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Michèle Basseville
2

Irisa, Campus de Beaulieu, 35042 Rennes Cedex, France (Tel:
+33(0)2 99 84 75 88; e-mail: firstname.name@irisa.fr).

Abstract: Flutter is a critical instability phenomenon for aircrafts. In previous investigations,
the authors have proposed several online statistical subspace-based algorithms for flutter
monitoring. Each algorithm monitors some stability criterion (damping, flutter margin...) w.r.t.
a fixed reference flight point using the online Cusum test. The drawback of this technique is that
the flutter detection corresponds to a light trend of the criterion toward instability and thus
the estimated flutter airspeed is conservative. In this paper, a new moving reference version
is proposed which intends to give a better estimation of the flutter airspeed. Application on
simulation data shows the relevance of the new algorithm. Copyright c© 2008 IFAC.
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1. INTRODUCTION

The validation of new aircraft prototypes requires flight
flutter testing to design flutter free boundaries of the flight
envelope. This process remains very expensive in time and
money in spite of the research progress (Wright [1992]) and
the flutter is still reported on many recent accidents as the
crash cause (Gero [1999]). Indeed, the flutter is a complex
aeroelastic instability phenomenon that results from un-
favorable coupling between aerodynamical and structural
forces. First investigations were conducted by Lanchester
[1916], Von Baumhauer and Koning [1923] to understand
the flutter onset mechanism and important practical solu-
tions were provided by Keldysh [1938]. The main analysis
tool is to monitor the aeroelastic modes for changing aero-
dynamic conditions (airspeed, altitude...) under in-flight
perturbations (noise, turbulence...) and artificial excita-
tions (control surface pulses, thrusters...), see Kehoe [1995]
for details. Modal identification from flight data has been
widely used to estimate stability criteria (damping coeffi-
cient, flutter margin...) and track modal changes toward
instability. The approach consists in solving either in time
(Basseville et al. [2001]) or frequency (Guillaume et al.
[2003]) domain the modal space equations for increasing
system orders and then selecting the physical modes by
means of stabilization diagrams. The high computational
cost of running identification at each flight point limits the
online application of this identification approach.

The use of a detection algorithm to monitor the trend of a
stability criterion rather than estimating its value appears
to be a promising solution for online flutter monitoring. In
Mevel et al. [2005], a fast statistical detection algorithm
builds on a residual associated with subspace-based iden-
tification and the online Cusum test. This algorithm can
detect the flutter when the damping coefficient decreases
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below some critical value. In this approach, the subspace-
based residual is firstly calibrated on data at a certain
flight point and then the CUSUM test runs sample-wise for
new data. The test checks the orthogonality of the newly
collected covariance data Hankel matrix to a left kernel
computed at the reference structure. The approach was
extended to monitor other stability criteria: flutter margin
in Zouari et al. [2006], pairs of time-varying frequencies
in Basseville et al. [2006], and modeshapes correlation in
Zouari et al. [2007].

Besides time reduction, this detection approach is more
robust to the bias/variance tradeoff than identification.
Moreover, experiments showed good performances in de-
tecting the deviation of the system w.r.t. the reference
toward instability. However, the reference corresponds in
practice to normal flight conditions far enough from flutter
where significant amount of sensor data can be recorded
to perform modal identification. It results that the esti-
mation of the detection of flutter is conservative, namely
alarms are raised too early w.r.t. the true flutter airspeed.
Typically, 15% safety margin is considered in airworthi-
ness regulations between flight envelope and flutter. Thus
conservative flutter estimation restricts the flight domain
expansion of the aircraft. A solution for reducing con-
servatism in flutter prediction is proposed in Lind and
Brenner [1998, 2000] in the framework of robust stability
analysis with a combined model and data-based approach
called flutterometer.

