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Abstract: This paper presents a sequential estimation procedure for unknown parameters of
a stochastic linear regression. As examples the sequential estimation problem of two dynamic
parameters in stochastic linear systems with memory and in autoregressive processes is solved.
The estimation procedure is based on the least squares method with weights and yields
estimators with guaranteed accuracy in the sense of the Lq−norm (q ≥ 2). The proposed
procedure works in the mentioned examples for all possible values of the unknown dynamic
parameters on the plane R2 with the exception of some lines. The asymptotic behavior of the
duration of observations is investigated.
It is shown, that the proposed general procedure may be applied to the sequential parameter
estimation problem for affine stochastic delay differential equations as well as autoregressive
stochastic differential equations of arbitrary order.

1. PRELIMINARIES

Affine and more general stochastic differential equa-
tions with time delay are widely used to model phenomena
in economics, biology, technics and other sciences incor-
porating time delay, see e.g. Kolmanovskii and Myshkis
(1992) and Mohammed (1996) for references. Often one
has to estimate underlying parameters of the model from
the observations of the running process.

This paper presents a sequential estimator for unknown
dynamic parameters in stochastic linear systems including
stochastic differential equations (SDE’s) with and without
memory. In the sequel W = (W (t))t≥0 denotes a real-
valued standard Wiener process on some probability space
(Ω,F , P ) with respect to a filtration F = (F)t≥0 from F .

We have in mind the following types of equations.

Example I. Consider the stochastic delay differential
equation (SDDE) given by

dX(t) =
p∑

i=0

ϑiX(t− ri)dt + dW (t), t ≥ 0, (1)

X(s) = X0(s), s ∈ [−r, 0].
The parameters ri, ϑi, i = 0, . . . , p are real numbers with
0 = r0 < r1 < . . . < rp =: r if p ≥ 1 and r0 = r = 0
if p = 0. The initial process (X0(s), s ∈ [−r, 0]) also
defined on (Ω,F , P ), is supposed to be cadlag and all
X0(s), s ∈ [−r, 0] are assumed to be F0−measurable.
Moreover assume that

? Research was supported by RFBR - DFG 05-01-04004 Grant

E

0∫
−r

X2
0 (s)ds < ∞.

Example II. Consider the stochastic differential equa-
tion of an autoregressive type given by

dx
(p)
t =

p∑
i=0

ϑix
(p−i)
t dt + dW (t), t ≥ 0, (2)

x
(p−i)
0 = x(p−i)(0), E(x(p−i)(0))2 < ∞, i = 0, p.

We assume that in our examples the parameter ϑ
belongs to some fixed set Θ ⊂ Rp+1 which coincides with
the whole space Rp+1 except of some lines, which we shall
specify below.

We shall study the problem of estimating the param-
eters (ϑi, i = 0, . . . , p) in a sequential way, based on
continuous observation of (X(t)) and (xt) respectively.
Before we shall consider a problem being slightly more
general.

For time-delayed systems of the type (1) a sequential
estimation procedure for some special chosen sets Θ of
vector parameter ϑ = (ϑ0, ϑ1)′ has been constructed by
Küchler and Vasiliev (2001, 2003, 2005, 2006).

Sequential parameter estimation problems for the drift
of diffusions without time delay (2) have been studied
e.g. by Novikov (1971), Liptzer and Shiryaev (1977) (case
p = 0) and for some special chosen sets Θ (p ≥ 0) by
Konev and Pergamenshchikov (1985, 1992).
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Define the Lq-norm on the space of random vectors as

||·||q = (Eϑ||·||q)
1
q , where ||a|| = (

p∑
i=0

a2
i )

1
2 and Eϑ denotes

the expectation under the distribution Pϑ with the given
parameter ϑ ∈ Θ.

We shall construct for every ε > 0 and arbitrary but
fixed q ≥ 2 a sequential estimator ϑ∗ε of ϑ ∈ Θ with
ε−accuracy in the sense

||ϑ∗ε − ϑ||2q ≤ ε. (3)
The estimators with such property may be used in various
adaptive procedures (control, prediction, filtration).

