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Abstract: This paper reports the study of using 2D temperature data for analysing the operation of the 
cooling process in the steel strip mill. Scanning pyrometers are producing data profiles of the strip in 
longitudinal and transversal directions. Instrument malfunctions, dust and dirt particles on the strip surface 
and other disturbances make the use of the measurements difficult. This makes the data pre-processing, 
and especially the outlier detection, of utmost importance for a reliable process and fault analysis. 

 

1. INTRODUCTION 

Data pre-processing is perhaps the most important stage in 
data analysis and it has remarkable effects on the availability 
and reliability of data. If carelessly done, it can mitigate all 
the results from the analysis. Knowing the data to be analysed 
is also the key for understanding the results and their 
utilisation. 

Industrial data is often in large databases, including both 
direct process measurements and calculated values. 
Unmeasured disturbances together with process and 
instrument failures contaminate data, and it represents 
different operating points that may be difficult to trace 
afterwards. Timing is also a permanent problem, especially if 
the data is coming from separate data collection systems. 
This calls for different data pre-processing methods that in 
many cases depend on the problems – they require process 
knowledge. 

Outliers are observations that deviate significantly from the 
majority of observations (Liu et al., 2004), and also effect on 
statistical properties (the mean and the variance) of the data, 
if included in calculations. One main aim of data pre-
processing is the detection of outliers, removing them and 
replacing them with better data. This should occur with 
simultaneously preserving the original data structure and 
without loosing information as falsely detected outliers. In 
practice, however, the result is a compromise between the 
mentioned requirements. 

The most detection methods start from the assumption of 
identically and independently distributed data (i.d.d), where 
the mean and variance describe the statistics of the data (Liu 
et al., 2004). The methods are considered later in this paper, 
but the Hampel identifier is regarded as one of the most 
efficient methods. According to Liu et al. (2004) there is also 
a group of methods based on assumed process models 
utilising maximum likelihood methods and Kalman filter. 
They also present an on-line filter-cleaner that combines the 
properties of outlier detection methods and on-line filters. 

Also wavelet transformation has been used in on-line filtering 
and outlier detection (Nounou and Bakshi, 1999).   

This paper reports the study of using 2D temperature data for 
analysing the operation of the cooling process in the steel 
strip mill. Scanning pyrometers are producing data profiles of 
the strip in longitudinal and transversal directions and the 
data describes the efficiency of the process and helps in the 
early detection of possible process faults. Instrument 
malfunctions, dust and dirt particles on the strip surface and 
other disturbances make the use of the measurements 
difficult. This makes the data pre-processing, and especially 
the outlier detection, of utmost importance for a reliable 
process and fault analysis.  

This paper concentrates on the most difficult and crucial 
point: the outlier detection using some reliable criteria. The 
paper gives a comparison of several methods and discusses 
their advantages and disadvantages. 

The outline of the paper is as follows: Next chapter discusses 
the methods for outlier detection and then follows the 
introduction to the cooling process in the steel strip mill 
together with the measurement data and the technical 
problems in question. Next comes the comparison of these 
methods and, finally, some conclusions are given.   

2. METHODS 

The target was to find a method that is sensitive enough, but 
robust, for finding the outliers. The methods can be classified 
to global or local, to one- or two-dimensional and adaptive 
methods. Some of them are classical signal processing 
methods and some come from the image processing. Some 
process the two-dimensional profiles as rows or columns, 
some deal with the whole profile globally or inside a small 
window, a mask. In two-dimensional algorithms, the 
windows can be distinct or sliding with one value at time 
over the whole range. The last alternative causes the biggest 
computational burden. All the abovementioned options were 
tested and compared with each other. 
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The tested signal processing methods were (1) 3-sigma 
method, (2) a method based on robust estimates, and (3) an 
outlier detection procedure based on wavelet coefficients. 
Four image processing methods were also tested, namely: (1) 
applying the threshold of the one-dimensional histogram of 
the profile, (2) the two-dimensional clustering of the 
probability distribution describing the transformations 
between the data points, (3) the k-means clustering of the 
profile intensity, and (4) a two-dimensional Hampel filter. 
For some methods, testing concerned with both global and 
local versions. 

2.1 3-sigma Method 

A commonly used method for outlier detection is to look for 
observations that deviate more than three times the standard 
deviation from the mean. This is a conventional “3σ edit 
rule” (Pearson, 2002), which is based on the assumption of 
the normal distribution. In this case, the probability of point 
xi lying more than three standard deviations from the mean is 
0.3 %. The algorithm proceeds as follows 

• Calculate the mean, m, and the standard deviation, s 

• For each observation xi, calculate the scaled variable 

i
i

x mz
s
−

=  . 