This paper introduces a new version of the detection algo-
rithm above. This algorithm considers a moving window
update of the reference left kernel during online test. Up-
dating the reference can be an interesting solution for less
conservative flutter detection because it adjusts the test to
neglect small trends to instability and react to important
criterion changes near the critical zone.
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The paper is organized as follows. Section 2 details the
subspace-based residual approach with moving reference.
The online flutter monitoring algorithm using the Cusum

test is presented in section 3. In section 4, the aircraft wing
model is described and results on simulation are reported.
Finally, concluding remarks are drawn in section 5.

2. SUBSPACE-BASED RESIDUAL FOR MODAL
MONITORING WITH MOVING REFERENCE

Given sensor data Y of an aircraft, the vibration-based
structural monitoring problem is studied as monitoring
the eigenstructure of the state transition matrix F of a
linear dynamic system (Ewins [2000]):

{
Xk+1 = F Xk + Vk+1

Yk = H Xk
(1)

namely the roots (λ, φλ) of :

det(F − λI) = 0, (F − λI) φλ = 0 (2)

The frequency f and damping coefficient d are recovered
from eigenvalue λ through:

f = α/2πτ, d = |β|/
√

α2 + β2

where α = |arctanℑ(λ)/ℜ(λ)| , β = ln |λ| (3)

and τ is the sampling frequency. Let the (λ, ϕλ)’s be

stacked into: θ
∆
= (

Λ
vecΦ

), where Λ is the vector whose

elements are the eigenvalues λ, Φ is the matrix whose

columns are the mode-shapes ϕλ
∆
=Hφλ’s, and vec is the

column stacking operator. It is assumed that a reference
parameter θ0 is available, identified on data recorded
on a reference flight point, using output-only covariance-
driven subspace-based identification algorithm. It consists
in computing the svd of the empirical Hankel matrix

Ĥ0
p+1,q (p + 1 block rows and q block columns) filled

with covariances. Given a new data sample, the detection
problem is to decide whether it is still well described by θ0

or not.

Based on the subspace interpretation of the svd, the modal
signature θ0 can be characterized by:

ST (θ0) Ĥ0
p+1,q = 0 (4)

The left kernel S(θ0) is an orthonormal matrix S such that:

STOp+1(θ0) = 0 (5)

where Op+1(θ0) is the observability matrix computed in
modal basis from θ0:

Op+1(θ0) =




Φ0

Φ0∆0

...
Φ0∆

p
0


 (6)

with ∆0 = diag(Λ0). Matrix S depends implicitly on θ0

and is not unique, but can be treated as a function S(θ0).

In order to decide whether θ is still well described by θ0

or not, the residual corresponding to (4) is defined in
Basseville et al. [2000] as :

ζn(θ0)
∆
=

√
n vec

(
S(θ0)

T Ĥn
p+1,q

)
(7)

where Ĥn
p+1,q filled with covariances of new data from the

(possibly unstable) system that writes:

Ĥn
p+1,q ≃ 1/n

n−p∑

i=q

Y+
i,p+1Y−T

i,q (8)

where: Y+
k,p+1

∆
=




Yk

.

.

.

Yk+p



, Y−
k,q

∆
=




Yk

.

.

.

Yk−q+1



.

Testing if θ = θ0 holds true or not – or equivalently
deciding that residual ζn is significantly different from
zero – can be achieved with a statistical local approach
by assuming close hypotheses:

H0 : θ = θ0 and H1 : θ = θ0 + Υ/
√

n (9)

where vector Υ is unknown, but fixed.

Monitoring the sensitivity of the residual to modal changes
relative to uncertainties and noise requires the definition
of the mean deviation (Jacobian) and covariance matrices:

Jn(θ0, θ)
∆
= −1/

√
n ∂/∂θ Eθ ζn(θ) |θ=θ0

(10)

Σn(θ0, θ)
∆
= Eθ(ζn ζT

n ) (11)

where Eθ is the expectation when the actual system
parameter is θ. The Jacobian and covariance matrices
should be updated during flutter detection because flight
data have time-varying statistics (Brenner [2003]).