2. PROBLEM SETTING

In this section we shall consider the linear regression
model, which is of general character and will in the sequel
be used to more specific studies. It is oriented, first of
all, on the parameter estimation problem of the linear
differential equation with and without time delay. This
aim determines specific assumptions below for this model.
Note that the asymptotic properties of processes (1) and
(2) are essentially different in different subsets of Θ (see
Tables 1-4 below). That is the reason of complexity of the
presented below general sequential estimation procedure
which works for regressions with similar properties.

Let X = (X(t))t≥0 be a scalar random process de-
scribed by the stochastic differential equation

dX(t) = ϑ′a(t)dt + dW (t), t ≥ 0 (4)
with the initial condition X(0) = X0, where W =
(W (t),Ft)t≥0 is a real-valued standard Wiener process
on (Ω,F , P ), X0 is F0-measurable real-valued random
variable and a = (a(t))t≥0 an F-adapted Rp+1-valued
observable cadlag process on (Ω,F , P ), ϑ an unknown
parameter vector from some non-void subset Θ ⊆ Rp+1,
ϑ′ denotes the transposed ϑ.

Let for all T > 0 the following integrals be finite:
T∫

0

||a(t)||2dt < ∞ a.s.

Then, in particular, the observation process (X(t)) is well
defined for all t > 0.

The problem is to estimate the unknown vector ϑ with
given accuracy in the sense (3) from the observation of
(X, a) = (X(t), a(t))t≥0.

In Galtchouk and Konev (2001) has been constructed
the general sequential parameter estimation procedure for
linear regression model, which can be applied for sys-
tems of the type (1) or (2) for some special chosen sets
of unknown parameters. The proposed procedure enables
them to estimate the parameters with any prescribed mean
squares accuracy under appropriate conditions on the re-
gressors (a(t)). Among conditions on the regressors there
is one limiting the growth of the maximum eigenvalue of

the information matrix

T∫
0

a(t)a′(t)dt with respect to its

minimal eigenvalue if T increase. This condition is slightly
stronger than those usually imposed in asymptotic inves-
tigations and it is not possible to apply this estimation
procedure to continuous-time models of the type (1) and
(2) with essentially different behaviour of the eigenvalues
(if, for example, the smallest eigenvalue growth linearly
and the largest one - exponentially with the observation
period). The sequential estimation procedure, presented
in this paper works in more extended parametric sets Θ
for SDE and SDDE in comparison of all mentioned above
papers.

Let (V (t))t≥0 be some F−adapted and observable ma-
trix process of size (p + 1)× (p + 1), which we call weight
matrix process and which can be interpreted as an esti-
mator of some possibly unknown deterministic constant
non-singular matrix V.

The weighted least squares estimator (LSE) of ϑ for
the given observations from S to T has the form:

ϑ̂(S, T ) = G−1(S, T )Φ(S, T ), T > S > 0, (5)

where

Φ(S, T ) =

T∫
S

b(s)dX(s), G(S, T ) =

T∫
S

b(s)a′(s)ds,

b(s) = V (s)a(s). Put b(s) = V a(s),
Φ(T ) = Φ(0, T ), G(T ) = G(0, T ).

Our purpose is to construct sequential estimators of
the parameters in the model (4) on the bases of weighted
LSE’s (5). The weights (V (t)) and V will be chosen in
such a way that the integrals of the squared components
of the processes (b(t)) and (b(t)) will have certain rates of
increase (see Assumption (V) below).

For the construction of sequential plans and the inves-
tigation of their asymptotic properties the main problem
consists in a possible essentially difference of the rates of
convergence to infinity of the eigenvalues of the matrix
G(T ) for T →∞. Our first steps are devoted to based on
construct of V and (V (t)), appropriate factors of normal-
ization, which eliminate this deficiency.

Let the weight process (V (t))t≥0 be such that for all
T > 0 the following integrals are finite:

T∫
0

E||b(t)||2dt < ∞, ϑ ∈ Θ.