• If zi>3, xi is an outlier. 

If outliers are present, this method includes a basic difficulty; 
outliers lead to biased estimates for both the mean and the 
standard deviation (Pearson, 2002). Even a single outlier is 
enough to bias the mean, and the situation gets worse with 
multiple outliers, especially if they are located on the same 
side of the mean. Outliers also increase the standard 
deviation. This means that this algorithm does not find the 
outliers, but instead of it, robust scaling methods must be 
used. These methods estimate the parameters of the “normal 
data”, and the problem returns to defining this normal data 
set. The algorithms resemble the 3-sigma method, but the 
mean and the standard deviation result from this normal data 
set. 

2.2 Robust Estimates 

One usual way is to replace the mean with the median and the 
standard deviation with the median absolute deviation from 
the median (MAD). The median of a data sequence is 
obtained by ranking the observations from smallest to largest,  

(1) (2) ... ( )x x x N≤ ≤  

And then taking the middle value (odd case) or the average of 
the middle two values (even case) (Pearson, 2002). The 
calculation of MAD estimate proceeds as follows: 

• Replace the mean with the median, median(x) 

• Calculate the absolute difference for each observation from 
the median 

( )i id x median x= −  

 • Estimate the standard deviation using the median of di 

1.4826 ( )is median d= , 

where the constant 1.4826 is required to make MAD an 
unbiased estimate of the standard deviation for Gaussian data 
(Chiang et al., 2004). If 3σ edit rule is used with MAD 
estimate, the method is usually called the Hampel identifier. 
This method is robust to multiple outliers and it is also 
computationally inexpensive. One of its weaknesses is the 
assumption of symmetrical distributions. This leads to 
unfavourable results with skewed distributions. 

Hampel filter is a simple data cleaning filter which operates 
inside a moving data window, applies the Hampel identifier 
and in which the decision threshold is defined as follows 
(Pearson, 2002) 

• If  ; 2 5id ts t> ≤ ≤  , xi is an outlier. 

In this case, the outlier can be replaced by the median of the 
data window. This filter has two tuning parameters: the half 
width of the moving window, K, and the decision threshold, 
t. Higher the parameter t, less outliers are detected. If t=0, we 
have the median filter (Pearson, 2002), i.e. each value is 
replaced by the corresponding median.   

In this paper, testing includes both local and global 
algorithms in one- and two-dimensional cases. Local version 
uses a sliding window. In the one-dimensional case, it could 
slide over the data column by column or row by row. The 
two-dimensional version uses a mask of a certain size and 
slides over the whole data one value at time. Global version 
calculates the median and MAD-estimate for the whole data 
and uses it in defining the global threshold. The tuning uses 
the above mentioned parameter, t, and in local version also 
the size of the window.  

Generally speaking, the local version is efficient, when there 
are a lot of outliers, but their amount in the window does not 
exceed the breaking point of the median, 50% of the values. 
Global version works well with many outliers and reasonably 
stationary data. Testing also includes an adaptive threshold 
based on which part of the data is processed. This was to 
minimise the effect of non-stationarity. 

2.3 Wavelets 

A discrete Haar-wavelet was applied to a one-dimensional 
case. The values of wavelet coefficients are supposed to 
increase when the outliers exist. When hunting for impulse or 
pulse changes, thresholds for wavelet coefficients are set to 
correspond to fast changes in the signal. Equation th = 
σ(2log(n)1/2, where σ is the standard deviation of wavelet 
coefficients at the level and n is the number of coefficients, 
gives the threshold. MAD-estimate is one way to calculate 
the standard deviation. The algorithm proceeds as follows 
(Bilen and Huzurbazar, 2002).: 

1. Apply the wavelet transform to the data vector 
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2. Calculate σ for the wavelet coefficients: 

σ = mean(| D1(k)-median(D1) |), where D1(k) is the wavelet 
coefficient at k. 

3. Calculate the threshold th = σ(2log(n)1/2. 

4. Search for indices S = {s1,…,sm}, where |D1(k)| > th. 

5. Use the indices to locate the outliers in the data vector: 
Supposing sk to be the index for the coefficient where |D1(k)| 
> th, the outlier is located at 2sk or 2sk – 1. To find the exact 
location, calculate the mean of the original data, meanorig, 
without 2sk or 2sk – 1. The outlier is at 2sk, if the condition, 
|origdata(2sk) - meanorig| > |origdata(2sk-1) - meanorig|, holds, 
otherwise the outlier is at 2sk-1. 

