adaptation to the general OCP (1), (2)

The system model (18) can be put in the general form (2)
with the state and control vectors

= (h,v,7,0,9),  u=(xp). (23)
The longitude ¢ and the ODE (18f) are omitted since
they are decoupled and do not affect the remaining ODEs

in (18). The initial conditions in (2a) follow from (21). The
partial final conditions (2b) are given by (22) for the first
q = 3 states x1 = h, ro = v, and x3 = 7. The objective of
the reentry problem is to maximize the cross-range, which
corresponds to the final latitude x4(T") = 6(T'). Hence, the
cost functions in (1) reduce to

e(@(T),T) = —x4(T) = —0(T),
which yields the cost to be minimized
J(x) = —x4(T).

L(z,u,t) =0,

(24)

4. NUMERICAL SOLUTION OF THE SHUTTLE
REENTRY PROBLEM

Various numerical methods can be used to solve two—
point BVPs as they arise in indirect optimal control, see
e.g. (Pytlak, 1999) for an overview. In the shooting method,
the system equations (14a) and the adjoint system (16a)
are iteratively integrated forward in time in order to meet
the final conditions in (14b) and (16). However, a numer-
ical problem of the shooting method is that integrating
both original and adjoint systems simultaneously is an in-
herently unstable process (Bryson, 1999). This makes the
shooting method especially ill-conditioned if the system
equations are very sensitive as in the case of the reentry
problem.

A variant of the shooting method is the gradient method
which iteratively integrates the system equations in for-
ward time and the adjoint system in backward time. Al-
though this procedure naturally leads to a better numer-
ical behavior, the gradient method is known to be slowly
converging, see e.g. (Bryson, 1999).

A powerful alternative to solve the BVP of the optimal
control problem is the collocation method, which is not
affected by the drawbacks of the shooting and gradient
methods. Moreover, it easily allows to account for addi-
tional algebraic equations like (15). In the following, the
collocation code which is used to solve the reentry problem
is described in some detail, before the numerical results
for the reentry problem using the homotopy approach in
Section 2 are given.

4.1 Collocation method

The basis for the numerical solution of the reentry prob-
lem is the standard MATLAB BVP solver bvp4c, which
solves nonlinear 2—point BVPs by means of the collocation
method (Shampine et al., 2000; Kierzenka and Shampine,
2001). However, to be applicable to optimal control prob-
lems, the bvp4c—code was adapted by the authors to addi-
tionally account for algebraic equations like (3) as they
arise from the optimality conditions. This leads to the
general BVP formulation of (index 1) differential-algebraic
equations (DAE)

v = f(y,z,t,p), (25a)
0=g9(y,2t0p), (25b)
0= h(y(to)y(ts), 2(to), 2(ts), p) (25¢)

with the differential and algebraic equations (25a), (25b
for the dynamic and algebraic states y(t), z(t) on the time
interval t € [to, ], and the boundary conditions (25c).

The general collocation method and its implementation
in bvp4c has been left unchanged as it was designed to
be applicable and numerically robust for a wide range of
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BVPs. The function bvp4c divides the time interval [¢o, t/]
in subintervals and discretizes the differential equations
(25a) along the time mesh. The resulting discretized sys-
tem equations together with the boundary conditions (25c¢)
and the additional algebraic equations (25b) evaluated
at the time points results in a set of nonlinear algebraic
equations, which is solved with a Newton iteration scheme.

In addition, bvp4c employs a robust mesh refinement
strategy to adapt the time mesh and the number of grid
points in each Newton step based on the residual along
the discretized differential equations (25a). More details
on bvp4c can be found in (Kierzenka and Shampine, 2001).

4.2 Numerical results

In order to apply the collocation method to the homo-
topy approach in Section 2, the BVP (14)—(17) has to be
adapted to the DAE form (25). The original and adjoint
systems in (14a) and (16) form the dynamics (25a) with
the overall dynamic state y' = (z",AT). The input u
denotes the algebraic variable z = w with (15) corre-
sponding to the algebraic equation (25b). The boundary
conditions for  and A in (14) and (16b) together with the
transversality condition (17) are comprised in (25c). The
free end time T is taken into account by means of the time
transformation

d 1d
dt edr
with the normalized time coordinate 7 € [0, 1]. Hence, the
scaling factor ¢ is treated as free parameter p = ¢ in the
DAE system (25) and the new time coordinate 7 replaces
t € [to,ts] with the normalized interval boundaries ¢y = 0
and ty = 1.

t=er, T=¢, (26)

The analytic operations, e.g. derivation of the adjoint
system (16), have been performed with the software pack-
age MATHEMATICA. All functions and equations (14)—(17)
for the homotopy solution of the reentry problem as well as
their Jacobians are provided as Cmex—functions to MAT-
LAB. The simulations are performed on a PC equipped
with an Intel CPU of type Pentium Core Duo 1.6 GHz
and 2 GB memory.

