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Abstract: This paper addresses the well-known Goddard problem in the formulation of
Seywald and Cliff with the objective to maximize the altitude of a vertically ascending rocket
subject to dynamic pressure and thrust constraints. The Goddard problem is used to propose a
new method to systematically incorporate the constraints into the system dynamics by means of
saturation functions. This procedure results in an unconstrained and penalized optimal control
problem which strictly satisfies the constraints. The approach requires no knowledge of the
switching structure of the optimal solution and avoids the explicit consideration of singular
arcs. A collocation method is used to solve the BVPs derived from the optimality conditions
and demonstrates the applicability of the method to constrained optimal control problems.
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1. INTRODUCTION

The classical Goddard problem presented in 1919 (God-
dard, 1919) concerns maximizing the final altitude of a
rocket launched in vertical direction. The problem has
become a benchmark example in optimal control due to
a characteristic singular arc behavior in connection with a
relatively simple model structure, which makes the God-
dard rocket an ideal object of study, see e.g. (Garfinkel,
1963; Munick, 1965; Tsiotras and Kelley, 1992; Seywald,
1994; Bryson, 1999; Milam, 2003).

A particularly interesting formulation of the Goddard
problem is given by Seywald and Cliff (Seywald and CIiff,
1992), who considered both thrust and dynamic pressure
constraints. This significantly complicates the Goddard
problem, since the dynamic pressure constraint represents
a first-order state constraint (in the sense of (Bryson
and Ho, 1969, Ch. 3.11)) in addition to the “zeroth-
order” thrust constraint. Based on Pontryagin’s maximum
principle, Seywald and Cliff thorougly investigated the
singular arcs and the optimal switching structure of the
system. The analytical effort which is required to consider
the constraints and singular arcs of the Goddard problem
is a well-known difficulty with constrained OCPs. In
particular, the switching structure of the optimal solution
must be known a-priori and leads to interior boundary
conditions for the boundary value problem (BVP) derived
from the optimality conditions (Bryson and Ho, 1969).

In this contribution, the Goddard problem with thrust
and dynamic pressure constraints (Seywald and Cliff,
1992) is used as an example to present a new method
for handling constraints in optimal control by means of
saturation functions. Following the ideas in (Graichen,
2006) originally developed in the context of feedforward
control design, the saturation function approach takes
advantage of the fact that the thrust and dynamic pressure

978-1-1234-7890-2/08/$20.00 © 2008 IFAC

14301

constraints have different orders. The saturation functions
are used to successively incorporate the constraints within
a new system representation, which strictly satisfies the
constraints. In this way, the original constrained optimal
control problem (OCP) is replaced by an unconstrained
one, which can be treated by the standard calculus of
variations without requiring knowledge of the switching
structure of the optimal solution. An additional penalty
term is introduced in the cost of the derived unconstrained
OCP to avoid singular arcs, which correspond to active
constraints in the original constrained OCP. The penalty
term has the positive side effect that the original singular
arcs in the Goddard problem are circumvented.

The differential-algebraic equations of the BVP stemming
from the optimality conditions are numerically solved with
a modified version of the collocation—based BVP solver
bvp4c of Matlab. The penalty term in the BVP is thereby
continuously decreased in order to approach the optimal
solution of the Goddard problem.

The paper is organized as follows: Section 2 summarizes
the Goddard problem with the thrust and dynamic pres-
sure constraints. Section 3 describes in a first step the
incorporation of the thrust constraint in order to illustrate
the idea of the saturation function approach. Section 4
describes the collocation method for the solution of the
BVP derived from the optimality conditions and presents
the numerical results for the thrust—constrained Goddard
problem. Section 5 is devoted to the additional incorpo-
ration of the dynamic pressure constraint by means of
the saturation functions. The numerical results for the
Goddard problem with thrust and dynamic pressure con-
straints show the applicability of the approach as well
as the accuracy of the employed collocation method. It
represents a first step in the development towards a gen-
eral methodology to efficiently solve constrained optimal
trajectory generation problems.
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2. PROBLEM FORMULATION

The Goddard problem is to maximize the final altitude
of a vertically ascending rocket under the influence of
atmospheric drag and the gravitational field. This section
shortly summarizes the equations of motion of the rocket
as well as the boundary conditions and constraints of the
corresponding OCP.

2.1 Model equations

The equations of motion of the rocket are given by the
ordinary differential equations (ODEs)

h=wv, (1la)
. u—D(h,v 1

Y TR o
th=—= (1c)

with the altitude h from the center of Earth, the velocity
v, and the mass m as the mass of the rocket (Seywald and
Cliff, 1992; Bryson, 1999). The states h, v, m, the thrust
u as the input of the system, and the time ¢ are commonly
normalized and dimension—free.

