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Abstract: In this paper, an Euler-Bernoulli beam system under the local internal distributed
control and a boundary point observation is studied. We design an infinite-dimensional observer
for the open-loop system. The closed loop-system that is non-dissipative is obtained by estimated
state feedback. By a detailed spectral analysis, it is shown that there is a set of generalized
eigenfunctions, which forms a Riesz basis for the state space. As consequences, both the
spectrum-determined growth condition and exponential stability are concluded.

1. INTRODUCTION

In the output stabilization for control systems described
by partial differential equations (PDEs), collocated control
design, that is, the actuators and sensors are in the same
positions and designed in a “collocated” fashion, is the
main method. This is natural in the sense that the propor-
tional output feedback for an collocated system produces
a dissipative closed-loop system, by which the methods
like Lyapunov function methods and energy multiplier
methods could be used to get the stability of the system.

On the other hand, in engineering practice, it has been
found long time that the performance of the collocated
control design is not always good enough ([3]). Although
the non-collocated control has been widely used in en-
gineering systems control ([1, 16, 17]), the theoretical
studies from mathematical control point of view for these
systems are quite few. The first difficult problem is that
the open-loop forms of non-collocated systems are usually
not minimum-phase. This leads to the closed-loop systems
unstable for large feedback controller gains. Secondly, the
closed-loop forms of non-collocate systems are usually non-
dissipative, which gives rise to the difficulty in applying
the traditional Lyapunov function methods or the energy
multiplier methods to the analysis of the stability. Re-
cently, the estimated state feedbacks are designed through
backstepping observers in [14] to stabilize a class of one-
dimensional parabolic PDEs. The abstract observers de-
sign for a class of well-posed regular infinite-dimensional
systems can be found in [5] but the stabilization is not
addressed.

Recently, some efforts have been made for non-collocated
system control. In [11] and [10], the stabilization of wave
and beam equation under boundary control with non-
collocated observation has been handled respectively.

? This work was supported by the National Natural Science Foun-
dation of China and the Program for New Century Excellent Talents
in University of China.

The objective of this paper is to study the stabilization of
an Euler-Bernoulli beam system under local distributed
internal control with point boundary observation. This
design is a typical non-collocated system of PDEs. Such a
distributed control is feasible in engineering practice due
to the application of the smart materials. The pointwise
measurement is the common observation for distributed
parameter systems.

The system we are concerned with is the following Euler-
Bernoulli beam with local internal distributed control and
boundary point observation on the domain Q = {(x, t) :
0 ≤ x ≤ 1, t > 0}:





wtt(x, t) + wxxxx(x, t) + σ(x)u(x, t) = 0,

w(0, t) = wx(0, t) = wxx(1, t) = wxxx(1, t) = 0,

y(t) = wt(1, t),

(1)

where w(x, t) represents the transverse displacement of the
beam at position x ∈ [0, 1] and time t ≥ 0, u(x, t) is
the locally distributed control (input), y(t) is the output
(observation), and

σ(x) =





1, x ∈ (a, b) ∈ (0,
1
2
), b > a,

0, otherwise.
(2)

We choose the energy state space as H = H2
E(0, 1) ×

L2(0, 1), H2
E(0, 1) = {f | f ∈ H2(0, 1), f(0) = f ′(0) = 0}.

H is equipped with the obvious inner product induced
norm ‖(f, g)‖2H =

∫ 1

0
[|f ′′(x)|2 + |g(x)|2]dx for any (f, g) ∈

H. The input and output spaces are U = L2(0, 1) and
Y = C1, respectively.

Define the operator A : D(A)(⊂ H) → H as following:




A(f, g) = (g,−f (4)),

D(A) = {(f, g) ∈ H| A(f, g) ∈ H,

f ′′(1) = f ′′′(1) = 0}.
(3)

Then system (1) can be written as
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∑
:





d

dt

(
w(x, t)
wt(x, t)

)
= A

(
w(x, t)
wt(x, t)