Provided that Σn(θ0, θ) is positive definite, and for all
Υ, the residual ζn in (7) is asymptotically Gaussian
distributed when assuming θ as in (9):

Σ−1/2
n (θ0, θ) (ζn(θ0) − Jn(θ0, θ)Υ)

n → ∞→ N (0, I)

(12)
Thus a deviation Υ 6= 0 in the system parameter θ is
reflected into a change in the mean value of the residual ζn.

It may be numerically preferable to have identity covari-
ances for all values θ, and thus handle the scale-normalized
residual :

ζn(θ0)
∆
= Jn(θ0, θ)

T Σ−1
n (θ0, θ) ζn(θ0) (13)

From (12), ζn(θ0) is asymptotically Gaussian:(
ζn(θ0) − Σn(θ0, θ)

1/2Υ
)

n → ∞→ N (0, I) (14)

where Σn(θ0, θ)
∆
=Jn(θ0, θ)

T Σ−1
n (θ0, θ)Jn(θ0, θ).

For an online detection algorithm, a data-driven compu-
tation for the residual is preferable. This results from (8).
Assuming n > p + q, ζn(θ0) writes as the cumulative sum:

ζn(θ0)≃
n−p∑

k=q

Zk(θ0)/
√

n where (15)

Zk(θ0)
∆
=Jk(θ0, θ)

T Σ−1
k (θ0, θ)vec(S(θ0)

TY+
k,p+1Y−T

k,q ) (16)

From (14) and (15),
∑n−p

k=q Zk(θ0)/
√

n is asymptotically
Gaussian distributed, with zero mean under H0 and
Σn(θ0, θ)

1/2Υ under H1. For n large enough and k =
1, ..., n, the sample-based residual Zk(θ0) is also asymp-
totically Gaussian distributed with zero mean under the
reference, and the Zk(θ0)’s are independent (Benveniste
et al. [1990]). Furthermore, a change in θ is reflected into
a change in the mean vector ν of Zk(θ0).

As discussed in the introduction, it is more appropriate
to handle important modal changes in θ due to flutter
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instability by updating with new data the left kernel
matrix S(θ0) that characterizes the fixed reference θ0. This
matrix is empirically computed from a Hankel matrix built
with L samples using (4) and the recursive residual is
computed after a lag of t samples. For a sample n > L+ t,

the adaptive left kernel matrix denoted by Ŝn solves:

ŜT
n

n−p−t∑

k=n+q−L−t

Y+
k,p+1Y−T

k,q = 0 (17)

The Jacobian and covariance are now independant of θ0

and denoted by Jn(θ) and Σn(θ). The residual defined in
(16) then writes:

Zn(θ)
∆
=Jn(θ)

T Σ−1
n (θ)vec(ŜT

nY+
n,p+1Y−T

n,q ) (18)

This adaptive residual compares new sample data to a
left kernel matrix built on past data with a constant
lag t. Theoretically, considering an adaptive left kernel is
incompatible with the asymptotic Gaussian distribution
of ζn in (14). But this assumption can hold true when
assuming that this left kernel sustains small changes along
a large data set. By this way, Zn(θ) keeps the same
statistical properties and the change in its mean vector ν
indicates a change in θ w.r.t. its past estimate on the
sequence (Yn−t−L, ..., Yn−t). Monitoring Zn(θ) ensures an
instantaneous tracking of modal changes adapted to the
flutter context.

3. ONLINE FLUTTER MONITORING ALGORITHM

3.1 Damping monitoring

The flutter monitoring problem is addressed as testing for
each mode the decrease of the damping coefficient below
some critical value. The hypotheses test writes:

H̃
n
0 : d≥dn

0 + ε/2 and H̃
n
1 : d<dn

0 − ε/2 (19)

where dn
0 is the reference damping value for the sequence

(Yn−t−L, ..., Yn−t) and ε represents a margin between the
reference and the critical value of the damping.