2.4 Histogram threshold 

Histogram threshold is a usual method in image processing to 
separate image objects and deviating values. Several methods 
exist to calculate the threshold that divides the frequency 
distribution in two or more areas. In this case, temperature 
values were divided into 50 bins. A bimodal distribution 
follows, where the bigger area corresponds to normal 
temperature values and the smaller one to outliers. Low-pass 
filtering and min/max-transformation improve the data and 
emphasize the bimodality of the distribution (Gonzalez and 
Woods, 2002). 

Triangle-algorithm is the usual way to calculate the threshold 
for the histogram (Fig. 1) First, the minimum, non-zero 
frequency point in the histogram is located (point close to 
200 °C in the figure) together with the corresponding 
maximum (close to 600 °C in this case). Next, these points 
are connected with the line. Finally, the maximum distance, 
d, from this line to the tops of the histogram is defined. The 
corresponding point in the temperature axis, TH, is the 
threshold value. This algorithm works usually well, even with 
a smaller secondary top in the histogram.  This method is 
global and may give weak results with non-stationary profiles 
(Zack et al., 1977). 

 

Fig. 1. Basic principle of the Triangle algorithm. 

2.5 Clustering of the two-dimensional frequency distribution 

Image processing uses also a two-dimensional frequency 
distribution to separate the image from its background. In this 
case, the two-dimensional frequency distribution describes 
the transformations in temperature in longitudinal direction 
for successive measurements in the data. Fig. 2 shows an 
example, where frequency of transformations between two 
successive points in the profile is calculated.  These 
frequencies have been clustered with k-means clustering 
algorithm into four groups.  The clusters in the main diagonal 
represent cases where two successive points have a similar 
temperature. The clusters in the decreasing diagonal, on the 
other hand, represent cases, where the temperature between 
two successive points has strongly changed, i.e. either 
decreased or increased. The clusters in the main diagonal 
correspond to areas where the intensity has been constant for 
a longer time (either high or low). Off-diagonal clusters 
correspond to cases, where the intensity has changed fast; i.e. 
the possible outliers.  (Haddon and Boyce, 1990, Corneloup 
et al., 1996),  

 

Fig. 2. Clustering of temperature transformations in 
longitudinal direction. 

2.6 k-means clustering 

Also the common k-means clustering was applied for 
intensity levels (Shapiro and Stockman, 2001). The number 
of clusters was 2; corresponding to normal values and 
outliers. The initial values for cluster centres were the median 
value for the “normal” cluster and the difference between the 
median for the maximum deviations and the profile median. 

2.7 Block-wise histogram threshold, (histogram-blockth) 

Histogram threshold does not have to be applied to entire 
profile but can be used on a region by region basis. A 
variation was developed in which the M x N profile is 
divided into non-overlapping regions. The profile was 
divided in 5 blocks in transversal and 3 in longitudinal 
direction, 15 blocks per profile. The target was to handle 
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head, middle and tail parts of the strip separately and 
eliminate the transversal trend. In each block a threshold is 
calculated using the same Triangle-algorithm as before. 

2.8 Block-wise Hampel filter (MAD-block) 

Also Hampel filter can operate on a block by block basis 
using the same before mentioned technique for .block 
division. Parameter t in the before mentioned robust estimate 
method was adapted according to the MAD estimate of the 
block in question. Small variance led to a higher parameter 
value and vice versa. Parameter t varied between 2 and 8. 

3. PROBLEM DESCRIPTION 

According to Fig. 3 the steel strip is cooled both from above 
and below after rolling by the cooling system at the run-out 
table. The cooling system comprises main cooling section 
with water curtains and trimming section with separate spray 
nozzles.  

The temperature drop in the cooling is from 145 to 585°C. 
The thickness of the strip varies from 1.4 to 16 mm, its width 
from 740 to 1860 mm and the average speed from 2.4 to 12 
m/s. The length of one strip varies from 65 to 1800 m. 

 

Fig. 3. Position of cooling in the steel mill. 