The drag function D(h,v) in (1b) is given by

CpA

D(h,v) = q(h,v 2

(h.v) = a(h. )32 2)

as a function of the Earth’s gravitational acceleration g
and the dynamic pressure

q(h,v) = %Po v? exp (5(1 - h)) (3)

that depends on the altitude h and the velocity v. The
constants in the model equations (1)—(3) are

Cp drag coefficient, py air density at sea level,
A reference area, B density decay rate,
mg initial mass, ¢ exhaust velocity.

The following values are taken from (Seywald and Cliff,
1992):
poCpA

mog

B=500, c=0.5, 620

2.2 Constraints and boundary conditions

The (normalized) thrust as the control of the rocket is
subject to the constraint
weu,ut], v =0, u"=35. (4)
In addition, Seywald and Cliff (1992) considered a con-
straint on the dynamic pressure (3)

q(h,v) < q+, q+ =10, (5)
which can be interpreted as a first—order state constraint
for the velocity v of the rocket. This point will be explained
in more detail in Section 5.

The rocket starts at the Earth’s surface and is initially at
rest. This yields the normalized initial conditions

h(0)=1, v(0)=0, m(0)=1. (6)
The only final condition at the free final time 7" is imposed
on the mass

m(T) =0.6 (7)

to account for the consumed fuel of the rocket with respect
to its initial mass.

In its original formulation, the objective of the Goddard
problem is to maximize the final altitude h(T"). Hence, the
constrained optimal control problem is to minimize the
cost

J=—h(T) (8)
with the unknown end time T subject to the system
dynamics (1), the constraints (4), (5), and the boundary
conditions (6), (7).

3. CONSIDERATION OF THRUST CONSTRAINT

This constrained OCP of the Goddard rocket can be solved
with Pontryagin’s maximum principle. However, the con-
sideration of the constraints (4), (5) and the singular arcs
of the Goddard problem require to analytically investigate
the switching structure of the optimal solution and lead to
interior boundary conditions (Seywald and Cliff, 1992).

A different way to systematically incorporate the con-
straints within the system is by means of saturation func-
tions (Graichen, 2006). In a first step, this section considers
the input constraint (4) in order to introduce the idea of
the saturation function approach.

3.1 Asymptotic saturation function

The input constraint (4) can be incorporated by replacing
the input w with a monotonically increasing saturation
function

u=(a,9%), (9a)
which represents a surjective mapping R > 4 +—
Y(a,pr) € (~,¢T) of the new unconstrained input .
The saturation limits 1~ and %% (in compact form ¥*)
directly correspond to (4), i.e.

PE = ut, (9Db)

where it is assumed that 1~ and T are asymptotically
reached for & — o0, see Fig. 1.

An appropriate choice for (7, 9T) is e.g.

wla®) = vt - L (10)
1+ exp(sa)
The parameter s is chosen to
B 4
STt —yn
in order to normalize the slope d¢/0u = 1 at 4 =

0. Alternatively, tanh—functions could be used instead
of (10).

The saturation function (9a) replaces the input w in the
model (1), which yields the modified dynamics

Fig. 1. Saturation function v (@, v*) € (¥, 7).
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b=, (11a)
o w<a,wi>mf D(h,v) _ % , (11b)

with the new unconstrained input .
3.2 Necessary optimality conditions

In order to derive the optimality conditions for the trans-
formed model (11) by means of the calculus of variations,
the cost (8) to be minimized is penalized by
T
J. = —h(T) + %/ a*dt, (12)
0
subject to the modified system dynamics (11) and the

boundary conditions (6), (7) written in the general non-
linear form

i=f(z,a), =(0)=(1,0,1)", x3(T)=06. (13)
The additional penalty term in (12) with parameter € is
necessary to account for the influence of the saturation

close to the constraints (4). This point can be explained
by considering the Hamiltonian

H(z,\ i, t) = g @2 + AT f(z, @)

and the optimality condition 0 H/0u% = 0 with respect to
the new input u:

of = E’EL-{-)\Tg = 5&4—81{}()\2—)\3) =0.

o0t o0t ouw \m c

If the saturation function 1 (,™) approaches one of its
limits ¢*, i.e. the input constraint (4) is almost active,
the gradient 9v/0u will tend to zero, cf. Fig. 1. Hence,
the penalty term €@ in (14) is introduced to still be able
to determine the new input @ from (14) if the gradient
01 /0t vanishes close to saturation.

