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Abstract: This paper describes a robot manipulator system currently under development which learns 
assembling technique from observation of skilled worker’s demonstrations. The system is an application of 
EBL (Explanation-Based Learning) to the robot manufacturing domain. The system improves the 
operating capability of the robot manipulator through observing, analyzing the skilled worker’s assembling 
operation, and learning the assembling technique, that is, the tacit knowledge of skilled workers which 
makes them complete the assembling task more efficiently. The learning process is a knowledge-based 
deduction approach, requiring sufficient background knowledge, to understand the observed sequence.  

 

1. INTRODUCTION 

Today, robotics affects a broad sector of economic activities 
from automotive and electronics industries to food, recycling, 
logistics, etc. To remain competitive in the global arena, 
future manufacturing scenarios throughout all industrial 
branches will have to combine productivity and flexibility 
with minimal life-cycle-cost of manufacturing equipment. 
Thus, it can be expected that manufacturing competence is 
further concentrated on robot systems which are expected to 
become a key component in the digital factory of the future. 
Robot technology development challenges related to the 
development of robot assistants concern the required 
intelligent system behavior (Martin Haegele, et al., 2005). 
Learning is an important one of the underlying relevant 
functionalities. 

This paper focuses on learning the tacit knowledge, that is, 
the assembling technique of skilled workers who perform the 
assembling task with the robot manipulator. We are 
constructing a system which acquires assembly concepts 
from observation. The system monitors the manipulator 
operation by a skilled worker, and reads in the commands 
one by one from the skilled worker’s program. Then it 
searches through the knowledge base to analyze the actions 
or commands. When it recognizes completion of the goal, the 
system generalizes the observed manipulator sequence to 
create a new concept that is to be used for solving similar 
assembling problem efficiently. The learning process in our 
system emphasizes human collaboration with automation 
system. The aim of our system is to explain why the 
assembling operation of skilled workers is better, and learn 
the better assembling technique, thus it is able to improve the 
assembly efficiency of the robot manipulator. Our system 

does contribute to skill succession even after the skilled 
workers were retired.  

In this paper, the robot manipulator system consists of four 
parts: the robot arm, the robot controller, a teaching box, and 
the PC. Figure 1 is a picture of the robot manipulator system 
but without the PC. The controller sends commands for 
operation to the robot arm. Only one device is allowed to 
operate the controller at the same time, even though several 
devices, such as the teaching box or the PC, are connected to 
the controller. The robot arm can be operated automatically 
with reading in the program, or taught by human workers 
with the teaching box. 

 

Fig. 1. The Robot Manipulator System  
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2.  LEARNING METHOD & SYSTEM ARCHITECTURE  

2.1  Learning Method 

Learning from observation is particularly promising for 
acquiring knowledge from human experts for knowledge-
based systems (Gerald DeJong, Raymond Mooney, 1986). 
Explanation-based systems differ from more traditional 
correlational machine learning paradigms in that it is possible 
to acquire useful knowledge on the basis of a single problem-
solving episode. For this to be possible, explanation-based 
systems rely on extensive domain-specific knowledge both 
while observing the sample problem-solving episode, and in 
guiding the generalization process (Alberto Maria Segre, 
Gerald DeJong, 1985). 

The Acquiring Robotic Manufacturing Schemata (ARMS) 
system is an application of EBL to the manipulator domain 
created by Alberto Segre about 20 years ago. The ARMS 
domain consists of a prototypical industrial robot arm 
maneuvering rigid pieces in a finite three-dimensional 
workspace (Alberto Segre, 1991). Given a set of parts, their 
location on a tabletop and a description of a mechanical 
assembly’s desired behavior, the AMRS system learns a 
physical realization of this behavior as well as new operator 
schemata from observing an expert’s solution.  