We formulate some assumptions, which are fulfilled, in
particular, in both examples mentioned above.

We shall write in the sequel f(x) ' C as x →∞ instead
of the limiting relations:

0 < lim
x→∞

f(x) ≤ lim
x→∞

f(x) < ∞.

ASSUMPTION (V): Fixed a non-void subset A from Rr

for some r ≥ 1. We assume, that for every i = 0, p there
exists a family of unboundedly increasing positive functions
(ϕi(α, T ), T > 0), α ∈ A, such that

lim
T∈∞

ϕ0(α, T )/ϕi(α, T ) ≤ 1, i = 1, p, α ∈ A
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and for some α ∈ A and all the functions b̃(·) equal to b(·)
or b(·) the following relations

ϕ−1
i (α, T )

T∫
0

b̃2
i (t)dt ' C as T →∞, i = 0, p

almost surely hold.

Let S and T be two reals with 0 ≤ S < T. The part
of observations (X(s), a(s), 0 ≤ s ≤ S) will be used to
estimate α, the part (X(t), a(t), S ≤ t ≤ T ) to estimate
ϑ.

Define the following sets of positive functions:

P0 = {f(·) :
f(y(x))
f(x)

' C if
y(x)
x

' C, x ↑ ∞},

P1 = {y(·) : ∃ g(·) ∈ P0 with lim
T→∞

g(T ) > 0 and

y(S) = o(g−1/2(T )y(T )) if S = o(T ), T →∞},
where g(T ) = g(ϕ0(T )),

P1 = {y(·) : ∃ g(·) ∈ P0 with lim
T→∞

g(T ) > 0 and

S = o(T ) if y(S) = o(g−1/2(T )y(T )), T →∞}
and introduce the matrices

ϕ(T ) = diag{ϕ0(α, T ), ϕ1(α, T ), . . . , ϕp(α, T )},

ϕ̃
1
2 (T ) = ϕ

1
2 (T )(V ′)−1,

G(S, T ) = ϕ−
1
2 (T )G(S, T )ϕ̃−

1
2 (T ),

G̃(S, T ) = ϕ−
1
2 (T )G(S, T )ϕ−

1
2

0 (T ),

G(T ) = G(0, T ), G̃(T ) = G̃(0, T ),

ζ(S, T ) = ϕ−
1
2 (T )

T∫
S

b(t)dW (t).

Denote λmin{A} and λmax{A} the smallest and the
largest eigenvalues of the matrix A.

For the construction of sequential estimators we shall
use the following normalized representation for the devia-
tion of the weighted LSE ϑ̂(S, T ) :

ϕ
1
2
0 (T )(ϑ̂(S, T )− ϑ) = G̃−1(S, T )ζ(S, T ). (6)

The matrices G̃(S, T ) and G(S, T ) have similar asymptotic
properties (in the sense of the Assumption (G) below)
under the following condition on the functions ϕi(T ), i =
0, p and on the matrix V:

lim
T→∞

λmax{V ′ϕ−1(T )ϕ0(T )V } > 0. (7)

ASSUMPTION (G): Let the functions b(t) and b(t) satisfy
Assumption (V ), where functions ϕi(·) ∈ P1, i = 0, p. We
suppose that the following property for the matrix function
G(T ) holds:

lim
T→∞

g(T )λmin{G′(T )G(T )} > 0 Pϑ − a.s.,

where g(T ) is the function from the definitions of the
classes P1 and P1.

It can be shown that Assumption (G) and condition (7)
give the possibility to control the behaviour of the matrix
G̃−1(S, T ) in the representation (6) of the deviation of the
estimator ϑ̂(S, T ) from ϑ in the construction of sequential
estimation plans.

From the properties of matrices ζ(S, T ) and G̃−1(S, T )
it follows that the estimator ϑ̂(S, T ) has the rate of con-

vergence g−1/2(T )ϕ
1
2
0 (T ).