(14)

To complete the optimality conditions, the adjoint state
A= (A1, A2, A3)7 is given by AT = —0H/0x with

. A adD 2 B

M on T M =0,

}\2:&2_)\1’ A(T) =0, (15)
m v

. A B

fo = 25 (w(@, v) = D(hyv)), Aa(T) = free.

The free end time T is taken into account by the transver-
sality condition

H(z, A a,t)],_, =0. (16)
The systems (13) and (15) with the additional final condi-
tion (16) and the algebraic equation (14) form a two—point
BVP for the penalized OCP of the thrust—constrained
rocket in dependence of the parameter . The optimal
solution can be approached by using a continuation scheme
to successively decrease the penalty parameter ¢ — 0.

4. NUMERICAL SOLUTION WITH COLLOCATION

A powerful method to numerically solve the two—point
BVP resulting from the optimality conditions is colloca-
tion (Ascher et al., 1988). Compared to shooting or gra-
dient algorithms, the collocation method has advantages

in handling final conditions and the inherently unstable
process of system and adjoint equations (13), (15). ! This
section gives a short overview on the employed colloca-
tion method before the numerical results for the Goddard
problem with thrust constraints are presented.

4.1 Collocation method

The basis for the numerical solution of the reentry prob-
lem is the standard MATLAB BVP solver bvp4c, which
solves nonlinear 2—point BVPs by means of the collocation
method (Shampine et al., 2000). However, to be applicable
to optimal control problems, the bvp4dc—code was adapted
by the authors to additionally account for algebraic equa-
tions like (14) as they arise from the optimality conditions.
This leads to the general BVP formulation of (index 1)
differential-algebraic equations (DAE)

g = [y ztp) (17a)
Ozg(yazatvp)v (17b)
0= h(y(to),y(tr), z(to), 2(ts), p) (17¢)
with the differential and algebraic equations (17a), (17b)

for the dynamic and algebraic states y(t), z(t) on the time
interval t € [to,ty], and the boundary conditions (17c).
Moreover, unknown parameters p can additionally be
considered in the DAE formulation (17).

The general collocation method and its implementation
in bvp4c has been left unchanged as it was designed to
be applicable and numerically robust for a wide range of
BVPs. The function bvp4c divides the time interval [to, ¢ ]
in subintervals and discretizes the differential equations
(17a) along the time mesh. The resulting discretized sys-
tem equations together with the boundary conditions (17c)
and the additional algebraic equations (17b) evaluated at
the mesh points results in a set of nonlinear algebraic
equations, which is solved with a Newton iteration scheme.

In addition, bvp4c employs a robust mesh refinement
strategy to adapt the time mesh and the number of grid
points in each Newton step based on the residual along the
discretized ODEs (17a).

4.2 Numerical results

In order to apply the collocation method to the Goddard
problem, the BVP (13)—(16) has to be adapted to the DAE
form (17). The ODEs (17a) are given by the original and
adjoint systems in (13) and (15) for the overall dynamic
state y = (x, A). The input u denotes the algebraic variable
z = u with the algebraic equation (14) corresponding to
(17b). The boundary conditions for z and A in (13) and
(15) together with the transversality condition (16) are
comprised in (17c). The free end time T is taken into
account by means of the time transformation
d 14d
dt  ddr
with the normalized time coordinate 7 € [0, 1]. Hence, the
scaling factor ¢ is treated as free parameter p = ¢ in the
DAE system (17) and the new time coordinate T replaces

t=6r, T=4, (18)

1 More information on the numerical solution of OCPs can e.g. be
found in the text books (Bryson and Ho, 1969; Bryson, 1999;
Pytlak, 1999). A detailed analysis of the collocation method is given
in (Ascher et al., 1988).
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t € [to,ts] with the normalized interval boundaries tg = 0
and ¢ty = 1.

The initial guess for the state x(t) is a linear interpolation
between the boundary conditions in (13) and z1(T) =
22(T) = 0 for the unspecified final states. The initial
trajectories for A(t) and @(t) are zero. The free parameter
¢ accounting for the unknown end time 7' is chosen to
e=0.1

Fig. 2 shows the optimal trajectories of the states z(¢) and
dynamic pressure ¢(t) as well as the original control wu(t)
for the Goddard problem with different penalty parame-
ters £ by solving the BVP (13)—(16) with the collocation
method and successively decreasing the penalty parameter
¢ from 1072 to 1071, After the initial run with e = 1072,
the subsequent runs use the previous solutions as initial-
ization. The maximal altitude h(T") and the end time T
obtained for ¢ = 107! are (both normalized values)

h(T) =1.01283692, T = 0.19885626. (19)
Moreover, the final run with ¢ = 107! clearly shows the
characteristic bang—singular-bang behavior of the God-
dard problem and in particular the sharp flanks in the
control u(t), which are accurately obtained due to the
automatic mesh refinement strategy.