Partially inspired by the ARMS system, the learning method 
in our system is also based on EBL. However, other than the 
ARMS system that learns the physical realization and 
assembly plan to fulfill a mechanical behavior, our system is 
engaged in analyzing the assembly knowledge hidden in the 
skilled worker’s operation to the robot manipulator, and 
acquiring the assembling technique by generalizing the 
reason that makes the skilled worker’s assembling operation 
better. Thus, our system and the ARMS system apply EBL 
for different targets in the same domain. The goal in our 
system is to learn how the skilled worker masterly applies the 
assembling rules, which makes the domain theory in our 
system is different from the ARMS’s. Compared to the 
ARMS system, our system pays more efforts on studying the 
operating details in the skilled worker’s assembling process. 

2.2  System Architecture 

 

Fig. 2. System Architecture 

Figure 2 shows the architecture of our explanation-based 
manipulator learning system. 

There are four inputs to our system: the initial state, the 
training example, the goal concept, the goal specification.  

The initial state is input into the history database, which is a 
recorder of the world state of the work cell. The history 
database will update when the world state of work cell is 
changed after a certain operation. And, the past data of the 
world state are stored in the database. 

The training example, which is an observed skilled worker’s 
assembling operation and is input to the analyzer, is in the 
forms of a sequence of primitive robot manipulator 
commands. After reading in the commands one by one, the 
analyzer explains each command and analyzes the operation 
sequence while referring to the history database and the 
knowledge base. When certain command changes the world 
state, the analyzer will inform the history database to update. 
The product of the analyzer is a causal model explaining how 
the tacit assembling technique is implemented within the 
provided primitive command sequence. 

The goal concept is the assembling technique to be learned. 
The generalizer reads in the goal concept, combines it with 
the causal model, and constructs an explanation tree by 
conferring with the knowledge base. Then, the generalizer 
generalizes the explanation tree, abstracts new knowledge 
about the goal concept, and stores it into the knowledge. 

When the system is used to solve an assembly problem, the 
assembly task is described as the goal specification and is 
input into the planner. The planner will search through the 
knowledge base while consulting the reference world state in 
the history database, and give a solution to the goal 
specification if possible.  

As showed in the dashed frame in figure 2, this paper 
concentrates on the learning element of the system, mainly 
introducing the assembling technique acquisition mechanism 
with explanation-based learning. 

3. REPRESENTATION OF THE LEARNING PROBLEM 

 

Fig. 3. The Test Assembly 
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The learning problem in our system is an explanation-based 
generalization problem, which is defined by Gerald DeJong 
(Gerald DeJong, Raymond Mooney, 1986) as: given the 
domain theory, the goal, the initial world state, and the 
observed operator/state sequence, then the new knowledge 
that achieves the goal is determined in a general way. 

This paper illustrates the learning problem through a test 
assembly instance. Figure 3 is a sketch of the test assembly. 
All the workpieces are cylindrical in shape. The assembling 
sequence is designated as the ‘id’ number shows. There are 
four types of workpieces in the test assembly: block1, block2, 
cap, and pin. 

3.1  Initial State 

Initial state is a specification of the initial world state of the 
work cell. In our system, the initial state describes the initial 
position of the workpiece based on the robot coordinate 
system. The illustration of it is showed as figure 4.  

 

Fig. 4. Initial State of the Work Cell 

The robot manipulator is in the center of the work cell. The 
robot coordinate system is designated as figure 4 shows, and 
the direction of the Z axis is upward. The workpiece stages 
and the assembly stage are distributed in a circle around the 
robot manipulator. The workpieces are placed vertically on 
the workpiece stages. The assembly stage is the workbench 
for the assembling task. 

The work piece’s initial position is defined as: 

pos(id:1, type:block1, p(-337,-337, 200)). 

It specifies the position of the first assembled workpiece (‘id’ 
here refers to the assembling order) and the type of it. The 
position of a workpiece denotes the center of the underneath 
surface of the workpiece. It is also the origin of the 
workpiece coordinate system. All the initial states of the 
workpieces are defined in the same way as above. 

3.2  Domain Theory 

The domain theory in our system is stored in the knowledge 
base and can be updated as new knowledge is acquired. It is 
composed of three parts: the workpiece base, the basic base, 
and the rules base. 