For monitoring the damping coefficient d, the residual
sensitivity should be parameterized accordingly. As the
same properties of independence and change in the mean
of Zn hold true whatever the Jacobian involved in (16) is,
the residual dependant on d writes:

Zn(d)
∆
= JT

n(d) Σ−1
n (θ)vec(ŜT

nY+
n,p+1Y−T

n,q ) (20)

where Jn(d)
∆
= Jn(θ) Jθd (21)

and Jθd is the sensitivity of θ w.r.t. d. Details about Jθd

computation can be found in Basseville et al. [2004].

For each mode, as d is a scalar, the Jacobian Jn(d) is
a vector, and the residual ζn(d) is now a scalar number
with variance Σn(d) = Jn(d)T Σ−1

n Jn(d) > 0. From (14),
a deviation in d is reflected by a deviation of the same
sign in the mean of ζn(d). Zn(d) in (20) is also scalar,
and a change from d ≥ dn

0 + ε/2 to d < dn
0 − ε/2 is

reflected by a significant decrease in the mean value ν
of Zn(d). Thus the detection of the flutter onset occurs
when ν decreases below some critical value. Monitoring
ν is achieved with the statistical Cusum test (Basseville
and Nikiforov [1993]) to test between the hypotheses:

H̃
n
0 : ν ≥ + νm/2 and H̃

n
1 : ν < − νm/2 where νm is

the minimum magnitude of change to be detected:

Rn(d)
∆
=

n∑

k=L+t

Σk(d)−1/2 (Zk(d) + νm) (22)

Tn(d)
∆
= max

L+t≤k≤n
Rk(d)

gn(d)
∆
= Tn(d) − Rn(d) (23)

The flutter onset decision associated with H̃
n
1 is taken

when gn(d)≥̺ for some threshold ̺.

3.2 Estimating the key matrices

The proposed algorithm is implemented to ensure online
flutter detection. The computation of the Jacobian Jn(d)
and the covariance inverse Σ−1

n in (20) should then be well
optimized.

A consistent estimate of the Jacobian in (10) writes
(Basseville et al. [2004]):

Ĵn(θ)=(Is⊗ Ŝn)(Ĥn
p+1,qO†T

p+1(θ)⊗I(p+1)r)O′
p+1(θ) (24)

where O†T
p+1(θ) is the pseudo-inverse of Op+1(θ),

s = (p + 1)r − 2m is the rank of Ŝn with r the number of
sensors and m the number of modes, ⊗ is the Kronecker
product operator, and

O′
p+1(θ)

∆
= ∂/∂θ vec(Op+1(θ)) (25)

=




Λ
′(p)
1 ⊗ ϕ1 0

. . .

0 Λ′(p)
m ⊗ ϕm

∣∣∣∣∣

Λ
(p)
1 ⊗ I1 0

. . .

0 Λ(p)
m ⊗ Im




with Λ
(p)T
i

∆
=

(
1 λi λ2

i ... λp
i

)
, Λ

′(p)T
i

∆
=

(
0 1 2λi ... pλp−1

i

)

for 1 ≤ i ≤ m.

O†T
p+1(θ), O′

p+1(θ), and Jθd in (24) and (21) are computed
once for an initial reference θ = θ0. Given that only
the sign of the damping deviation is of interest, possible
uncertainty due to modal changes can be tolerated.

To estimate the covariance in (11), data are partitioned
into blocks with size K. For l data blocks, the covariance
matrix writes:

Σ̂l =
1

l

l∑

i=1

(ζ̂i ζ̂i

T − ζ̆lζ̆
T
l ) (26)

where the residual ζ̂i is computed on the block i and ζ̆l

is the residual empirical mean over l blocks. For each new
block, this covariance estimate can be updated recursively:

Σ̂l =
l − 1

l
Σ̂l−1 +

l − 1

l2
(ζ̂l − ζ̆l−1)(ζ̂l − ζ̆l−1)