5. CONSIDERATION OF DYNAMIC PRESSURE
CONSTRAINT

To show the flexibility of the method, a further constraint
of engineering interest is considered. In addition to the
thrust constraint (4), the saturation functions can also be
used to systematically incorporate the dynamic pressure
constraint (5) by following the ideas given in (Graichen,
2006). A requirement for the incorporation of both con-
straints is that they have distinct orders in order to be
“differentially separatable”. This condition is indeed sat-
isfied since the dynamic pressure constraint (5) denotes a
first—order state constraint compared to the thrust con-
straint (4) of zeroth—order.

5.1 Interpretation of constraints

The saturation function approach in (Graichen, 2006) was
developed in the context of feedforward control design
to incorporate constraints on a system output and a
finite number of its time derivatives within a new system
representation.

This method can be applied to the Goddard problem by
interpreting the dynamic pressure constraint (5) as the
velocity constraint

v<vt, wT(h)= 24"
svhom \/poexp(ﬂu—h))'

Note that v*(h) is not constant but depends on the
altitude h. Moreover, a closer look at the ODE (1b) reveals
that the thrust constraint (4) can be mapped to the
acceleration

(20)

+
. e .4 u —D(h,’U) 1
ve 07|, v (h,v,m)=——"—— —
07,0, (e m) =
depending on the states h, v, and m. In this way, the
dynamic pressure and thrust constraints are considered

as constraints on the velocity v and its time derivative .

(21)

5.2 Systematic incorporation with saturation functions

In a first step, a saturation function is introduced for the

velocity

v =1 (& ¢7) (22a)
with the new unconstrained coordinate £ and the satura-
tion limits following from (20) 2

GE(R) = 0t (). (22b)
Again, the saturation function (€, ¢1i) can be con-
structed according to (10), also see Fig. 1. An important
point in the following is that the saturation limits ¥ (h)
are asymptotically reached with (5,1/)1i) being strictly
monotonically increasing, i.e.
1y

—— >0 VEeER.

5 (23)

In a next step, Eq. (22a) is differentiated using the product
and chain rules and (20), (22b):

- ({91/)1 81}* ({91/)1 8U+ ~ 81/)1 :
U(@wf an 781#1_ 8h)w1(h’§)+8§§ (24)
=7(h,§)
with ~
dr(h, €) = ¢ (&97(h)) -
A second saturation function
€= n(@, v3) (25a)

is introduced for ¢ with the new unconstrained input
. The saturation limits d}f have to be chosen appro-
priately such that the relation (24) for ¢ satisfies the
constraint (21). In view of (24) and (25a), the inequality
0~ < ¥ <9t can be formulated as

- oY1 .

0 =) < G va(@vy) < 0T —q(hg)
The strict monotonicity assumption (23) allows to di-
vide the term 0v1/90¢ on both sides of the inequality,
which yields the following saturation limits for v, <

(@, 03) < 3

7% (h, &,m) — ~(h,
v gm) = ) =0
3
with the velocity constraints 9= (h, £, m) = 0% (h, v, m) due
to (22).

(25b)

5.3 New system representation

The result of successively introducing the saturation func-
tions is that the velocity v and ODE (1b) are replaced
by (22) with the new coordinate & and the corresponding
ODE (25). Moreover, the input « of the original system (1)
has to be expressed in terms of the new input @. This is
done by solving the ODE (1b) for u and replacing v and ©
with (22), (24), and (25), i.e.

w=m <v(h,£) O e my ) + 12) T D(h©)

o€ h

2 Since v is only constrained from above, the lower saturation limit
Wy is set to Y = —vt(h) for the sake of symmetry.
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Fig. 2. Optimal trajectories of the Goddard problem with thrust constraints for decreasing penalty parameters ¢.

with the compact form

¢2(h7 fa m, 71) = 1/}2 (’&a 7/12i (h7 57 m))
of the second saturation function. As a result, the original
system (1) with the state 2 = (h,v,m)" and input v is
replaced by the new system

h = '(/:Jl (h’ 5) ) (27a>
é = '(/JQ(hv & m, ﬂ) ’ (27b)
m=—¢(h,&, m,a)/c (27¢)

with the state Z = (h,&,m)" and input @. The velocity v
and the thrust u follow from the algebraic equations (22)
and (26), whereby the saturation functions ensure that
the thrust and dynamic pressure constraints (4), (5) are
satisfied via the velocity constraints (20), (21).