Scanning pyrometers (SCOAP) measure the temperature 
before and after cooling with the measurement principle 
shown in Fig. 4. The sensor is above the steel strip and it 
scans cross the moving strip with the help of a rotating plane 
mirror. The resolution in the transversal direction is mm. The 
resolution in the direction where the strip is moving 
(longitudinal direction) depends, of course, on the speed of 
the strip and typically varies from 50 mm to 180 mm. This 
means that the strip with 93 m of length and 1506 mm of 
width produces the matrix approximately of 172000 
temperature readings.   

Fig. 5 shows an example of this kind of temperature matrix. 
The upper figure shows a 3D picture how the temperature 
varies in both directions. The lower picture is an intensity 
diagram of the same situation. 

 

 

Fig. 4. Principle of scanning IR pyrometer. 

 

Fig. 5. A sample of the temperature matrix. 

False scans cause a partial transversal row in the temperature 
matrix that shows considerable lower values than the 
neighbouring rows. Other outliers are single values or small 
group of values in 2D matrix. Single values could be easily 
removed, e.g. by median filter, but this does not work with 
several successive values. Filtering would also unnecessarily 
change the data structure. 

The deviations in the temperature profiles are both 
transversal lines and single random points. Their frequency 
does not follow any order. They are short time, usually 
broadband, disturbances that are usually due to false scans. 
There is a strong gradient between deviations and normal 
values that is not even physically possible. There are more 
deviating values in the beginning (head) of the strip than in 
other parts. Deviations are nearly always less than the mean, 
causing negative skew and bimodality in the distributions.  

Non-stationary profile is another feature that needs care in 
pre-processing. In this case, non-stationary profiles result 
from longitudinal and transversal trends together with 
random changes in the variance, e.g. in the beginning of the 
strip. This calls for trend removal or local pre-processing. 

The main target of the study was to use the temperature 
profiles provided with the scanning pyrometers in analysing 
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the efficiency of the cooling process and in diagnosing its 
operation. This target includes following sub-targets: 

• Data pre-processing; outlier detection and straightening the 
profiles in the beginning and end of the strip and at the strip 
edges. 

• Synchronising the temperature readings before and after the 
cooling process. This is necessary for building subtracted 
figure for efficiency analysis. 

• Feature detection in order to produce features that best 
describe the operation of the cooling process. 

• Visualisation of the results for the operator use. 

• Packing the 2D temperature data. 

Only the first point is considered here. 

4. RESULTS 

The testing used a profile with a big amount of outliers and 
trends both in transversal and longitudinal direction Also the 
variance in the head of the strip was bigger than in the rest of 
it. The accurate amount of outliers was unknown, but the 
basic value for comparisons came from approximate analysis 
of the bimodal histogram. The threshold was set to 510 ºC 
and this led to 28235 outliers, about 12.7 % of all values.  

 Table 1 compares the performance of different algorithms 
with the basic case shown above. Manual refers to the basic 
case and 3-sigma to the method shown in the previous 
chapter. MAD-global, MAD-block and 2DHampel calculate 
the robust estimates for median and variance utilizing 
different parts of the profile. Global algorithms calculate 
values for the whole profile and block algorithms for the 
certain blocks. 2DHampel calculates the values in a sliding 
2D window for the all values in the profile. MAD-block and 
2DHampel use the adaptive feature. Wavelet means the one 
dimensional wavelet algorithm. Other methods have been 
also explained before.   

Table 1. Comparison of the outlier detection 
methods. 

Method 

Number 
of 

outliers 
Percentage 
of outliers Mode 

Manual 28235 12,65 Global 
3-sigma 3412 1,53 Global 
MAD-global 28632 12,83 Global 

MAD-block 28063 12,57 
Local, 
adaptive 

2Dhampel 20707 9,28 
Local, 
adaptive 

Wavelet 21307 9,55 Local 
Histogram-th 28924 12,96 Global 
Histogram-
blockth 29538 13,23 Local 
K-means 28599 12,81 Global 

2D frequency 
distribution 28301 12,68 Global 

 

The conventional 3-sigma algorithm does not find the 
outliers, when they exist in large amounts, because outliers 
bias the mean and standard deviation too much. Robust 
estimates work better in this case, both as local and global 
algorithms, and their performance is very close to the manual. 
The non-stationary profile, however, degrades their 
performance. Robust estimates work usually well with large 
amount of outliers and when data is symmetrically distributed 
around the median. With fewer outliers, and in non-stationary 
cases, also normal data can be classified as outliers. Fig. 6 
shows the distribution of outliers found using robust 
estimates, and it is possible that also in this case some normal 
values have been classified as outliers. 

 

Fig. 6. The histogram of outliers found using global robust 
estimate’s algorithm. 