T
(27)

where

ζ̆l =
l − 1

l
ζ̆l−1 +

ζ̂l

l
(28)

Computing at each block the covariance inverse required in
(20) is highly time consuming. The matrix inversion lemma
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Fig. 1. Scheme of the moving reference algorithm

(Ljung [1999]) is applied to (27) to derive a recursion. For
l data blocks, the covariance inverse writes:

Σ̂−1
l = τ−1

l Σ̂−1
l−1 −

qlq
T
l

γl
(29)

where τl = l−1
l , γl = l2

l−1 + τ−1
l ulΣ̂

−1
l−1u

T
l , ql = τ−1

l Σ̂−1
l uT

l

and ul = (ζ̂l − ζ̆l−1)
T
.

For notational convenience, the covariance inverse in (29)

is denoted by Σ̂−1
n with l = ⌊n/K⌋ blocks (⌊⌋ is the floor

operator).

3.3 Summary

The flutter monitoring test is illustrated in figure 1. It can
be summarized in the following steps.

Initialization. For an initial airspeed, a modal identifi-
cation is firstly done to estimate a fixed reference θ0 and

compute the fixed terms of the Jacobian Ĵn(d) in (24)
and (21). The tuning parameters are chosen: the data
sequence length L, lag t, sample block length K, mini-
mum magnitude of change νm , and threshold ̺. Initial

estimation of Σ̂−1
L+t and ĴL+t(d) is performed on the first

L + t samples. The left kernel ŜL+t is estimated on the

sequence (Y1, ..., YL) and used with Σ̂−1
L+t and ĴL+t(d) to

compute RL+t(d) in (22).

Recursive loop. To detect a decrease in the damping
coefficient, the Cusum test runs for monitoring Rn(d).

For each sample n ≥ L + t, Ŝn is estimated on the

sequence (Yn−t−L, ..., Yn−t) and used with Σ̂−1
n and Ĵn(d)

to compute Rn(d) and then gn(d) in (23) until the flutter

condition gn(d) ≥ ̺ is satisfied. During this process, Σ̂−1
n

and Ĵn(d) are updated every K samples.

4. APPLICATION

4.1 Hancock wing model

The aeroelastic model of a rectangular wing introduced
in Hancock et al. [1985], is considered for data simulation.
The model is a rigid wing with constant chord allowing two
degrees-of-freedom in bending and torsion. The equation
of motion writes:

Mq̈ + (D + V B)q̇ + (K + V 2C)q = 0 (30)

where qT = (h α) is the vector of generalized coordinates
with h the plunging (vertical displacement) and α the
pitching (rotation as a change in the angle of attack),
M is the inertial matrix, D the structural damping, K
the structural stiffness, B the aerodynamic damping, C
the aerodynamic stiffness and V the airspeed. A coupled
motion exists between bending and torsion as the center
of mass of the wing is located out of its flexural axis. The
structural damping D is estimated with the proportional
damping assumption (3% damping ratio is fixed for both
degrees-of-freedom) and the aerodynamic matrices B and
C with the approximation of quasi-steady aerodynamics
that neglects their dependency on frequency (Theodorsen
[1935]). Eq.(30) can be written in the state space form:[

q̇
q̈

]
= A(V )

[
q
q̇

]
(31)

where

A(V ) =

[
0 I

−M−1(K + V 2C) −M−1(D + V B)

]
(32)

With the sampling frequency τ = 50 Hz, the discrete-
time eigenvalues (λi, i = 1, 2) are deduced for each air-
speed from the discrete state matrix F (V ) = eA(V )/τ and
the modal frequencies fi and damping coefficients di are
computed using (3). The evolution of the modal frequen-
cies and damping coefficients with increasing airspeeds is
plotted in figure 2. A coupling can be observed between
bending and torsion modes when frequencies get closer to
each other and the damping coefficients move apart. That
illustrates the typical bending-torsion coupling behavior of
the flutter. The flutter onset can be estimated when the
torsional damping coefficient reaches zero from above at
the airspeed V ≃ 88.5 m/s.