)
+ Bu(x, t),

y(t) = C
(

w(x, t)
wt(x, t)

)
= wt(1, t),

(4)

where

B =

(
0

−σ(x)

)
, C = (0, 〈δ(x− 1), ·〉),

and δ(·) denotes the Dirac delta distribution. Obviously,
B is a bounded control operator while C is an unbounded
observation operator.
Theorem 1. For each u ∈ L2

loc(0,∞) and initial da-
tum (w(·, 0), wt(·, 0)) ∈ H, there exists a unique solu-
tion (w, wt) ∈ C(0,∞;H) to equation (1), and for each
T > 0, there exists a CT > 0 independent of u and
(w(·, 0), wt(·, 0)) such that

‖(w(·, T ), wt(·, T ))‖2H +
∫ T

0

|y(τ)|2dτ

≤ CT

[
‖(w(·, 0), wt(·, 0))‖2H +

∫ T

0

‖u(·, τ)‖2L2dτ

]
.

Proof. Since B is bounded, by the well-posed linear
infinite-dimensional system theory ([4, 12]), it is equivalent
to showing that C is admissible for eAt. This is a well-
known fact (see [8]).
Remark 2. The significance of Theorem 1 is that it not
only gives the well-posedness of the open-loop system (1)
but also shows that for any L2 control, the output y makes
sense and is also in L2. This fact is very important to
the design of the observer because for the observer, y
becomes input. The L2 property of y plays a key role in
the solvability of the observer. This is attributed to the
well-posed infinite-dimensional systems theory ([4]).

The remaining part of this paper are organized as follows.
In Section 2, we construct an observer for the system (1)
and show that this observer is exponentially convergent.
Section 3 is devoted to the estimated state feedback
design. In section 4, we analyze the asymptotic behavior of
the eigenpairs. The Riesz basis property and exponential
stability are developed in Section 5.

2. OBSERVER DESIGN

We design an observer to system (1) as following:



ŵtt(x, t) + ŵxxxx(x, t) + σ(x)u(x, t) = 0,

ŵ(0, t) = ŵx(0, t) = ŵxx(1, t) = 0,

ŵxxx(1, t) = αŵt(1, t)− αy(t),

(5)

where α ∈ R+ is a positive constant. The system (5) can
be written as ([8])



ŵtt(x, t) + ŵxxxx(x, t) = −σ(x)u(x, t) + αδ(x− 1)y(t),

ŵ(0, t) = ŵx(0, t) = ŵxx(1, t) = 0,

ŵxxx(1, t) = αŵt(1, t),
(6)

or
ŵtt + Aŵ + αbb∗ŵt = −σ(x)u(x, t) + αδ(x− 1)y(t), (7)

where A is given by (3) and b = −δ(x− 1).

The following result comes directly from [8].
Theorem 3. The system (7) is well-posed. That is, for
any (ŵ(·, 0), ŵt(·, 0)) ∈ H and u, y ∈ L2

loc(0,∞), there
exists a unique solution to (7) such that (ŵ(·, t), ŵt(·, t)) ∈
C(0,∞;H), and for any T > 0, there exists a constant CT

such that
‖(ŵ(·, T ), ŵt(·, T ))‖2H ≤ CT

[‖(ŵ(·, 0), ŵt(·, 0))‖2H

+
∫ T

0

‖u(·, t)‖2L2dt +
∫ T

0

y2(t)dt

]
.

(8)

Let e(x, t) be the error of solutions of (1) and (5):
e(x, t) = ŵ(x, t)− w(x, t). (9)

Then e(x, t) satisfies



ett(x, t) + exxxx(x, t) = 0,

e(0, t) = ex(0, t) = exx(1, t) = 0,

exxx(1, t) = αet(1, t).

(10)

It is well-known that the above system is exponentially
stable in H ([2]).

