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Abstract: Magnetorheological (MR) dampers are promising devices for vibration mitigation
in structures due to their low cost, energy efficiency and fast response. To use these dampers
efficiently it is necessary to have models that describe their behavior with a sufficient precision.
However, a precise modeling of these devices using the laws of physics is an arduous task so
that semi-physical models are used instead to describe their behavior. Two of these models
are explored in this paper: a normalized version of the Bouc-Wen model and the Dahl friction
model. A methodology for identification is proposed, and the obtained models are tested and
validated experimentally.

1. INTRODUCTION

MR dampers are actuators that change their mechanical
properties when exposed to a magnetic field. These devices
are able to reversibly change from a free-flowing linear
viscous liquid to a semi-solid within milliseconds. They
can operate in a range of temperatures from -40 to 150
◦C with a slight variation of the yield stress (Jolly et al.
(1999)). In contrast to their electrical counterparts, the
electrorheological (ER) fluids, the MR fluids are almost
insensitive to impurities. Moreover, they have a low cost
and can be controlled with a low voltage. All these features
make MR dampers attractive as actuators controlled by
voltage to be used in different engineering fields.

The use of the laws of physics for its modeling is complex
and models that combine a physical understanding of the
device along with a black-box description are used instead.
The most relevant semi-physical models to describe MR
damper behavior are the Bingham model and its extended
version proposed in Stanway et al. (1987) and Gamota
et al. (1991) respectively, the hysteresis Bouc-Wen model
(Wen (1976)) proposed in Spencer et al. (1997), and
other models, which include the Dahl model(Dahl (1968))
proposed in Ikhouane et al. (2007), the modified LuGre
model (Jimenez et al. (2004)), and some non-parametric
models (Jung et al. (2004)).

In this paper we consider the modeling of an MR damper
using a normalized version of the Bouc-Wen model propose
in (Ikhouane et al., 2007, p.39) and the Dahl frictional
model proposed in (Ikhouane et al., 2007, p.152). Both
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models consist in the sum of a viscous friction term and
a dry one. A methodology for identifying both models
has been proposed in (Ikhouane et al., 2007, Chapter 5).
However, when applying directly this methodology, there
is a large uncertainty on the viscous friction coefficient.
This is due to the fact that, for the MR damper used in the
experiments, the viscous friction term is smaller than the
dry one. To cope with this uncertainty, the identification
method is modified appropriately. Moreover, to validate
the model a random input voltage and displacement is
implemented.

2. BACKGROUND RESULTS

2.1 The Norm. Bouc-Wen model

The normalized version of the Bouc-Wen model (Ikhouane
et al., 2007, p.39) is an equivalent representation of the
original Bouc-Wen model (Wen (1976)). The normalized
model has less number of parameters thus eliminating the
overparametrization present in the original model. This
normalized form relates the output restoring force F to
the input displacement x in the form

F (x)(t) = κxx(t) + κww(t) (1)

ẇ(t) = ρ(ẋ(t) − σ|ẋ(t)||w(t)|n−1w(t)+
(σ − 1)ẋ(t)|w(t)|n)

(2)

where κx > 0, κw > 0, ρ > 0, σ > 1/2, and n ≥ 1. These
parameters control the shape of the hysteresis loop. The
signals that are accessible to measurement are the input
signal x(t) and the output force F (x)(t). The state w(t)
has not a physical meaning so that it is not accessible to
measurements.
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2.2 Input signals for identification

For identification purposes, we use input signals x(t) that
are wave T -periodic (Ikhouane et al., 2007, p.38). The
characteristics of these signals are given in Fig. 1.
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Fig. 1. Example of a T-wave periodic signal.

2.3 Analytic description of the forced limit cycle for the
Norm. Bouc-Wen model

To describe analytically the hysteresis loop, the following
instrumental functions are used

ϕ−
σ,n(µ) =

µ
∫

0

du

1 + σ|u|n−1u+ (σ − 1)|u|n
(3)

ϕ+
σ,n(µ) =

µ
∫

0

du

1 − σ|u|n−1u+ (σ − 1)|u|n
(4)

ϕσ,n(µ) = ϕ+
σ,n(µ) + ϕ−

σ,n(µ) (5)

where µ ∈ (−1, 1). It has been shown in (Ikhouane et al.,
2007, p.42) that the functions ϕ−

σ,n(·), ϕ+
σ,n(·), and ϕσ,n(·)

are invertible with inverses ψ−
σ,n(·), ψ+

σ,n(·), and ψσ,n(·)
respectively. The limit cycle for the Norm. Bouc-Wen
model is described by the following theorem (Ikhouane
et al., 2007, p.47).

