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Abstract: In the positioning system of the large-scale high-precision stage, the primary
resonance mode appears in low frequency even in the high stiffness stage. The resonance mode
is a major obstacle of fast and precise positioning. In this paper, we apply vibration suppression
PTC (Perfect Tracking Control) which can control the resonance mode actively on the large-
scale stage. Finally, simulations and experiments are performed to show the advantages of the
vibration suppression PTC.

1. INTRODUCTION

The large-scale high-precision stage is used in industrial
fields such as manufacturing of semiconductors and liquid
crystal panels (or displays). Fast and precise positioning
control is very important technology related to the im-
provement of throughput and product quality.

However, the large-scale stage has a low resonance mode
because of its structure. It is called that the resonance
mode is an obstruction of fast and precise positioning by
Otsuka [1995].

Fujimoto et al. [2006] proposed the vibration suppression
perfect tracking control (PTC) which can control reso-
nance mode actively in the short-span seeking control of
hard disk drives (HDDs). However, the vibration suppres-
sion PTC track not “real position” but “virtual position”.

In this paper, the vibration suppression PTC is improved
to track “real position”. Then, the severe specification
of positioning of the large-scale high-precision stage is
achieved by the vibration suppression PTC. The target
specification is the tracking error tolerance 0.5 µm in the
positional settling time 150 ms for the large-scale stage
with moving part 266 kg.

2. PERFECT TRACKING CONTROL

Fujimoto et al. [2001] proposed the perfect tracking control
(PTC) which consists of the 2-DOF control system as
shown in Fig .1. This system has two samplers for the
reference signal r(t) and the output y(t), and one holder
for the input u(t). Therefore, there exist sampling periods
Tr, Ty, and Tu which represent the periods of r(t), y(t), and
u(t), respectively. PTC applies the multirate feedforward
control in which the control input u(t) is changed n times
during one sampling period Tr of reference input r(t)
as shown in Fig. 2. Here, n is the plant order. HM in
Fig. 1 is the multirate holder which outputs the input
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u[i] = [u1[k] · · ·un[k]]T (generated by the long sampling
period Tr) on the short sampling period Tu.

Here, the matrices A, B, C, and D of the plant discretized
by the long sampling period Tr can be derived as (2) from
the plant model discretized by the short sampling period
Tu (1).

x[k + 1] = Asx[k] + bsu[k] , y[k] = csx[k] (1)

[
A B

C D

]
=

⎡
⎢⎢⎢⎣

An
s An−1

s bs · · · Asbs bs

cs 0 · · · 0 0
csAs csbs · · · 0 0

.

.

.
.
.
.

. . .
.
.
.
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.

.

csAn−1
s csAn−2

s bs · · · csbs 0

⎤
⎥⎥⎥⎦ (2)

Since the matrix B of (2) is non-singular in the case of
controllable plant. PTC can be designed as

u0[i] = B−1(I − z−1A)xd[i + 1]

=
[

0 I
−B−1A B−1

]
xd[i + 1] (3)
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y0[i] = z−1Cx[i + 1] + Du0[i]. (4)

(3) is the stable inverse system of plant as the previewed
desired trajectories are given to the state variables of the
plant. Therefore, the perfect tracking is assured on the
sampling period Tr .

The feedback control C2[z] suppresses the error between
the output y[k] and the nominal output y0[k] to assure
robustness only when disturbances or plant variations
exist.

3. MODELING OF STEP-STAGE

X-Y stage which is actuated by ball screw is considerd.
X axis of the stage is regarded as the two-inertia system
structured by the rotational system of the motor and the
translational system of the stage as Fig. 3. X axis is only
described in this paper because Y axis can be treated in
the same way as X axis. Jms and Cms are inertia and
viscosity of motor screw. Kn and Cn are stiffness and
viscosity of screw nut. BE is transfer constant from the
translational system to the rotational system. The mass of
moving part of X axis stage Mpx is 266 kg. The ball screw
pitch SP is 0.01 m/rev. T is the motor torque. Px and vx

are translational position and translational velocity. θ and
ω are rotational position and rotational velocity.