3. ESTIMATED STATE FEEDBACK CONTROL
DESIGN

Having obtained the estimated state through observer, we
can now naturally design the following output feedback
based on estimated state as what we have done for collo-
cated system:

u(t) = γŵt(x, t), γ > 0.

The closed-loop system now becomes on Q:



ŵtt(x, t) + ŵxxxx(x, t) + γσ(x)ŵt(x, t) = 0,
ŵ(0, t) = ŵx(0, t) = ŵxx(1, t) = 0,
ŵxxx(1, t) = αŵt(1, t)− αwt(1, t),
wtt(x, t) + wxxxx(x, t) + γσ(x)ŵt(x, t) = 0,
w(0, t) = wx(0, t) = wxx(1, t) = wxxx(1, t) = 0.

(11)

By e(x, t) = ŵ(x, t) − w(x, t) defined in (9), we get the
equivalent system of (11):




ett(x, t) + exxxx(x, t) = 0,
e(0, t) = ex(0, t) = exx(1, t) = 0,
exxx(1, t) = αet(1, t),
ŵtt(x, t) + ŵxxxx(x, t) + γσ(x)ŵt(x, t) = 0,
ŵ(0, t) = ŵx(0, t) = ŵxx(1, t) = 0,
ŵxxx(1, t) = exxx(1, t).

(12)

We consider the system (12) in the state space X =
H × H with the obvious inner product induced norm:
∀ (f, g, φ, ψ) ∈ X,

‖(f, g, φ, ψ)‖2 =
∫ 1

0

[|f ′′|2 + |g|2 + |φ′′|2 + |ψ|2]dx.

The system operator A : D(A)(⊂ X) → X for (12) is
defined by




A(f, g, φ, ψ) = (g,−f (4), ψ,−φ(4) − γσψ),

D(A) = {(f, g, φ, ψ) ∈ X | A(f, g, φ, ψ) ∈ X,

f ′′(1) = φ′′(1) = 0,

f ′′′(1) = φ′′′(1), f ′′′(1) = αg(1)}.

(13)

With the operator A at hand, we can write (12) as an
evolution equation in X:
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d

dt
(ε(·, t), εt(·, t), ŵ(·, t), ŵt(·, t))

= A(ε(·, t), εt(·, t), ŵ(·, t), ŵt(·, t)).
(14)

We observe that A is not dissipative. Actually, let
(f, g, φ, ψ) ∈ D(A). We have

Re 〈A(f, g, φ, ψ), (f, g, φ, ψ)〉X

= −α|g(1)|2 − αRe
(
g(1)ψ(1)

)
− γ

∫ 1

0

σ|ψ|2dx,
(15)

which shows that A is not dissipative.
Lemma 4. A−1 is compact on X and hence σ(A), the
spectrum of A, consists of isolated eigenvalues only.

Proof. For any (p1, q1, p2, q2) ∈ X, solve A(f, g, φ, ψ) =
(p1, q1, p2, q2) to obtain





g(x) = p1(x), ψ(x) = p2(x),

−f (4)(x) = q1(x), −φ(4)(x)− γσ(x)ψ(x) = q2(x),

f(0) = f ′(0) = f ′′(1) = φ(0) = φ′(0) = φ′′(1) = 0,

f ′′′(1) = αg(1), φ′′′(1) = f ′′′(1).

This gives




g(x) = p1(x), ψ(x) = p2(x),

f(x) = αp1(1)
[
1
6
x3 − 1

2
x2

]

+
∫ x

0

q1(ξ)
(

1
6
ξ3 − 1

2
ξ2x

)
dξ

+
1
2

∫ 1

x

q1(ξ)
(

1
3
x3 − x2ξ

)
dξ,

φ(x) = αp1(1)
[
1
6
x3 − 1

2
x2

]

+
∫ x

0

q3(ξ)
(

1
6
ξ3 − 1

2
ξ2x

)
dξ

+
1
2

∫ 1

x

q3(ξ)
(

1
3
x3 − x2ξ

)
dξ,

q3(x) = γσ(x)p2(x) + q2(x).