ASSUMPTION (ϕΨ): Assume ϕi(α, T ), i = 0, p, α ∈
A are functions as described in Assumption (V ). We
put Ψ0(α, x) = x and suppose, that there exist so-called
positive rate generating functions Ψi(·, ·), i = 1, p, on
A× (0,∞), increasing in the last variable x, and such that
for all α ∈ A

ϕi(α, T )/Ψi(α, ϕ0(T )) ' C as T →∞, i = 1, p.

For example, the functions of the form

Ψ(α, x) = xv1ev0x[c1 cos ξx + c2 sin ξx],

where α = (v0, v1) ∈ [{0} × (0,+∞)] ∪ [(0,+∞) ×
(−∞,+∞)], ξ ∈ R1 cover all the possible cases of
asymptotic behaviour for solutions of linear SDE’s and
SDDE’s.

By the construction of our sequential plans we di-
vide the set of functions ϕ0(α, T ), . . . , ϕp(α, T ) into some
groups Gj = {ϕi(α, T ), i = sj−1 + 1, sj}, j = 0,m,
−1 = s−1 < s0 ≤ . . . ≤ sm = p, 0 ≤ m ≤ p of the
functions which rates of increase do not differ essentially
in some sense. Then we shall define m + 1 systems of
stopping times on the bases of the sums of appropriately

normalized integrals
T∫
0

b2
i (t)dt, having the rates of increase

ϕi(T ), i = sj−1 + 1, sj , j = 0,m, 0 ≤ m ≤ p respectively.
To take this aim into account we introduce a ”multidimen-
sional time scale” T ∈ Rm+1 :

T = (T0, . . . , T0︸ ︷︷ ︸
l0+1

, T1, . . . , T1︸ ︷︷ ︸
l1

, . . . , Tm, . . . , Tm︸ ︷︷ ︸
lm

),

l0 = s0, li = si−si−1, i = 1,m if m > 0, T = (T0, . . . , T0︸ ︷︷ ︸
p+1

) if

m = 0. We shall substitute in the following the components
of the vector T by special stopping times.

Denote Tmax = max
i=0,m

Ti and Tmin = min
i=0,m

Ti. We

shall construct our sequential estimation plans on the
bases of the estimator ϑ̂(S, Tmin), which has the rate of

convergence equals to g−1/2(Tmin) ·ϕ
1
2
0 (Tmin) if Tmin →

∞. At the same time for calculation of ϑ̂(S, Tmin) in the
case of random time scales T we use the observations of the
length Tmax. Then the rate of convergence of ϑ̂(S, Tmin)

equals to g−1/2(Tmin)ϕ
1
2
0 (Tmax). To keep the order of

the convergence rate g−1/2(Tmin) ·ϕ
1
2
0 (Tmin) of estimators

ϑ̂(S, Tmin) by the random time change, we introduce the
following admissible set for the time-scales T :

Υ := {(T ) : lim
T→∞

ϕ0(Tmax)/ϕ0(Tmin) < ∞}.
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Now we return to our basic examples.

Example I. Define p = 1, a0(t) = X(t), a1(t) = X(t−
1). Then the equation (4) has the form (1):

dX(t) = ϑ0X(t)dt + ϑ1X(t− 1)dt + dW (t). (8)

To introduce the admissible parametric set Θ for ϑ =
(ϑ0, ϑ1)′ we need following notation.

Let s = u(r) (r < 1) and s = w(r) (r ∈ R1)
be the functions given by the parametric representation
(r(ξ), s(ξ)) in R2 :

r(ξ) = ξ cot ξ, s(ξ) = −ξ/ sin ξ

with ξ ∈ (0, π) and ξ ∈ (π, 2π) respectively.
Consider the set Λ of all (real or complex) roots of the

so-called characteristic equation corresponding to (8)

λ− ϑ0 − ϑ1e−λ = 0
and put v0 = v0(ϑ) = max{Reλ|λ ∈ Λ},

v1 = v1(ϑ) = max{Reλ|λ ∈ Λ, Reλ < v0}.
It can be easily shown that −∞ < v1 < v0 < ∞. By m(λ)
we denote the multiplicity of the solution λ ∈ Λ. Note that
λ = ϑ0− 1 ∈ Λ if and only if ϑ1 = −eϑ0−1. In this case we
have m(λ) = 2, in all the other cases it holds m(λ) = 1.