5.4 Necessary optimality conditions

The derivation of the optimality conditions for the new
system (27) corresponds to the input—constrained case in
Section 3.2 and is therefore not repeated in detail. The
cost (8) to be minimized

~ 5‘ T
J. = —h(T) + 5/ a*dt, (28)
0

is again penalized by the integrated term %QQ in order
to account for the influence of the saturation close to the

velocity constraints (20) and (21), see Section 3.2.
The new system dynamics (27) are written in the compact
form

i=f(za), #0)=(1, &7, z3(T)=06
with the boundary conditions for £; = h and 3

following from (6), (7). The initial value Z2(0) = £(0) = &
is obtained by inverting the saturation function (22) with

respect to &:
€0 =1 (0(0), 47) .-

Since the saturation limits (22b) are symmetric, the sat-
uration function (22a) passes through zero, ie. 0 =
1(0, wf[), and the initial zero velocity v(0) = 0 directly
yields &y = 0.
With the Hamiltonian

(o, i, t) = Si + AT (@),

the optimality conditions follow to

OH _ _ 570f _
7 =cu+ A 90 =0

B H foo.
AT = —8—~ = —ATg—g, MT) = (0,0, free)T  (31)
with the additional transversality condition
H(i, N i, t)],_p = 0. (32)

5.5 Numerical results

The BVP of (index 1) DAEs (29)-(32) for the states Z(t),

A(t), the new input @(t), and the free end time T is
solved with the collocation method described in Section 4.
Eventually, the computed trajectories Z(t) and u(t) yield
the velocity v(t) and the thrust u(t) by evaluating (22) and
(26). The initial guess for the trajectories Z(t) and @(¢) is
identical to the thrust—constrained case in Section 4.

Fig. 3 shows the optimal trajectories of the states x(t)
and dynamic pressure ¢(t) as well as the optimal thrust
u(t) for the Goddard problem with thrust and dynamic
pressure constraints and several penalty parameters e,
which are successively decreased from 1072 to 107!t
The trajectories of the dynamic pressure ¢(t) and the
thrust w(t) clearly stay inside the constraints and show
the singular arc behavior of the Goddard problem. The
maximum altitude h(T) and the end time T for e = 10711
are (both normalized values)

WT) =1.01271727, T =0.20407108.  (33)
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Fig. 3. Optimal trajectories with thrust and dynamic pressure constraints for decreasing penalty parameters €.

Particularly interesting is the additional singular arc of
the thrust u(t) appearing at ¢ ~ 0.075, which is due to
the additional dynamic pressure constraint. This instance
is explained in more details by Seywald and Clff (1992).
Although the singular arc at t ~ 0.075 only appears for
penalty parameters ¢ < 107'° and barely influences the
final cost, it shows the applicability of the saturation
function approach and the accuracy of the collocation
method for solving the BVP (29)—(32).

6. CONCLUSIONS

This paper presents a first step towards a new methodol-
ogy for solving constrained optimal control problems. The
Goddard problem with dynamic pressure and thrust con-
straints serves as a motivating benchmark example, which
has been used by numerous authors. Due to the presence
of singular arcs and non—intuitive solutions, it stresses the
relevance of the new approach, which uses saturation func-
tions to replace the constrained quantities. Thus, the con-
strained OCP is turned into an unconstrained OCP, which
yields a standard BVP of differential-algebraic equations
arising from the calculus of variations. One advantage of
the approach is that the solution strictly stays inside the
constraints and that no knowledge of the optimal switching
structure and interior boundary conditions are required.

The approach seems to be of broad applicability as it can
handle a collection of constraints, provided that they have
distinct orders. This condition is necessary in order to “dif-
ferentially separate” the constraints, which is illustrated
for the Goddard problem in Section 5 by successively
incorporating the constraints.

Ongoing research concerns the proof of convergence to-
wards the optimal solution for decreasing penalty para-
meters € — 0 as well as the generalization and formal-
ization of the saturation function approach to nonlinear

systems with constraints of distinct order. First steps into
this direction can be found in (Graichen, 2006) in the con-
text of feedforward control design with constraints on the
input, output, and a finite number of its time derivatives.
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