Hence A−1 is defined everywhere on X and A−1 maps X
into a subset of the space (H4(0, 1)×H2(0, 1))2, which is
compact in X. By the Sobolev embedding theorem ([13]),
A−1 is compact on X, proving the required result.
Lemma 5. Re(λ) < 0 for any λ ∈ σ(A).

Proof. This is a direct verification. We omit the details
here.

4. SPECTRAL ANALYSIS

Let λ ∈ σ(A) and (f, g, φ, ψ) 6= 0 be a corresponding
eigenfunction. Then A(f, g, φ, ψ) = λ(f, g, φ, ψ) means
that

g = λf, ψ = λφ,

and (f, φ) satisfies the following eigenvalue problem:





λ2f + f (4) = 0,

λ2φ + φ(4) + γλσφ = 0,
f(0) = f ′(0) = f ′′(1) = φ(0) = 0,
φ′(0) = φ′′(1) = 0,
f ′′′(1) = αλf(1), f ′′′(1) = φ′′′(1).

(16)

By Lemma 5 and the fact that the eigenvalues are sym-
metric about the real axis, we consider only those λ that
are located in the second quadrant of the complex plane:

λ = iρ2, ρ ∈ S =
{

ρ ∈ C | 0 ≤ arg ρ ≤ π

4

}
. (17)

Note that for any ρ ∈ S, it has
Re(−ρ) ≤ Re(iρ) ≤ Re(−iρ) ≤ Re(ρ), (18)

and 



Re(−ρ) = −|ρ| cos(arg ρ) ≤ −
√

2
2
|ρ| < 0,

Re(iρ) = −|ρ| sin(arg ρ) ≤ 0.
(19)

Lemma 6. For ρ ∈ S and x ∈ [0, 1],

eiρx, e−ρx, e−iρx, eρx (20)

are linearly independent fundamental solutions of f (4)(x)−
ρ4f(x) = 0, and as |ρ| is large enough, φ(4)(x)− ρ4φ(x) +
iγρ2σ(x)φ(x) = 0, where σ(x) is given by (2), has the
following asymptotic fundamental solutions:




φ1(x) = eiρx
[
1 + σ̃(x)ρ−1

(
1 + ρ−1

)]
,

φ2(x) = e−ρx
[
1− iσ̃(x)ρ−1

(
1 + ρ−1

)]
,

φ3(x) = e−iρx
[
1− σ̃(x)ρ−1

(
1 + ρ−1

)]
,

φ4(x) = eρx
[
1 + iσ̃(x)ρ−1

(
1 + ρ−1

)]
,

(21)

where

σ̃(x) =
1
4
γ

∫ x

0

σ(ξ)dξ =





0, x ∈ [0, a),

γ(x− a)
4

, x ∈ [a, b),

γ(b− a)
4

, x ∈ [b, 1].

(22)

Proof. This is a direct result of [15].

From Lemma 6, we get that f(x) and φ(x) have the
following asymptotic forms in S respectively:{

f(x) = c1e
iρx + c2e

−ρx + c3e
−iρx + c4e

ρx,

φ(x) = d1φ1(x) + d2φ2(x) + d3φ3(x) + d4φ4(x),

where ci and di (i = 1, 2, 3, 4) are constants. Substitute
the above into the boundary conditions of (16), to obtain

∆(ρ)[c1, c2, c3, c4, d2, d2, d3, d4]> = 0, (23)
where

∆(ρ) =

[
∆11(ρ) ∆12(ρ) 04×2 04×2

∆21(ρ) ∆22(ρ) ∆23(ρ) ∆24(ρ)

]
, (24)

∆11(ρ) =




1 1
i −1

−eiρ e−ρ

−ieiρ(1 + αρ−1) −e−ρ(1 + iαρ−1)


 ,

∆12(ρ) =




1 1
−i 1

−e−iρ eρ

ie−iρ(1− αρ−1) eρ(1− iαρ−1)