The plant models from motor torque T to translational
position Px and to rotational position θ are represented by
(5) and (6). Here, the denominatior of (6) is represented to
be equal to that of (5) for the following explanation. The
measured frequency responses are shown in Fig. 4. The
resonance mode exists at about 70 Hz in low frequency.

P (s) =
Px

T
=

y

u
=

b1s + b0

a4s4 + a3s3 + a2s2 + a1s
(5)

Pω(s) =
ω

T
=

ω

u
=

bω3s
3 + bω2s

2 + bω1s

a4s4 + a3s3 + a2s2 + a1s
(6)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a4 = (2π)2JmsMPx

a3 = (2π)2(JmsCn+MPxCms)+BE · SP 2MPxCn

a2 = (2π)2(JmsKn+CmsCn)+BE · SP 2MPxKn

a1 = (2π)2CmsKn

b1 = 2π · SP · Cn, b0 = 2π · SP · Kn

bω3 = (2π)2MPx, bω2 = (2π)2Cn, bω1 = (2π)2Kn
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Fig. 4. Frequency responses of plant.
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4. CONTROL SYSTEM DESIGN

4.1 Feedback Controller Design

The conventional control system consists of the feed-
back controllers based on the translational position con-
troller CPx(s) and the rotational velocity controller Cω(s)
like Fig. 5. CPx(s) is designed as a proportional con-
troller with a low-pass filter (LPF), and Cω(s) is de-
signed as a proportional-integral controller with a phase-
lead-compensator. The designed CPx(s) and Cω(s) are
discretized by Tustin transformation so that the discrete
controller CPx[z] and Cω[z] are obtained.

Each parameter of the feedback controllers is selected
by fine-tuning from frequency responses of the actual
experiment. Fig. 6 (a) indicates the frequency response
of the rotational velocity feedback loop (from ωref to ω),
and Fig. 6 (b) indicates the frequency response of the
entire feedback loop (from yref to y). It is shown that
the bandwidth is about only 3 Hz in Fig. 6 (b). Therefore,
The target specification cannot be satisfied only with the
feedback controller.

4.2 Singlerate Vibration Suppression PTC

First, PTC is designed in continuous time for two-inertia
system model including the resonance mode. An inverse
system of the plant P can be represented by

u0 = N(s)
(
a4y

(4)
0 +a3y

(3)
0 +a2y

(2)
0 +a1y

(1)
0

)
, (7)
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N(s) =
1

b1s + b0
, (8)

from (5). The feedforward input u0[k] can be given by
the desired position trajectory y0(t). Here, x(n) is n order
derivative of x. When the feedforward controller is imple-
mented, N(s) is discretized by Tustin transformation so
that the discrete controller N [z] is obtained.

Next, the nominal rotational velocity ω0 is generated to be
compared with the rotational velocity ω in the rotational
velocity loop. The rotational plant model of (6) from
input u to rotational velocity ω is discretized by zero-
order hold so that the discrete rotational plant model
Pω[z] is obtained. The nominal rotational velocity ω0 is
represented by

ω0[k] = Pωo[z]u0[k]. (9)
The singlerate vibration suppression PTC system is shown
in Fig. 7. The system can be structure as references are
fourth derivatives of the target position as shown in Fig.
7.

Here, note that the discretization error occurs because of
a digital re-design of the feedforward controller N [z] in
singlerate vibration suppression PTC. Moreover, Åström
et al. [1984] indicate that the inverse system of the plant
cannot be designed in discrete-time because unstable zero
appears in the plant discretized by zero-order hold.

4.3 Multirate Vibration Suppression PTC

The inverse system of the plant cannot be designed in the
singlerate control system as explained in the above section.

Then, we consider that PTC for two-inertia system model
including the resonance mode in the multirate control
system explained in Chaper 2. The controllable canonical
form of (5) with state variables x = [z z(1) z(2) z(3)]T is
represented by (11) and (12). z is called “virtual position”
by Fujimoto et al. [2006].

z

u
=

b0

a4s4 + a3s3 + a2s2 + a1s
(10)

ẋ(t) = Acx(t) + bcu(t) , y(t) = ccx(t) (11)

[
Ac bc

cc 0

]
=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 −a1

a4
−a2

a4
−a3

a4

b0

a4

1
b1

b0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(12)

The discrete-time state equation (1) with zero-order hold
is discretized with the sampling period Tu. Here, each
sampling period is defined as Tu = Ty = Tr/4. Therefore,
the multirate feedforward controller is obtained by (2).