Theorem 1. Let x(t) be a wave T -periodic input signal.
Define the functions ωm and Fm for any non-negative
integer m as follows

ωm(τ) = w(mT + τ) τ ∈ [0, T ] (6)

Fm(τ) = κxx(τ) + κwωm(τ) τ ∈ [0, T ] (7)

The sequence of functions {Fm}m≥0 (resp. {wm}m≥0)
converges uniformly on the interval [0, T ] to a continuous
function F̄ (resp. w̄) defined as

F̄ (τ) = κxx(τ) + κww̄(τ), for τ ∈ [0, T ] (8)

w̄(τ) = ψ+
σ,n(ϕ+

σ,n[−ψσ,n(ρ(Xmax −Xmin))]+
ρ(x(τ) −Xmin)) for τ ∈ [0, T+]

(9)

w̄(τ) = −ψ+
σ,n(ϕ+

σ,n[−ψσ,n(ρ(Xmax −Xmin))]−
ρ(x(τ) −Xmin)) for τ ∈ [T+, T ]

(10)

2.4 Modeling and identification of the MR damper

In this section, the damper is represented by means of two
models: the Norm. Bouc-Wen model and the Dahl model.
The Norm. Bouc-Wen model, is represented as

F (t) = κx(v)ẋ(t) + κw(v)w(t) (11)

ẇ(t) = ρ(ẋ(t) − σ|ẋ(t)||w(t)|n−1w(t)+
(σ − 1)ẋ(t)|w(t)|n)

(12)

The Dahl model is a particular case of the Bouc-Wen
model that has been proposed in (Ikhouane et al., 2007,
p.152) to simplify the modeling of the damper as

F (t) = κx(v)ẋ(t) + κw(v)w(t) (13)

ẇ(t) = ρ (ẋ(t) − |ẋ(t)|w(t)) (14)

Identification methodology The identification method
consists in exciting the damper with a wave periodic dis-
placement excitation while maintaining constant the volt-
age. As shown in Theorem 1, the output force will reach
a periodic steady-state so that a limit cycle is obtained.
The identification method assumes the knowledge of the
relation F̄ (x), that is the knowledge of this limit cycle.
Thanks to the symmetry property of this graph (Ikhouane
et al., 2007, p.67), only its loading part will be considered
for identification purposes (τ ∈ [0, T+] in Theorem 1). The
identification methods are described in detail in (Ikhouane
et al., 2007, Chapter 5) so that just the main steps are
given here.

Identification method for the Norm. Bouc-Wen
model: The parameter κx is first determined using the
relation

κx =
F̄ (T+) + F̄ (0)

ẋ(0) + ẋ(T+)
(15)

Then a function θ can be computed as

θ(τ) = F̄ (τ) − κxẋ(τ), τ ∈ [0, T+] (16)

It can be shown that this function has a unique zero, that
is a value x∗ ∈ [Xmin, Xmax] for which the value of the
function θ is zero. Since θ is known, the zero x∗ is also
known. Define the quantity

a =

(

dθ(x)

dx

)

x=x∗

(17)

The parameter n is determined as

n =

log







(

dθ(x)
dx

)

x=x
∗2

−a

(

dθ(x)
dx

)

x=x
∗1

−a







log
(

θ(x=x∗2)
θ(x=x∗1)

) (18)

where x∗2 > x∗1 > x∗ are design parameters. Define

b =
a−

(

dθ(x)
dx

)

x=x∗2

θ(x∗2)n
(19)

Then, the parameters κw and ρ are computed as follows:

κw = n

√

a

b
(20)

ρ =
a

κw

(21)

Then, the function w̄(x) can be computed as

w̄(x) =
θ(x)

κw

(22)
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The remaining parameter σ is determined as

σ =
1

2









(

dw̄(x)
dx

)

x=x
∗3

ρ
− 1

(−w̄(x∗3)n)
+ 1









(23)

where x∗3 is a design parameter such that x∗3 < x∗.

Identification method for the Dahl model: The
parameter κx is determined using (15). Then, the function
θ and the parameter a are defined as in (16) and (17)
respectively. The rest of the parameters is computed as
follows:

ρ =
a−

(

dθ(x)
dx

)

x=x∗1

θ(x∗1)
(24)

where x∗1 > x∗ is a design constant, and κw as

κw =
a

ρ
(25)

3. EXPERIMENTAL SETUP

3.1 Overall system

The experimental investigations are performed using a
Shake Table II by Quanser Inc. A R-1097-01 MR friction
damper by Lord Corp. is installed between the shake table
and a rigid link (Fig. 2). A load cell (Interface SML Series
model), accelerometer (Quanser), and a laser displacement
sensor (AccuRange600 model −4) are used to measure the
force of the damper, the acceleration of the shake table,
and the displacement of the damper piston respectively.
Real Time Wincon software from Quanser, Simulink and
MATLABTM R14 hosts all parameter identification pro-
grams, signal, and numerical processing tasks. For all the
experiments, the sampling time is 0.001 s.