The general estimation procedure will be applied for
all parameters ϑ from the set Θ defined by

Θ = Θ1 ∪Θ2 ∪Θ3,

where
Θ1 = Θ11 ∪Θ12 ∪Θ13, Θ2 = Θ21 ∪Θ22,

with
Θ11 = {ϑ ∈ R2| v0(ϑ) < 0},

Θ12 = {ϑ ∈ R2| v0(ϑ) > 0 and v0(ϑ) 6∈ Λ},
Θ13 = {ϑ ∈ R2| v0(ϑ) > 0; v0(ϑ) ∈ Λ, m(v0) = 2},
Θ21 = {ϑ ∈ R2| v0(ϑ) > 0, v0(ϑ) ∈ Λ, m(v0) = 1,

v1(ϑ) > 0 and v1(ϑ) ∈ Λ},
Θ22 = {ϑ ∈ R2| v0(ϑ) > 0, v0(ϑ) ∈ Λ, m(v0) = 1,

v1(ϑ) > 0 and v1(ϑ) 6∈ Λ},
Θ3 = {ϑ ∈ R2| v0(ϑ) > 0, v0(ϑ) ∈ Λ, m(v0) = 1

and v1(ϑ) < 0},
and denote, in addition, the sets

Θ41 = {ϑ ∈ R2| v0(ϑ) = 0, v0(ϑ) ∈ Λ, m(v0) = 1},
Θ42 = {ϑ ∈ R2| v0(ϑ) = 0, v0(ϑ) ∈ Λ, m(v0) = 2},
Θ43 = {ϑ ∈ R2| v0(ϑ) > 0, v0(ϑ) ∈ Λ, m(v0) = 1,

v1(ϑ) = 0 and v1(ϑ) ∈ Λ}.

Note, that this decomposition is very related to the
classification used in Gushchin and Küchler (1999), where
can be found a figure giving an imagination of these sets.

The parameter set Θ equals the plane R2 without the
bounds of the set Θ12 ∪ Θ13 ∪ Θ3. In particular, Θ11 is
the set of parameters ϑ for which there exists a stationary
solution of (8).

Obviously, all sets Θ11,Θ12,Θ13,Θ21,Θ22,Θ3 are pair-
wise disjoint and the closure of Θ is the whole R2. More-
over, the exceptional set is of Lebesque measure zero.

We shall consider the sequential estimation problem
for the one-parametric set Θ4 = Θ41 ∪ Θ42 ∪ Θ43 as well.

This case is of interest in view of that the set Θ4 is the
bound of the following regions: Θ11, Θ12,Θ21,Θ3. In this
case ϑ1 = −ϑ0 and (8) can be written as a differential
equation of the first order. We do not consider the scalar
case Θ4 as an example of the general estimation procedure
because our method is intend for two- or more-parametric
models. Moreover, for similar one-parametric model a well-
known sequential estimation procedure is constructed and
investigated by Novikov (1971) and Liptzer and Shiryaev
(1977). We shall use this procedure in Section 3 with
applications to the case Θ4.

Now we define the process Yt = X(t)− λtX(t− 1), as
an estimator of Y (t) = X(t)− λX(t− 1); the quantity

λt =

t∫
0

X(s)X(s− 1)ds

t∫
0

X2(s− 1)ds

is a strong consistent estimator of λ = ev0 , the parameter
α = (v0, v1). Then all the Assumptions (V), (G) and (ϕΨ)
for ϑ ∈ Θ are fulfilled and we have

Table 1
Region ϕ0(α, T ) ϕ1(α, T ) Ψ1(α, x) g(ϕ)