4.2 Simulation

Using the control system toolbox of Matlab, time series
data are simulated from Hancock model for plunging and
pitching. The scenario consists in simulating an aircraft
acceleration with transition phase from V = 20 m/s to
V = 88 m/s (close to flutter). In this speed range, 300
samples (6 seconds) are simulated every 1 m/s step to
obtain 2 output time series of length N = 20700.

4.3 Results

In order to assess the performances of the approach pro-
posed in this paper, the moving reference approach was
applied to simulation data and compared to a previous
fixed reference version reported in Mevel et al. [2005] and
Basseville et al. [2006]. The parameters of the Cusum

test are νm = 0.1 and ̺ = 100. For the fixed reference
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Fig. 2. Modal frequencies (Top) and damping coefficients
(Bottom) of the bending (Blue) and torsional (Red)
modes as functions of the airspeed.

approach, the left kernel, Jacobian and covariance matrices
are computed once for the reference V = 20 m/s on a large
data set and remain constant during the Cusum test. For
the moving reference approach, L = 2000 sample sequence
is used for the left kernel matrix estimation and the Cusum

test runs after t = 1000 samples from this sequence.
Starting from an initial estimate on L + t samples, the

updating of Σ̂−1
n and Ĵn(d) is made after each K = 50

samples. The Cusum test is applied for each mode to
detect the decrease of the damping coefficient. The test
stops when crossing over the threshold value ̺. Results for
both approaches are displayed in figures 3 and 4.

For the fixed reference algorithm in figure 3, except some
perturbations due to noise, the test for the bending mode
(Top) has no reaction while a reaction can be observed
for the torsional mode (Bottom) where the flutter alarm
is launched. These observations are coherent with the
damping coefficient variation in figure 2 where the flutter
lies with the torsional mode. It can be also checked that the
test reacts approximately at the airspeed range where the
damping coefficient becomes below its reference value at
V = 20 m/s. That confirms the precision of the subspace-
based test in monitoring flutter criteria w.r.t. a reference.
However, the test reaction associated with the flutter onset
are detected at V = 65 m/s which can be considered as
a conservative estimation comparing to the true flutter
airspeed, especially that the torsional damping ratio at
this airspeed is about 3%.

For the new algorithm proposed in this paper, it can be
firstly observed from figure 4 that the detection results
are also coherent with the modal behavior of the system
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Fig. 3. Previous test with fixed reference at V=20m/s for
monitoring the damping coefficient for bending mode
(Top) and torsional mode (Bottom).
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Fig. 4. New test with moving reference for monitoring
the damping coefficient for bending mode (Top) and
torsional mode (Bottom).

through the test reaction in the torsional mode. The
improvement concerns the detection that occurs closer to
the flutter zone and starts at V = 78 m/s. The alarm is
more realistic than in the previous approach and that gives
a larger flight envelope for the aircraft. Even though no
abrupt torsional damping drop is observed at the detected
airspeed in figure 2, the decreasing rate becomes important
and leads to flutter. It can also be noted that the reaction
of the test to small damping decrease at the airspeed range
preceding the detection remains insignificant (see small
reactions in figure 4 at Bottom) because of the reference
updating and has no influence on the flutter decision.
Obviously, the computational time is higher than in the
previous approach but it remains lower than the time series
duration (the recording time) and this new algorithm can
thus always run online.

5. CONCLUSION

In this paper, a new version of the online subspace-based
residual algorithm for flutter monitoring is proposed to
update the reference state of the aircraft during the flight.
With such an update, the Cusum test detects the flutter
onset only for an important damping coefficient decrease.
Results on simulation data show a significant improvement
of the flutter detection quality with the new approach.
Future investigations will consider more complex aircraft
models. In such cases, limitations due to large system
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orders and sensor number should be overcome, for example
with the aid of a recursive left kernel matrix estimation.
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