The Workpiece Base 

The workpiece base provides the workpiece data, such as its 
type, catch point, figure, and so on. The workpiece data are 
indexed and specified according to their types. Catch point is 
the point at which the robot hand grips the workpiece, and it 
is designated by the skilled worker according to the type of 
the workpiece. An instance is showed as the following: 

        wp(  

         type:block1, 

         catchpoint(0, 0, 2), 

       [ figure(radius:26, height:4), 

         hole1(p(0, 20.5, 4), 1.5), 

         hole2(p(0, 0, 4), 1.5), 

         hole3(p(0, -20.5, 4), 1.5) ] ). 

 

Fig. 5. The Illustration of ‘block1’ 

The workpiece data are based on the workpiece coordinate 
system, and the origin of the system is the center of the 
underside of the workpiece. The axes of the workpiece 
coordinate system are parallel to those of the robot 
manipulator coordinate system while the directions are the 
same. As figure 5 shows, in the above instance, the origin of 
the coordinate system of block1 is the center of the 
underneath round surface of block1. The position coordinate 
of the hole is the center of the upper round surface of the 
hole, and the radius of the hole is given. Other workpieces' 
data are given in the similar way. 

The Basic Base    

The training example is composed of the robot commands 
and parameters only. To analyze the training example, the 
system must understand the meanings of every command and 
its parameters. Thus, the basic base supplies the commands 
of the robot arm with the explanation of their function. The 
command here has a name with parameters and a body. The 
body is almost the same as the primitive robot command. The 
parameters of the name are pointers that relate the command 
with the workpiece and world state of the work cell. The 
name shows the purpose using the command. 

approachp(P, D):- mov(P,-D). 
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The above is an example of the item stored in the basic base. 
The primitive command is ‘MOV P,-D’. ‘mov(P,-D)’ is the 
result of the case changer in the analyzer. This item explains 
that the purpose of the command is to approach point ‘P’ 
with the distance ‘D’ above the point, which is moving to a 
position retracted ‘D’ from ‘P’ in the robot hand direction. In 
different situations, the same command may have different 
explanations, in which the proper one is decided depending 
on the temporal world state and the command’s order in the 
program. For instance, ‘MOV P’ means that moves to point 
‘P’ from current position ‘P_CURR’. When P.X=P_CURR.X 
and P.Y = P_CURR.Y, if P.Z>P_CURR.X, then it will be 
explained as ‘raiseto(P): mov(P).’; else if P.Z<P_CURR.Z, 
then the command  will be explained as ‘lowerto(P): 
mov(P)’.  

The Rules Base    

When a worker carries out the assembling task, he/she must 
obey some rules even though he/she did not notice the rules 
he/she is using. Different workers use different rules in 
different manners, which is why the skilled worker performs 
the assembling better than the green hands (i.e., novice 
workers). The rules base contains the rules in the assembling 
task, including both previously encoded rules and new rules 
learned from the training example. 

There are two types of the rules: inference rule and control 
rule. Inference rule deals with the world state information in 
the history database and the workpiece base to calculate the 
positions of important points.  For example, the seizing point 
position of workpieces in the robot coordinate system. 
Control rule is the operating rule that should be obeyed in the 
assembling process. The control rule can be classified in to 
general control rule and soft control rule. General rule is 
common sense or general knowledge that is to be paid 
attention to in assembling. For example, the approach point 
must be higher than the upper surface of the target workpiece 
to avoid collision. Another example is defining the essential 
or indispensable actions that must be included in a 
complicated operation concept to complete a certain 
assembling task. As the general rule assures the completion 
of the assembling task, the soft rule is the rule to improve or 
optimize assembling operation. For instance, it specifies 
when it is better to change the speed. 

3.3  Goal Concept 

As mentioned above, there is a great difference between our 
system and the ARMS system in that the two systems have 
different learning targets. Our system is interested in the 
combination of the assembly rules that the skilled worker 
employs while the ARMS system is limited in learning a 
physical realization and two new operator schemata for 
fulfilling a mechanical function. In an actual manufacturing 
process, the product is designed by other experts, and the 
robot manipulator is only in charge of assembling the product 
with given workpieces. Therefore, the goal concept in our 
system is the assembling technique to be learned. Our system 
focuses on learning skilled workers' assembling technique. 
The technique is the way that how the expert applies the rules 

to accomplish the assembling task in less time and with less 
or no error. 