Θ11 T T x 1
Θ12 e2v0T e2v0T x 1
Θ13 T 2e2v0T T 2e2v0T x ln8 ϕ

Θ2 e2v1T e2v0T xv0/v1 1
Θ3 T e2v0T e2v0x 1

if we put

Table 2
Region b0(t) b1(T ) b0(t) b1(T )

Θ11 X(t) X(t− 1) X(t) X(t− 1)
Θ12 X(t) X(t− 1) X(t) X(t− 1)
Θ13 X(t) X(t) X(t) X(t)
Θ2 Yt X(t) Y (t) X(t)
Θ3 Yt X(t) Y (t) X(t)

Example II. Define p = 1, X(t) = a0(t) = ẋt, a1(t) =
xt. Then the equation (4) has the form (2):

dẋt = ϑ0ẋtdt + ϑ1xtdt + dW (t), t ≥ 0. (9)

For this model we can define, similar to Example I,
following parametric sets with differ asymptotic behaviour
of the MLE:

Θ∗
1 = Θ∗

11 ∪Θ∗
12 ∪Θ∗

13 ∪Θ∗
14,

Θ∗
11 = {ϑ ∈ R2 : ϑ0 < 0, ϑ1 < 0},

Θ∗
12 = {ϑ ∈ R2 : ϑ0 > 0, ϑ1 < − (ϑ0/2)2},

Θ∗
13 = {ϑ ∈ R2 : ϑ0 = 0, ϑ1 < 0},

Θ∗
14 = {ϑ ∈ R2 : ϑ0 > 0, ϑ1 = − (ϑ0/2)2},

Θ∗
2 = {ϑ ∈ R2 : ϑ0 > 0,− (ϑ0/2)2 < ϑ1 < 0},

Θ∗
3 = {ϑ ∈ R2 : ϑ1 > 0}.

Then
Θ∗ = Θ∗

1 ∪Θ∗
2 ∪Θ∗

3 = R2 \ {ϑ ∈ R2 : ϑ1 = 0}.

Remark 2.1. As usual, the condition ϑ1 6= 0 means the
knowledge of the order (p = 1) of the process (9). It should

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10233



be noted that the problem of sequential estimation for the
case Θ∗ \ {ϑ ∈ R2 : ϑ0 = 0} has been solved, in principle,
by Konev and Pergamenshchikov (1985, 1992).

Now we define the processes Z̃1(t) = X1(t)− v̂0(t)X2(t)
and Z̃2(t) = X1(t) − v̂1(t)X2(t) estimating of Z1(t) =
X1(t)− v0X2(t) and Z2(t) = X1(t)− v1X2(t) respectively,
v̂0(t) and v̂1(t) are some strongly consistent estimators of
v0 = Reλ0 and v1 = Reλ1, where λi are the roots of
characteristic polynomial of the observable process (9).

Define α = (v0, v1). Then all the Assumptions (V), (G)
and (ϕΨ) are fulfilled for the functions

Table 3
Region ϕ0(α, T ) ϕ1(α, T ) Ψ1(α, x) g(ϕ)

Θ∗
11 T T x 1

Θ∗
12 e2v0T e2v0T x 1

Θ∗
13 T 2 T 2 x 1

Θ∗
14 T 2e2v0T T 2e2v0T x ln8 ϕ

Θ∗
2 e2v1T e2v0T xv0/v1 1

Θ∗
3 T e2v0T e2v0x 1

if we put

Table 4
Region b0(t) b1(T ) b0(t) b1(T )

Θ∗
11 X1(t) X2(t) X1(t) X2(t)

Θ∗
12 X1(t) X2(t) X1(t) X2(t)

Θ∗
13 X1(t) X2(t) X1(t) X2(t)

Θ∗
14 X1(t) X2(t) X1(t) X2(t)

Θ∗
2 Z̃1(t) Z̃2(t) Z1(t) Z2(t)

Θ∗
3 Z̃1(t) X2(t) Z1(t) X2(t)

3. CONSTRUCTION OF SEQUENTIAL ESTIMATION
PLANS

Let us return to the study of the equation (4) and
assume that the Assumptions (V), (G) and (ϕΨ) are valid.