From adaptive algorithms, MAD-block version worked 
reasonable well, when the parameter t varied from 2 to 4 as a 
function of the estimated variance. 2DHampel could not find 
all outliers. In this case, the parameter t got the value 4, when 
the estimate for the variance was smaller than 20; otherwise it 
was 3. Also the wavelet algorithm missed a lot of outliers, 
especially in the case of successive outliers. 

The global version of histogram threshold worked well. 
Strongly non-stationary profile can, however, have a negative 
effect on its performance. Fig. 7 shows the location of the 
threshold in this case. The histogram is clearly bimodal, and 
the definition of the threshold value (about 519 ºC) is easy. 

To eliminate the effect of non-stationary profile a local 
version of the histogram threshold was tested. The algorithm 
works well, if the distribution is clearly bimodal. It could be 
improved by adding the bimodality test, which prevents the 
thresholding, when the distribution is not bimodal. 

The method based on the clustering of 2D frequency 
distributions works also well. The clustering is successful, 
when there are no trends in data, local variations are small, 
and the transformations from one cluster to another are clear. 
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The results were already in Figure 6, where +-signs show the 
cluster centres and the triangle corresponds to the 
transformation with the biggest probability.  

Fig. 7. The location of the threshold, when the Triangle-
algorithm is used.  

The conventional k-means clustering to two clusters, with 
good initial guesses, gave also good results. Also here, a 
stationary data with clearly separable clusters is easier to deal 
with.  

5.  CONCLUSIONS 

The tested methods fall into several categories: global vs. 
local, one- or two-dimensional, and adaptive methods. Part of 
them are conventional signal processing methods – 3-sigma, 
robust estimates and wavelets – and part is coming from the 
image processing area – histogram threshold, 2DHampel 
filtering, profile intensity clustering with k-means algorithm 
and the method based on clustering of temperature 
transformations using 2D-histograms.  

As a whole, the number of outliers and the possible non-
stationary profiles effect on the performance of different 
algorithms. The breaking point of the median causes 
problems in robust algorithms; as also the variations of the 
mean in longitudinal and transversal directions, when global 
algorithms are used. As a conclusion, adaptation is required 
to guarantee efficient operation in changing process 

conditions. This, however, increases the computation load 
and makes the algorithms slower.  

It was clear from the start that there is no single method that 
is superior in all situations. The selection proceeds case by 
case. Global robust method, or alternatively global histogram 
threshold, is the best choice for this case. Both methods are 
computationally efficient, and their performance is adjustable 
by the users. The user will have a possibility to check the 
results from outlier detection and change either the threshold 
value or the parameter t in the calculation of the MAD-
estimate.  

REFERENCES 

Bilen C., Huzurbazar S., Wavelet-based detection of Outliers 
in Time Series. Journal Computational and Graphical 
Statistics, 11(2002)2, 311 327. 

Chiang, L.H., Pell R.J., and Seasholtz, M.B., Exploring 
process data with the use of robust outlier detection 
algorithms. Journal of Process Control 13(2004) 437-
449. 

Corneloup G., Moysan J., Magnin I.E.: BSCAN Image 
Segmentation by Thresholding Using Co-occurrence 
Matrix Analysis, Pattern Recognition, 29(1996)2, 281-
296. 

Gonzalez R.C., Woods R.E., Digital Image Processing, 
Prentice Hall, New Yersey, 2002, 793 p. 

Haddon J.F., Boyce J.F.: Image segmentation by Unifying 
Region and Boundary Information. IEEE Transactions 
on Pattern and Machine Intelligence, 10(1990)12, 929-
948. 

Liu, H.C., Shah, S., and Jiang, W., On-line outlier detection 
and data cleaning. Computers and Chemical Engineering 
28(2004) 1635-1647. 

Nounou, M.N., and Bakshi, B.R., On-line multilevel filtering 
of random and gross errors without process models. 
American Institute of Chemical Engineering Journal 
45(1999) 1041-1058.   

Pearson R.K.: Outliers in Process Modelling and 
Identification, IEEE Transactions on Control System 
Technology, 10(2002)1, 55-63. 

Shapiro L.G., Stockman G.C., Computer Vision, Prentice 
Hall, New Jersey, 2001, 580 p. 

Zack G.W., Rogers W.E., Latt S.A.: Automatic Measurement 
of Sister Chromatid Exchange Frequency, Journal of 
Histochemisty and Cytochemistry, 25(1977)7, 746-753. 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1963