Wonder Box

MR damper

Shake Table

Laser sensor

Load cell

Fig. 2. Identification experiment layout.

3.2 MR damper

The damper consists in an absorbent foam saturated with
MR fluid wrapping a steel core that is mounted on a tip
of a plastic shaft. Inside the shaft, the electrical leads
energize the copper coil around the steel core resulting

in a controllable electromagnet (Chrzan et al. (2001)).
The sponge allows a minimum volume of MR fluid to be
operated in a direct shear mode without seals, bearings
or precision mechanical tolerance. The stroke of the MR
damper is ±2.9 cm, its working maximum continuous
current is 0.5 A, and the maximum input intermittent
current is 1.0 A. The peak damping force of the damper is
100 N. Input current is controlled with a voltage-regulated
device controller RD-3002-1 Wonder Box (WB) by Lord
Corp.

4. EXPERIMENTAL OBSERVATIONS AND
SENSITIVITY ANALYSIS

Fig. 3 gives the response of the MR damper to a wave
periodic displacement excitation with a constant voltage.
Fig. 3 lower right gives the force/velocity plot. It can be
observed that the viscous friction is significantly smaller
than the dry friction. The consequence of this observation
on the identification method is now analyzed.
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Fig. 3. Response of the MR damper model with 0V.

In (15), let ∆h be the absolute value of the highest
uncertainty on h. Then we have

∆κx

κx

=
∆

(

F̄ (T+) + F̄ (0)
)

∣

∣F̄ (T+) + F̄ (0)
∣

∣

+
∆(ẋ(0) + ẋ(T+))

|ẋ(0) + ẋ(T+)|
(26)

On the other hand, let us consider that in (11) the viscous
friction term κx(v)ẋ(t) is very small with respect to the dry
friction term κw(v)w(t). In this case, the restoring force of
the damper is given by

F (t) ≃ κw(v)w(t) (27)

By Theorem 1, we have

F̄ (0) ≃ −ψσ,n (ρ(Xmax −Xmin)) (28)

F̄ (T+) ≃ ψσ,n (ρ(Xmax −Xmin)) (29)

so that F̄ (0) + F̄ (T+) ≃ 0. This equality along with (26)
shows that the relative error on the parameter κx is high if
the viscous friction is much smaller than the dry friction. In
our case, the experimental values of F̄ (0) = −2.8131N and
F̄ (T+) = 2.7350N show that F̄ (0) + F̄ (T+) = −0.0781N
is indeed close to zero. The values of κx = −0.0085Ns/mm
and κw = 2.4679N .
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The analysis above means that, when the viscous friction
is much smaller than the dry friction, (15) may lead to
a large relative error on the parameter κx. The objective
of the following paragraph is to propose an alternative
method for the determination of this parameter.

In (Ikhouane et al., 2007, eq. 4.93) it is shown that
the Bouc-Wen model hysteresis loop has a plastic region
when the displacement is large enough. This region is
characterized by w̄(τ) ≃ 1. Let’s consider the loading part
of the periodic input signal and let us assume that, in some
time interval, this displacement takes large values so that
w̄(τ) ≃ 1. In this case, (11) becomes

F̄ (τ) = κx(v)ẋ(τ) + κw(v) (30)

This equation is linear in ẋ so that the constants κx(v)
and κw(v) can be determined by a linear regression for
each constant voltage. In Fig. 3 lower right, it is observed
indeed that the force versus velocity plot presents a linear
part for ẋ ∈ [3, 9.5]mm/s. This corresponds to the time
interval [16.35, 17] (see Fig. 3 lower left), which means that
in this time interval the displacement has large values. Our
assumption has thus been validated experimentally.

5. IDENTIFICATION AND MODELING RESULTS

A set of experiments are performed with different volt-
ages (0V, 0.75V, 1V, 1.25V, 1.5V, 1.75V, 2V), frequen-
cies (0.5Hz, 1Hz, 2Hz), and maximal displacements
(2.5mm, 5mm, 10mm, 20mm). Therefore, a total of 84
tests are performed. An identification methodology and
results are given in detail for the test 0V , 0.5Hz, 2.5mm
in Section 5.1. Then, the complete results are given in
Section 5.2.