 ,
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∆21(ρ) =




0 0
0 0
0 0

−ieiρ −e−ρ


 ,∆22(ρ) =




0 0
0 0
0 0

ie−iρ eρ


 ,

∆23(ρ) =




1 1
i −1

−eiρ

[
1 +

σ̃(1)
ρ

]

2

e−ρ

[
1− i

σ̃(1)
ρ

]

2

ieiρ

[
1 +

σ̃(1)
ρ

]

2

e−ρ

[
1− i

σ̃(1)
ρ

]

2




,

∆24(ρ) =




1 1
−i 1

−e−iρ

[
1− σ̃(1)

ρ

]

2

eρ

[
1 + i

σ̃(1)
ρ

]

2

−ie−iρ

[
1− σ̃(1)

ρ

]

2

−eρ

[
1 + i

σ̃(1)
ρ

]

2




,

where [a]2 = a + O(ρ−2). Hence, (23) has a nontrivial
solution if and only if

det(∆(ρ)) = 0, (25)
which equals

det(∆(ρ))

= det[∆11(ρ), ∆12(ρ)] det[∆23(ρ), ∆24(ρ)] = 0.
(26)

Theorem 7. Let λ = iρ2 and let ∆(ρ) be given by (24).
Then det ∆(ρ) is the characteristic determinant of the
eigenvalue problem (16) and it has the asymptotic expres-
sion in S:

det(∆(ρ))

= det[∆11(ρ), ∆12(ρ)] det[∆23(ρ), ∆24(ρ)] = 0,

where
det[∆11(ρ), ∆12(ρ)] = 2eρ

(
e−iρ(i + (1− i)αρ−1)

+eiρ(i + (1 + i)αρ−1) +O(ρ−2)
)
,

(27)

and
det[∆23(ρ), ∆24(ρ)]

= −2ieρ
(
eiρ

(
1 + (1 + i)σ̃(1)ρ−1

)

+e−iρ
(
1− (1− i)σ̃(1)ρ−1

)
+O(ρ−2)

)
.

(28)

Moreover, the eigenvalue of (16) has the following asymp-
totic forms: as n →∞,




λ1n = −2α + i

(
1
2

+ n

)2

π2 +O(n−1),

λ2n = −2σ̃(1) + i

(
1
2

+ n

)2

π2 +O(n−1),

(29)

where n′s are positive integers and σ̃(1) =
γ(b− a)

4
that

is given by (22). Therefore, as n →∞,



Re{λ1n, λ1n} → −2α,

Re{λ2n, λ2n} → −γ(b− a)
2

.
(30)

Proof. Since the expansion of det(∆(ρ)) is a direct com-
putation, we just need to show the asymptotic expression
of eigenvalues. Let ρ ∈ S and let det(∆(ρ)) = 0. Then we

have det[∆11(ρ), ∆12(ρ)] = 0 or det[∆23(ρ), ∆24(ρ)] = 0.
Thus, from (27), we get

e−iρ(i + (1− i)αρ−1) + eiρ(i + (1 + i)αρ−1) +O(ρ−2) = 0.
(31)

This leads to

e−iρ + eiρ +O(ρ−1) = 0. (32)

Notice that in the first quadrant of the complex plane, the
solutions of the equation eiρ + e−iρ = 0 are given by

ρ̃1n =
(

1
2

+ n

)
π, n = 0, 1, 2, . . . .

Apply the Rouché’s theorem to (32) to give the solutions
of (32): as n →∞,

ρ1n = ρ̃1n+α1n =
(

1
2

+ n

)
π+α1n, α1n = O(n−1). (33)

Substitute ρ1n into (31) and use the fact eiρ̃1n = −e−iρ̃1n ,
to obtain

α1n = − α

i( 1
2 + n)π

+O(n−2).