In the assembly process, there are three typical phases: 
picking up the workpiece, moving the workpiece along a 
certain path, placing the workpiece at the target position. 
Therefore, the goal concepts in our system are efficient 
‘pickup’ and ‘place’ movements and optimized moving 
‘path’ to be learned. There two criteria for evaluating 
‘efficient’: speed and stability. The former requests a less 
assembly time, and the latter requires a less error in the 
assembling operation. There is a contradiction between the 
speed and stability criteria, and it is difficult to mediate the 
contraction. For example, increasing the speed may cause 
instability, and often the stability will have the priority 
compared with the speed. To different workpieces and world 
states, two different ‘efficient’ criteria are to be emphasized. 
The skilled worker has the experience to solve the speed and 
stability contradiction properly. 

3.4   Training Example 

The training example in our system is a robot manipulator 
program made by the skilled workers. It can be a ready-made 
program or a program being input by the skilled workers 
using the teaching box. So, our system can learn both in 
offline from the skilled worker’s program and in online from 
the skilled worker’s operation. To explain the knowledge that 
our system learns, two training examples are given in this 
paper as below.  

The first one is an instance how the skilled worker ‘pickup’ 
the first assembled workpiece block1 in the test assembly 
above: 

10 OVRD 20      ’Set the speed as 20% of the Maximum 

20 MOV P1,-15     ’Move to a position retracted 15mm 
from P1 in the robot hand direction 

30 MVS P1               ’Move to P1 in line 

40 HCLOSE 1          ’Close hand 

50 MOV P1,-15 

The second one is an instance how the skilled worker 
‘pickup’ the third assembled workpiece pin in the test 
assembly above: 

10 OVRD 20 

20 MOV P5,-10 

30 OVRD 5 

40 MVS P5 

50 DLY 0.5              ’Delay 0.5 second 

60 HCLOSE 1 

70 DLY 0.5 

80 OVRD 20 
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90 MOV P5,-10 

 

Fig. 6. Pickup ‘pin’ 

Figure 6 is the illustration of the second training example. 
Since the robot manipulator is not allowed to run in 
maximum speed, the speed is set to 20% of the maximum.  
The speed slows to 5% of the maximum when the robot hand 
moves in line from the approach point to the seize point. 
After delaying 0.5 second, the robot hand closes, and delays 
0.5 second. Then accelerating to 20% of the maximum speed, 
the robot hand retreats to the approach point. The pickup of 
block1 is different from the pickup of pin in the following: in 
the process of block1 pickup, the speed is faster, no slow 
down before getting to the seize point and no time delay after 
closing the hand. The reason for these differences is given in 
the next section. 

4. KNOWLEDGE ACQUISITION 

The knowledge acquisition mechanism in our system is based 
on EBL. As Charles Elkan and Alberto Segre pointed out 
(Charles Elkan, Alberto Segre, 1989): In order to support the 
application of EBL techniques, a knowledge-representation 
formalism must meet certain conditions. Most obviously, the 
formalism must be declarative so that it could allow the 
construction of explanations. Less obviously, knowledge 
must be represented in a way that supports the construction of 
explanations that are capable of being generalized. 
Knowledge should be expressed in terms of individuals and 
relationship between them, so that specific individuals in 
explanations can be replaced by generic individuals. If 
knowledge is represented as logical facts and rules, then 
explanations are simply equivalent to proofs. Moreover, all 
proofs have the same tree structures, because a fact can only 
be proven by matching it with the consequent of a rule, and 
then recursively proving the antecedents of the rule. 