Let ε be any positive number being fixed in the se-
quel. Now we construct the sequential estimation plan
SEP(ε) = (T (ε), ϑ∗ε) where T (ε) and ϑ∗ε are the duration
of estimation and the estimator of ϑ with the ε-accuracy
in the sense of Lq-norm respectively.

To construct a sequential estimator ϑ∗ε of ϑ with
preassigned accuracy ε > 0 firstly we introduce a random
time substitution for the weighted least square estimator
ϑ̂(S, T ) from (5). This enables us to control the moments
of the process ζ(S, T ) in the representation (6) of its
deviation. To do that, we have to take into account the
fact, that the Lq−norms of the components of the vector
b(·) may have different rates of increase. The knowledge of
these rates gives the possibility to construct the system of
stopping times from the admissible set Υ.

For every positive ε let us fix two unboundedly in-
creasing sequences (νn(ε))n≥1 and (cn)n≥1 of positive
F−stopping times (or real numbers) and real numbers
respectively, satisfying the following conditions:

ϕ0(νn(ε)) = o(g−1/2(ε−1cn)ε−1cn) Pϑ − a.s. (10)

as n →∞ or ε → 0, ∑
n≥1

c−q/2
n < ∞ (11)

and for every fixed ε > 0∑
n≥1

g−q/2(ε−1cn) = ∞, (12)

where g(·) is the function from the definition of the
function g(T ) = g(ϕ0(T )) in Assumption (G).

Assume that α is a parameter of the functions
ϕi(α, t), i = 0, p, which can be estimated consistently
by observation of (X, a). It is the case in all of our basic
examples.

Denote by αi(n, ε), i = 1, r, n ≥ 1 an estimators of
the parameters αi, i = 1, r, which we assumed to be
constructed by the trajectory of the observation process
(X, a) of the duration νn(ε) and define

Ψ(α, n, ε) = diag{ε−1cn,Ψ1(α, ε−1cn),

Ψ2(α, ε−1cn), . . . ,Ψp(α, ε−1cn)},
Ψ̃(n, ε) = Ψ(α(n, ε), n, ε), b̃n(t) =

= Ψ̃−1/2(n, ε)b(t) = (b̃0n(t), . . . , b̃pn(t))′.

ASSUMPTION (α): Let the condition (10) be fulfilled. The
estimators α(n, ε) of the parameter α are supposed to have
the properties:

ASSUMPTION (α1): for every ε > 0 and i = 1, p

Ψ̃ii(n, ε)
Ψii(α, n, ε)

' C as n →∞ Pϑ − a.s.;

ASSUMPTION (α2): for every n ≥ 1 and i = 1, p

Ψ̃ii(n, ε)
Ψii(α, n, ε)

' C as ε → 0 Pϑ − a.s.

Assumption (α) can be verified for time delayed process
(8) from Example I and for the autoregressive process (9),
considered in Example II.

Let us define the sequences of stopping times (τj(n, ε),
n ≥ 1), j = 0,m as follows

τj(n, ε) = inf{T > νn(ε) :

sj∑
i=sj−1+1

 T∫
νn(ε)

b̃2
in(t)dt


q/2

= 1},

where inf{�} = ∞ and denote
τmin(n, ε) = min{τ0(n, ε), τ1(n, ε), . . . , τm(n, ε)},
τmax(n, ε) = max{τ0(n, ε), τ1(n, ε), . . . , τm(n, ε)}.

The estimation of the parameter ϑ should be performed
on the intervals [νn(ε), τmin(n, ε)] :

ϑ(n, ε) = ϑ̂(νn(ε), τmin(n, ε)), n ≥ 1.