Substitute above into (33) to produce

ρ1n =
(

1
2

+ n

)
π− α

i( 1
2 + n)π

+O(n−2) as n →∞. (34)

Since λ1n = iρ2
1n, we get eventually that

λ1n = −2α + i

(
1
2

+ n

)2

π2 +O(n−1) as n →∞.

Now we investigate the second branch eigenvalues. Let
det[∆23(ρ), ∆24(ρ)] = 0. From (28), it has

eiρ
(
1+(1+ i)

σ̃(1)
ρ

)
+ e−iρ

(
1− (1− i)

σ̃(1)
ρ

)
+O(ρ−2) = 0.

(35)
Similar analysis gives the asymptotic solutions for above
equation: as n →∞,

ρ2n = ρ̃1n + α2n =
(

1
2

+ n

)
π + α2n, α2n = O(n−1).

Substitute above into (35) and use the fact eiρ̃1n = −e−iρ̃1n

again, to obtain

α2n = − σ̃(1)
i( 1

2 + n)π
+O(n−2),

and

ρ2n =
(

1
2

+ n

)
π− σ̃(1)

i( 1
2 + n)π

+O(n−2) as n →∞. (36)

Since λ2n = iρ2
2n, we get eventually that

λ2n = −2σ̃(1) + i

(
1
2

+ n

)2

π2 +O(n−1) as n →∞.

The proof is complete.
Theorem 8. Let {λ1n, λ1n, λ2n, λ2n, n ∈ N} be the eigen-
values of A with λin being given in (29). Then the corre-
sponding eigenfunctions

{[f ′′in(x), λinfin(x), φ′′in(x), λinφin(x)], i = 1, 2, n ∈ N}
(37)

have the following asymptotic expressions:
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



f ′′1n(x) = 2e−iρ1ne−ρ1n(1−x) + (1− i)eiρ1nx

+2ie−ρ1nx − (1 + i)e−iρ1nx +O(n−1),

λ1nf1n(x) = 2ie−iρ1ne−ρ1n(1−x) − (1 + i)eiρ1nx

−2e−ρ1nx − (1− i)e−iρ1nx +O(n−1),

φ′′1n(x) = f ′′1n(x) +O(n−1),

λ1nφ1n(x) = λ1nf1n(x) +O(n−1),

f ′′2n(x) = λ2nf2n(x) = 0,

φ′′2n(x) = 2e−iρ2ne−ρ2n(1−x) + (1− i)eiρ2nx

+2ie−ρ2nx − (1 + i)e−iρ2nx +O(n−1),

λ2nφ2n(x) = 2ie−iρ2ne−ρ2n(1−x) − (1 + i)eiρ2nx

−2ie−ρ2nx − (1− i)e−iρ2nx +O(n−1),

(38)

where ρ1n and ρ2n are given by (34) and (36) respectively.
Moreover,{[

fin, λinfin, φin, λinφin

]
, i = 1, 2, n ∈ N

}

are approximately normalized in X in the sense that there
exist positive constants c1 and c2, independent of n, such
that for n ∈ N,
c1 ≤ ‖f ′′in‖L2 , ‖λinfin‖L2 , ‖φ′′in‖L2 , ‖λinφin‖L2 ≤ c2. (39)

Proof. Due to the tremendous computations, we omit the
details here.

5. RIESZ BASIS GENERATION AND EXPONENTIAL
STABILITY

This section is devoted to the Riesz basis property for
system (14). The main result is the following Theorem
9.
Theorem 9. Let A be define by (13). Then each eigenvalue
with large modulus is algebraically simple. Moreover, there
is a set of generalized eigenfunctions of A, which forms a
Riesz basis for X.