In this paper, the knowledge to be acquired is the assembling 
technique of the skilled worker. In other words, the 
knowledge is the rules followed by the skilled worker in his 
assembling operation. To obtain this kind of knowledge, our 
system takes certain efficient assembling operation as the 
goal concept, and attempts the explanation construction for 
the training example, which is a proof tree that explains why 
the training example is a successful instance of the goal 
concept, and then extracts the assembling technique as a new 

rule from the constructed explanation. Therefore, the 
explanation construction is the basis for knowledge 
acquisition. 

According to the training examples above, the explanation 
construction mechanism in our system is illustrated with the 
‘pickup’ examples. 

 

Fig. 7. Explanation of Robot Command 

As shown in figure 7, our system explains the robot 
commands read in first. From the ‘pickup block1’ training 
example, the system reads in the command ‘MOV P1,-15’ 
and the parameter P1(-337,-337,202). The case changer 
changes the case of the command and the analyzer 
understands the purpose using this command as approaching 
point p(-337,-337,202) with a distance 15mm retracted from 
the point in the robot hand direction. With the initial state 
data ‘pos(id:1, type:block1, p(-337,-337, 200)).’ in the history 
database and workpiece data ‘wp(id:1, catchpoint(0,0,2),_)’ 
from the workpiece base in the knowledge base, the system 
gets the seize point of the first assembling workpiece block1 
according to the inference rule. As the distance ‘D:15’ is 
bigger than half length of block1, which means the approach 
position is higher than the upside of the approaching target 
and is a general state control rule, and the calculated seize 
point is the same as the target point read from the program, 
the system recognizes according to the general operating 
control rule that approaching the first assembling workpiece 
block1 is realized.  

While explaining for every read in command, the analyzer 
stacks them in a list one after one. As the blue lines in figure 
8 show, there is a general control rule that ‘MOV P,-D’, 
‘MOV P’, ‘HCLOSE 1’ and ‘MOV P,-D’ are indispensable 
actions in the complicated movement ‘pickup’. When all the 
four indispensable commands are detected in the list, the 
analyzer realizes that the list of commands is ‘pickup’ and 
gets a causal model for the commands. 

The generalizer reads in the goal concept and constructs the 
explanation tree for the goal concept with the causal model. 
As shown in figure 9, the explanation tree explains how the 
skilled worker uses the other commands besides the 
indispensable commands of ‘pickup’ to make the ‘pickup 
pin’ operation more stable. Then, the generalizer extracts the 
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assembling knowledge as a new rule from the top-level 
subgoals of the explanation tree.  

 

Fig. 8. Explanation Tree for ‘pickup block1’ 

 

Fig. 9. Explanation Tree for ‘pickup pin’ 

 

Fig. 10. Partial Explanation Tree for the Test 

Figure 8 and figure 9 show the explanation trees of goal 
concepts ‘fast pickup’ and ‘stable pickup’ for the ‘pickup 
block1’ training example and ‘pickup pin’ one, respectively. 
Dashed arrows and lines mean the detailed explanations for 
the robot commands as shown in figure 6 are overleapt. 

Corresponding to different types of workpieces, different 
assembling technique is employed. As different precision 
degrees are required to different workpieces and picking up 
block1 is easier than picking up pin, the assembling 
technique used in the two training examples has different 
preferences. Pickup block1 does not have to require high 
precision, higher speed is its preference. So in pickup block1, 
only the soft control rule that the operation should not run in 
maximum speed is appeared. On the other hand, to pickup 
pin, precision is emphasized; therefore, the measures such as 
slow-down before grip and delay before and after grip 
making the pickup more stable are used. Figure 10 is a part of 
the explanation tree for the test assembly. From this 
explanation tree, the new rule extracted is a rule classification 
that to a certain type of workpiece some assembling 
technique preference is emphasized. 

5. CONCLUSIONS 

This paper presents a human-robot collaboration system that 
makes the robot have the ability to learn human expert 
knowledge by observation. Our system shows the 
operationality for applying EBL on the manufacture domain 
and provides a new method. Our future research direction 
will be on making our system have the ability to 
quantificationally analyze and evaluate the efficiency of the 
assembling operating as marking the application of the rules 
and applying our system on assembly error recovery 
problem. 
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