The previewed desired trajectories are given to all state
variables xd=[zd z

(1)
d z

(2)
d z

(3)
d ]T . However, the state

variables cannot be given directly as references because
the virtual position z is not the real position y. The
state variable xd(t) is obtained from the target trajectory
rd(t) = [yd y

(1)
d y

(2)
d y

(3)
d ]T (t). The transfer function

from the translational position Px to the state variable z
is represented as

z

y
=

b0

b1s + b0
, (13)

from (5) and (10). Therefore, zd can be obtained from yd by
inserting the LPF before the input of the references. The
LPF is discretized by Tustin transformation in the case
that the sampling period Tr is much shorter than the time
constant of the LPF. On the other hand, the convolution
of time function of the target trajectoy and time function
of the LPF is calculated by off-line and it is saved in the
memory table in the case that the discretization error is
caused.

Moreover, to generate the nominal rotational velocity ω0,
the rotational plant model Pω of (6) does not need to be
inserted in multirate vibration suppression PTC. The state
equation of (6) coincides with (12) if matrix cc is only
changed as

c′c =
[

0
bω1

b0

bω2

b0

bω3

b0

]
. (14)

It only has to design the matrices C and D of (2) to
generate the nominal rotational velocity ω0. These are
defined as C ′ and D′.

Therefore, the multirate vibration suppression PTC can be
designed as shown in Fig. 8. Sakata and Fujimoto [2007]
proposed the PTC system with cascade feedback for a
servo motor. Note that the feedback controllers work only
when errors between the nominal output and the actual
output are caused by disturbances or modeling errors.
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4.4 Disturbance Observer Design

The input disturbance by the nonlinear friction of the ball
screw is regarded as step-type disturbace. The full-order
state observer is designed in discrete-time to estimate and
to suppress the disturbance. The discrete state equation
of the augmented plant is represented by

xe[k + 1] = Afxe[k] + bfu[k] , y[k] = cfxe[k], (15)

with the state variables xe = [ω θ vx Px dω]T added
input disturbance dω. The full-order state observer can be
designed as

x̂e[k + 1]=(Af−Hfcf)x̂e[k]+bfu[k]+Hfy[k] (16)

x̂e[k] = [ω̂[k] θ̂[k] v̂x[k] P̂x[k] d̂ω[k]]T . (17)

The observer gain Hed is designed so that observer poles
are located at 100 Hz. Here, estimated disturbance d̂ω is
subtracted from input u to suppress the disturbance dω

as shown in Fig. 9. The frequency responses of the distur-
bance suppression are shown in Fig. 10. The disturbance
suppression is improved in the low frequency band below
1 Hz by the disturbance observer.

Table 1. Specifications of target trajectory.

Aref tacc tcon tdec td
0.1 m 0.25 s 0.0 s 0.25 s 0.5 s

td
0 t[s]

A
ref

tdectacc

Fig. 11. Target positional trajectory.

5. SIMULATION AND EXPERIMENT

5.1 Simulation

The tracking responses of the feedforward controller of
each control system are compared in the case that the
plant model is nominal. Each sampling period is Tu =
Ty = Tr/4 = 1/6 ms. The target position trajectory was
generated by sixth-order polynomial equation. The speci-
fication of the target position trajectory is shown in Table
1, where the target position is Aref , the acceleration time
is tacc, the constant velocity time is tcon, the decelerating
time is tdec, and the positioning time is td (= tacc + tcon

+ tdec). The specification is sped up to limit of ball screw.
The target positional trajectory is shown in Fig. 11. The
target velocity and acceleration and jerk trajectories are
given by differentiating the target position trajectory.

The target specification is the tracking error tolerance
0.5 µm in the positional settling time 150 ms. Here, the
positional settling time is the time in which the tracking
error converges in the tolerance after the positioning time
td.