5.1 Results for the test 0V , 0.5Hz, 2.5mm

The first step in the identification method is the deter-
mination of the parameters κx and κw as explained in
Section 4, where the input signal is given in Fig. 3 (up-
per left). To this end, the velocity ẋ is determined from
the measurements of the displacement x using an Euler
approximation, with a sampling period of 0.001 s. The
resulting noise is eliminated by filtering the velocity using

a second order filter
ω2

f

s2 + 2ζωfs+ ω2
f

. We choose ζ = 0.7,

ωf = 20×ωs, where fe = ωs/2π is the frequency of the test
(in this case fe = 0.5Hz). The fact that the bandwidth
of the filter is much larger than the frequency of the
input signal implies that the filtering process eliminates
only the high-frequency disturbances while introducing
very little deformation on the relevant data. The next
step is determining the parameters κx and κw from the
force/velocity plot by a linear regression (see Fig. 4 upper).
It is found κx = 0.0843Ns/mm and κw = 1.9147N . The
function θ is determined from (16) (see Fig. 4 middle).
The corresponding zero x∗ and derivative at this zero are
obtained as x∗ = −2.3192mm and a = 19.1402N/mm.
The rest of the identification procedure is different for the
Norm. Bouc-Wen and Dahl models.

Identification results for the Norm. Bouc-Wen model
To determine the parameter n, two design parameters

x∗2 > x∗1 > x∗ are to be chosen. Since n characterizes
the sharpness of the transition from linear to plastic
regions (Ikhouane et al., 2007, p.110), the parameter x∗1 =
−2.3177mm> x∗ is chosen within the linear region while
the parameter x∗2 = 2mm > x∗1 is chosen within the
plastic region, close to the largest displacement value.
The derivatives at those two points are computed, and
the parameter n = 1.0927 is calculated using (18). The
intermediate value b = 9.4055 is computed using (19),
which gives the parameter κw = 1.9159N . Note that
this value is very close to the one computed previously.
The parameter ρ = 9.9902mm−1 is computed using (21),
which allows the determination of the function w̄(x) using
(22) (see Fig. 4 lower). The last parameter to determine
is σ using (23). To this end, the design parameter x∗3 =
−2.4619mm < x∗ is chosen close to the smallest value of
the displacement. It is found σ = 0.6661.

Identification results for the Dahl model The only pa-
rameter to be determined is ρ. Since κw and a have already
been determined, (25) is used in the following form to
compute the parameter ρ:

ρ =
a

κw

(31)

It is found ρ = 9.9964mm−1, which is practically equal to
the Norm. Bouc-Wen model value of ρ.
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Fig. 4. Upper: force vs. velocity plot for the loading part
with linear fit dotted. Middle: function θ(x). Lower:
function w̄(x).

5.2 Complete results

Identification results for the Norm. Bouc-Wen model It
is found that the mean values of the parameters n and σ
are n = 1.2025, σ = 0.6683 with a standard deviation sn =
0.0414 and sσ = 0.0845 respectively. The fact the standard
deviation is small with respect to the mean value implies
that the parameters n and σ are practically independent
of the amplitude and frequency of the displacement, and
are also independent of the voltage. For the parameter κw,
it can be seen that it depends mainly on the voltage, as for
each constant value of the voltage, the standard deviation
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is small with respect to the mean. This dependence can be
approximated linearly as

κw(v) = κwa + κwbv (32)

It is found that κwa = −10.998N and κwb = 40.59NV −1.
The parameter κx shows a dependence on the voltage.
However, the standard deviation is often large with respect
to the mean which shows a dependence on the other
variables, that is the amplitude and frequency of the
displacement. Incorporating the precise variation of this
parameter with all the variables complicates the model.
For this reason, we take a constant value for κx which is
the mean κ̄x = 0.1760Nsmm−1 of all the tests.

For the parameter ρ, it is observed that for voltages below
1V , the standard deviation is large when compared to
the mean. For voltages larger than 1.5V , the standard
deviation is relatively small with respect to the mean.
Thus, two models will be adopted for ρ:

(1) ρ constant which is the mean ρ̄ of all the tests.
(2) A linear variation with the voltage as

ρ = ρa + ρb v (33)

It is found ρ̄ = 1.48mm−1, ρa = 3.2205mm−1, ρb =
−1.4768mm−1V −1.