For the construction of sequential plan we put
σ(ε) = inf{N ≥ 1 : S(N, ε) ≥ %},
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where

S(N, ε) =
N∑

n=1

βq(n, ε),

with β(n, ε) is defined as β(n, ε) = ||G−1
n,ε||−1 if the matrix

Gn,ε = (ε−1cn)−
1
2 Ψ̃− 1

2 (n, ε)G(νn(ε), τmin(n, ε))
is invertible; 0 in the other case, % is known constant,
defined, for example, in Küchler and Vasiliev (2003) and
Küchler and Vasiliev (2005).

DEFINITION (D) The sequential plan (T (ε), ϑ∗ε) of
estimation of the vector ϑ ∈ Θ will be defined by the
formulae

T (ε) = τmax(σ(ε), ε) , (13)

ϑ∗ε = S−1(σ(ε), ε)
σ(ε)∑
n=1

βq(n, ε)ϑ(n, ε), (14)

where T (ε) is the duration of estimation, and ϑ∗ε is the
estimator of ϑ with given accuracy ε > 0.

The following theorem summarizes the main result
concerning the sequential plan (T (ε), ϑ∗ε).

THEOREM 1. Suppose Assumptions (V ), (G), (ϕΨ) and
(α1) hold and the conditions (10)–(12) are fulfilled. Then
for every ε > 0 and every ϑ ∈ Θ the sequential plan
(T (ε), ϑ∗ε) from Definition (D) is closed, i.e. it holds
T (ε) < ∞ Pϑ − a.s.

Moreover, for every ϑ ∈ Θ the following statements are
true:

1◦. for any ε > 0 it holds
‖ϑ∗ε − ϑ‖2q ≤ ε;

2◦. if Assumption (α2) holds, and if for some known
positive function h(·), such that h(ε) = ε if lim

T→∞
g(T ) < ∞

and h(ε) = o(ε) as ε → 0 if lim
T→∞

g(T ) = ∞, then

a) lim
ε→0

h(ε) · ϕ0(T (ε)) < ∞ Pϑ − a.s.,

and, moreover, if the condition (7) is valid, then
b) lim

ε→0
ε · ϕ0(T (ε)) > 0 Pϑ − a.s.;

3◦. if g(T ) = o(T ) as T →∞ then the estimator ϑ∗ε is
strongly consistent:

lim
ε→0

ϑ∗ε = ϑ Pϑ − a.s.

We have constructed, similarly to Küchler and Vasiliev
(2006), sequential estimators for the parameters ϑ from
the sets Θ and Θ∗ in the both our examples as a linear
combinations of estimators of the type (13), (14) (and of
the type Novikov (1971), Liptzer and Shiryaev (1977) for
the one-parametric case Θ4). Namely, we have defined the
sequential estimation plans (Ti(ε), ϑi(ε)), i = 1, 4 for each
of the regions Θ1,Θ2,Θ3,Θ4 separately in Example I and
the sequential plans (T ∗i (ε), ϑ∗i (ε)), i = 1, 3 for the regions
Θ∗

1,Θ
∗
2,Θ

∗
3 in Example II. Then, because in general it is

unknown to which region the parameter ϑ belongs to, we
define the sequential plans (T (ε), ϑ(ε)) of estimation ϑ ∈ Θ
and (T ∗(ε), ϑ∗(ε)) of estimation ϑ ∈ Θ∗ as combinations of
all defined above estimators respectively by the formulae

T (ε) = min(T1(ε), . . . , T4(ε)),
ϑ(ε) = χ1(ε)ϑ1(ε) + . . . + χ4(ε)ϑ4(ε),

where χi(ε) = χ(T (ε) = Ti(ε)), i = 1, 4, χ(a = b) =
1, a = b; 0, a 6= b and

T ∗(ε) = min(T ∗1 (ε), T ∗2 (ε)), T ∗3 (ε)),
ϑ∗(ε) = χ1(ε)ϑ∗1(ε) + χ2(ε)ϑ∗2(ε) + χ3(ε)ϑ∗3(ε).

Both the obtained general estimators have the proper-
ties of estimators from the Definition (D). Moreover, all
the rates of increase of the observation periods T (ε) and
T ∗(ε) in the almost sure sense are obtained.
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