In order to initialize the homotopy solution of the reen-
try problem outlined in Section 2, an initial trajectory
(x°(t),u°(t)) is calculated by integrating the system equa-
tions (14a) over the time interval ¢ € [0,7°] with the
final time 79 = 1000s and the chosen constant input
u = (a,3)T = (30,-30)T deg. The trajectory (z°(t),u°(t))
with the trivial adjoint state A°(¢) = 0 is then used as
initial guess for the homotopy approach. As mentioned
before, some freedom exists concerning the number of steps
N and how the two homotopy parameters ¢ = (c1, c2) are
increased to ¢ = (1,1). The best results for the reentry
problem are obtained by firstly increasing c¢; in order to
smoothly switch the cost function (13b) to the original
one. This is done in 10 steps from c¢f = 0.1 to 1% = 1
while keeping co = 0. Afterwards, ¢y is increased similarly
from ¢3! = 0.1 to ¢3° = 1 in 10 steps to force the boundary
conditions (14b) to the original values given in (22).

Figure 1 shows the reentry trajectories for several steps
of the homotopy method. Clearly visible is the homotopy
path that the trajectories follow by starting from the
initial trajectory for ¢ = (0,0) and finally reaching

the optimal solution for ¢** = (1,1) in the 20th step.

This is particularly interesting since the initial trajectory
(2°(t),u"(t)) and the initial end time 7° = 1000s are
clearly far away from the optimal solution.

Table 2 summarizes some details of the successive numer-
ical solutions by means of the collocation code described
in the previous section. The homotopy approach is started
with the initial trajectory (x°(t),u%(t)), t € [0, T°] and 100
mesh points. During the steps 11 and 20 when the desired
boundary conditions are reached, the mesh refinement
increases the mesh size to 141 points. A final run leads
to the optimal reentry trajectory with 301 mesh points,
the final time T = 2008.59s and the maximum cross—
range 0(T) = 34.1412 deg, also see Figure 1. The overall
required CPU time for the numerical solution amounts to
20.3 seconds.

The values of the final time 7" and the maximum cross—
range 0(T) coincide with the reference values in (Betts,
2001) (up to the last digits given in (Betts, 2001)). This
shows the accuracy of the indirect method in optimal
control in connection with the homotopy approach and
the collocation method. Compared to this methodology,
the direct optimal control solution of the reentry problem
in (Neckel et al., 2003) was more difficult to initialize and
provided less accurate results.

Step ¢ = (c1,c2) points T 0(T) CPU time
Start < =(0,0) 100 1000s 2.4deg —
1-10  ¢!%=(1,0) 100 912.4s 5.0 deg 5.2s
11-20 ¢ =(1,1) 141  2008.3s 34.1deg 11.2s
final refinement 301 2008.59s 34.1412deg 3.9s

Table 2. Numerical statistics for the homotopy solution
of the shuttle reentry problem.

5. CONCLUSION

A well-known difficulty with the indirect method in op-
timal control is the requirement of a good initial guess
especially of the adjoint states. To overcome the problem
of finding a near—optimal initial trajectory, a homotopy ap-
proach is presented which starts from an auxiliary optimal
control problem and eventually reaches the original one by
using a continuation scheme. An interesting property of
the auxiliary OCP is that it can be constructed for any
trajectory of the system which is, e.g., obtained by an
initial numerical integration.

The applicability of the homotopy approach is demon-
strated for the space shuttle reentry problem, which is
an appropriate benchmark example in this context due
to the high sensitivity of its numerical solution. Moreover,
the single continuation steps and the final optimal reen-
try trajectory show the robustness and accuracy of the
modified collocation method based on the MATLAB solver
bvp4c, which is employed to solve the differential-algebraic
equations of the reentry problem.

The proposed homotopy approach seems to have potential
in the field of optimal control, because it is easy to
implement and proved efficient on a reportedly difficult
OCP. It appears to be well suited for aerospace trajectory
optimization problems and is currently used, along with
ideas of nonlinear geometric control, on various ascent and
ascent—reentry problems.
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Fig. 1. Trajectories for the shuttle reentry problem using the homotopy approach with N = 20 steps.
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