The nominal simulation results of the comparison only
with the feedforward controller are shown in Fig. 12.
After 0.5 s, the tracking error of the singlerate vibration
suppression PTC is over 0.5 µm by the influence of the
discretization error of the feedforward controller. On the
other hand, the tracking error of the multirate vibration
suppression PTC is perfectly zero at sampling points.

5.2 Experiment

The tracking response of each control system is compared
in the actual experiment. The sampling periods and the
target trajectories are same with those of the simulation.
Moreover, the disturbance observer is implemented in
the experiment. The experimantal results are shown in
Fig. 13. The tracking errors of five time experiments are
overwritten for the confirmation of reproducibility. The
tracking error tolerance 0.5 µm was achieved over the
positional settling time 200 ms in the singlerate vibration
suppression PTC. On the other hand, the tracking error
tolerance 0.5 µm was achieved in the positional settling
time 15 ms in the multirate vibration suppression PTC.
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6. IMPROVEMENT OF FEEDBACK CONTROLLER

The conventional feedback system was designed by the tra-
ditional double loop controller with fine-tuning. Because
it is not very theoretical and systematic, the feedback
performance has to depend on tuning of engineers. Then,
a feedback controller which consists of the observer and
the regulator is applied to improve the feedback system.

In order to regulate the plant state and reject the distur-
bance, the regulator is designed by

u[k] = F x̂e[k] = F px̂p[k] + Fdx̂d[k], (18)

where x̂p[k] = [ω̂[k] θ̂[k] v̂x[k] P̂x[k]], x̂d[k] = d̂ω[k] and
F = [F p Fd]. The feedback type controller which consists
of the observer and the regulator is obtained by

u[k] =
[

Af − Hfcf + bfF Hf

F 0

]
y[k], (19)

with (17) and (18). Therefore, the feedback controller can
be applied in PTC system shown in Fig. 1 as

u[k] = C2[z](yo[k] − y[k])

= C2[z]e[k]

=
[

Af − Hfcf + bfF −Hf

F 0

]
e[k]. (20)

The feedback controller can be designed systematically in
comparison with the conventional feedback controller.

Frequency responses of one design example are shown
in Fig. 14 and 15. The observer and the regulator are
designed by pole placement to suppress the resonance
mode of the plant. Figures show that the bandwidth and
the disturbance suppression performance are extremely
improved in comparison with the conventional feedback
controller because the proposed controller is designed with
considering resonance mode of the plant clearly.

The experimental results of the time responses of the con-
ventional feedback and the proposed feedback are shown
in Fig. 16. The target trajectory is the same as simulation
in Table 1. In the experiment of Fig. 13, the multirate
feedforward controller is sufficiently adjusted. In the ex-
periment of Fig. 16, the multirate feedforward controller
is however not very adjusted.

The tracking error in the acceleration and deceleration
time (0 ∼ 0.5 sec) is dramatically suppressed in Fig.
16(a) and (c) because of the high bandwidth of the
feedback system. However, the positional settling time is
not shortened as expected. It seems that the reason for the
result is a nonlinear characteristic of the ball screw. The
group of balls rolls over linearly in the acceleration and
deceleration time. The group of balls acts as a non-linear
spring in the positional settling time because this does not
roll over clearly. Therefore, if the high bandwidth of the
feedback system is achieved, the feedback performance is
not always brought out in the positional settling time.

In this paper, it is regarded that the feedback con-
trollers suppress variation of viscosity and nonlinear fric-
tion caused by the ball screw. Iwasaki et al. [2006] pro-
posed a modeling of the nonlinear friction. Higher precise
positioning can be expected by the feedforward compen-
sation of the nonlinear friction.

7. CONCLUSION

Vibration suppression PTC was applied to fast and precise
positioning of the large-scale high-precision stage which
has low resonance mode. The target specification of the
large-scale stage with the moving part 266 kg is tracking
error tolerance 0.5 µm in the positional settling time 150
ms. It was achieved against the target trajectory sped up
to limit of ball screw in simulations and experiments. Espe-
cially, the multirate vibration suppression PTC achieved
ten times as good as the target specification in experi-
ments. Moreover, the improvement of feedback controller
which can be designed systematically was shown. The
transient of the positioning is dramatically improved by
the feedback controller.
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(c) Proposed FB
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Fig. 16. Time response.
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