Proof. Define a linear operator A : D(A)(⊂ H) → H:




A(f, g) = (g,−f (4)), ∀ (f, g) ∈ D(A),

D(A) = {(f, g) ∈ H| A(f, g) ∈ H,

f ′′(1) = 0, f ′′′(1) = αg′(1)}.
(40)

Let λ = iρ2. It is easily to check that det[∆11(ρ), ∆12(ρ)]
is the characteristic determinant of A, which has the
asymptotic expression (27). The eigenvalues of A, which is
denoted by {λ1n, λ1n, n ∈ N} and corresponding general-
ized eigenfunctions {(f1n, λ1nf1n), (f1n, λ1nf1n), n ∈ N}
have the asymptotic expressions (29) and (38), respec-
tively. In terms of regular theory of the second order partial
differential equations (see e.g., [9]), we know that each
eigenvalue with sufficiently large module is algebraically
simple and there is a set of generalized eigenfunctions of
A, which forms a Riesz basis for H.

Now define another operator Ã : D(Ã)(⊂ H) → H as
following: 




Ã(f, g) = (g,−f (4) − γσg),

D(Ã) = {(f, g) ∈ H| Ã(f, g) ∈ H,

f ′′(1) = f ′′′(1) = 0}.
(41)

Then Ã is a bounded perturbation of A and we have the
following results on it (see [15]): for λ = iρ2,

a) det[∆23(ρ), ∆24(ρ)] is the characteristic determinant
of eigenvalues of Ã, which has the asymptotic expression
(28);

b) the eigenvalues {λ2n, λ2n, n ∈ N} have the asymptotic
expansions (29) and each eigenvalue is algebraically simple
when its modulus is large enough;

c) the corresponding eigenfunctions

{(φ2n, λ2nφ2n), (φ2n, λ2nφ2n), n ∈ N}
have the asymptotic expressions (38);

d) there is a set of generalized eigenfunctions of Ã, which
forms a Riesz basis for H.

To sum up, we have obtained that
{((f1n, λ1nf1n), 0, 0), (0, 0, φ2n, λ2nφ2n, n ∈ N}

and their conjugates
{(f1n, λ1nf1n, 0, 0), (0, 0, φ2n, λ2nφ2n, n ∈ N}

form a Riesz basis for H×H, that is X.

Furthermore, due to the fact that(
I2×2 02×2

I2×2 I2×2

)
(f1n, λ1nf1n, 0, 0)T

= (f1n, λ1nf1n, f1n, λ1nf1n)T

and(
I2×2 02×2

I2×2 I2×2

)
(0, 0, φ2n, λ2nφ2n)T = (0, 0, φ2n, λ2nφ2n)T ,

we conclude that
{(f1n, λ1nf1n, f1n, λ1nf1n), (0, 0, φ2n, λ2nφ2n), n ∈ N}

together with their conjugates
{(f1n, λ1nf1n, f1n, λ1nf1n), (0, 0, φ2n, λ2nφ2n), n ∈ N}

form a Riesz basis for X. Now, by virtue of the Bari’s
theorem (see [6, 7]) and the expressions (38), we know
that each eigenvalue with sufficiently large module is
algebraically simple and there is a set of generalized
eigenfunctions of A, which forms a Riesz basis for X. The
proof is complete.
Theorem 10. Let A be defined by (13). Then

(i). A generates a C0-semigroup eAt on X.

(ii). The spectrum-determined growth condition holds true
for eAt, that is to say, S(A) = ω(A), where

S(A) := sup
λ∈σ(A)

Reλ

is the spectral bound of A, and
ω(A) := inf

{
ω | ∃M > 0 such that

∥∥eAt
∥∥ ≤ Meωt

}

is the growth order of eAt.

(iii). System (14) is exponentially stable.

Proof. Since there is a set of generalized eigenfunctions of
A, which forms a Riesz basis for X, (i) and (ii) then follow
from the asymptotic expansion (29) for eigenvalues. By
(ii), the stability of (14) can be determined by the maximal
value of the real parts of eigenvalues of A. Now, by Lemma
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5, Re(λ) < 0 for any λ ∈ σ(A), and from Theorem 7, the
imaginary axis is not the asymptote of the eigenvalues.
Hence, system (14) is exponentially stable. The proof is
complete.
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