As a conclusion, two models are proposed:

Model 1:

F (t) = κ̄xẋ(t) + [κwa + κwbv(t)]w(t) (34)

ẇ(t) = ρ̄(ẋ(t) − σ|ẋ(t)||w(t)|n−1w(t)+
(σ − 1)ẋ(t)|w(t)|n)

(35)

w(0) =
F (0) − κ̄xẋ(0)

κwa + κwbv(0)
(36)

Model 2:

F (t) = κ̄xẋ(t) + [κwa + κwbv(t)]w(t) (37)

ẇ(t) = [ρa + ρb v(t)] (ẋ(t) − σ|ẋ(t)||w(t)|n−1w(t)+
(σ − 1)ẋ(t)|w(t)|n)

(38)

w(0) =
F (0) − κ̄xẋ(0)

κwa + κwbv(0)
(39)

Identification results for the Dahl model The conclusions
and results for the parameters κx, κw and ρ are the same
as for the Norm. Bouc-Wen model. Thus, two models are
proposed:

Model 3:

F (t) = κ̄xẋ(t) + [κwa + κwbv(t)]w(t) (40)

ẇ(t) = ρ̄ (ẋ(t) − |ẋ(t)|w(t)) (41)

w(0) =
F (0) − κ̄xẋ(0)

κwa + κwbv(0)
(42)

Model 4:

F (t) = κ̄xẋ(t) + [κwa + κwbv(t)]w(t) (43)

ẇ(t) = [ρa + ρb v(t)] (ẋ(t) − |ẋ(t)|w(t)) (44)

w(0) =
F (0) − κ̄xẋ(0)

κwa + κwbv(0)
(45)

6. MODEL VALIDATION

The displacement signal used for the model validation is
given in Fig. 5 (upper). For the voltage, constant voltage
values are used along with the varying voltage function of
Fig. 5 (lower). To measure the discrepancy between the
experimental output force Fe and the force Fi given by
the model i = 1, 2, 3, 4, the 1-norm error εi is used:

εi =
‖Fe − Fi‖1

‖Fe‖1

(46)

‖f‖1 =

Te
∫

0

|f(t)|dt (47)

where Te = 18 sec is the duration of each experiment.
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Fig. 5. Signals for model validation.

6.1 Constant voltage validation

Table 1 presents the model errors. It is observed that
Model 2 behaves better than the others. In general, for
all four models, the error remains low. Nevertheless, it is
necessary to validate the model using a varying voltage.

Table 1. Error norms (εi) for the MR damper
models under constant voltage.

Norm. BW Dahl

Voltage Model 1 Model 2 Model 3 Model 4

0V 4.13 % 4.03 % 5.67 % 5.44 %

0.75V 4.28 % 4.16 % 6.11 % 6.04 %

1V 4.43 % 4.30 % 6.25 % 6.21 %

1.25V 5.24 % 5.16 % 7.20 % 7.05 %

1.5V 6.12 % 5.96 % 8.53 % 8.27 %

1.75V 6.83 % 5.85 % 10.59 % 8.86 %

2V 7.32 % 6.13 % 11.03 % 10.24 %

6.2 Varying voltage validation

Figs. 6 and 7 give the experimental versus model response
when both the displacement and the voltage are time-
varying. Table 2 gives the values of the errors εi, i =
1, . . . , 4. It is observed again that Model 2 behaves better.
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Table 2. Error norms (εi) for the MR damper
models under fluctuating voltage.

Norm. BW Dahl

Model 1 Model 2 Model 3 Model 4

16.07 % 7.12 % 46.12 % 19.74 %
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Fig. 6. Experimental and Norm. BW response to a varying
displacement and a varying voltage.
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7. CONCLUSION

This paper has dealt with the modeling and identifica-
tion of an MR damper. A sensitivity analysis has been
carried out and it has been observed that the identifica-
tion method of Ikhouane et al. (2007) leads to a large
uncertainty on the identified viscous friction coefficient
when the viscous friction term is smaller than the dry one.
For this reason, this identification methodology has been
modified appropriately. Four models have been proposed
to describe the MR damper: two are based on the Norm.
Bouc-Wen model, and two on the friction Dahl model. The
difference between the models is whether the ρ parameter
is considered constant or varying with the voltage. Two
kinds of model validation have been performed: with a
constant voltage input and with a varying voltage input.
When the voltage is constant, the four models show a good

agreement with the experimental output. The range of the
relative error is comparable to the one obtained in Savaresi
et al. (2005). When the voltage is time-varying, only the
Norm. Bouc-Wen model with a varying ρ shows a good
agreement with experimental data. The Norm. Bouc-Wen
model with a constant parameter ρ and the Dahl model
with a varying ρ show a relative error less than 20 % and
may be used for control purposes as they are simpler. This
work has stressed the importance of validating the MR
damper models with a varying voltage.
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