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Abstract: The shimmy phenomenon is a self-excited limit cycle oscillation occurring in many physical 
rolling systems, particularly in aircraft nose landing gears (NLG). This paper presents a new active 
damping controller developed in the context of the European DRESS (“Distributed and Redundant 
Electro-mechanical nose gear Steering System”) project for avoiding the shimmy oscillation. The 
controller based on the direct adaptive control approach, consists of two terms: the fuzzy adaptive term 
approximates the feedback linearization control law, and the stabilizing control term compensates the 
structural modelling error. The closed-loop system stability is proven by using Lyapunov theory. 
Simulation results corresponding to different test scenarios show that the proposed controller is able to 
effectively damp the shimmy phenomenon. 

 
1. INTRODUCTION 

The shimmy phenomenon is the self-excited oscillation of a 
wheel about its vertical steering axis, which may occur in 
many physical rolling systems such as aircraft nose wheels, 
automobiles, motorcycles… Shimmy is a violent and possibly 
dangerous vibration that can cause system malfunctions or 
even damages. In order to increase the understanding of this 
phenomenon on aircraft nose landing gears (NLG), 
researchers have elaborated different shimmy models. The 
developed shimmy models are mainly based on different 
ways of modelling the elasticity of tires, which plays a 
fundamental role in this dynamics (Stépán, 1991; Somieski, 
1997; Sura and Suryanarayan, 2004). These models allow to 
analyse the stability and the response of shimmy oscillation, 
and to synthesize shimmy dampers. A classical solution to 
avoid shimmy is to increase the stiffness of the NLG by 
changing its material, and to increase the damping constant 
by using, for instance, additional passive dampers. One of the 
main drawbacks of passive damping solutions is that the 
damping characteristics may vary under changing load 
conditions or ground-tire interfaces. Recently, active shimmy 
damping approaches have been researched, and solutions have 
been proposed.  Basically, active shimmy damping solutions 
rely on the use of sensors measuring the NLG behaviours, 
and a feedback control algorithm to calculate damping 
moments generated by an anti-shimmy actuator. Considering 
the control theory point of view, active damping solutions 
would increase the system performances because damping 
moments are generated based on feedback measurement 
signals corresponding to real operating conditions. 

Different control approaches have been employed in active 
damping solutions, depending on the models of the oscillatory 
phenomena. If the oscillatory system can be described by a 
linear second order model, simple methods such as velocity 
feedback control, PD control, or linear filter could be adopted 
to adjust the damped ratio of the system (Houlston, et al., 
2007; Høgsberg and Krenk, 2006). Modern control theories 

such as optimal control, adaptive control, robust control, fuzzy 
control or neural networks have recently been used to design 
damping controllers for more complex oscillatory systems 
(Choi and Han, 2003; Kawabe et al., 2006).  

Although many works are related to active damping, less 
works concern active shimmy damping.  In (Brewer and 
Skele, 1975), a feedback signal proportional to the angular 
velocity of the NLG wheel is used to control the hydraulic 
actuator pressure. Switching control method is applied to 
stabilize the NLG dynamics in (Zefran and Burdick, 1998). 
Goodwine and Stépán (2000) suggested a control algorithm 
for a simple nonlinear model of the NLG based on the 
feedback linearization law. One drawback of the above 
solutions is that the control designs are based on a nominal 
shimmy model. For that reason, the control performances 
may change if the system parameters are time-varying, e.g. 
the vertical load or the tire dynamics.  

Recently, adaptive control of nonlinear systems using neural 
networks and fuzzy systems has been strongly developed, not 
only in theory, but also in applications. This control approach 
is able to cope with uncertainties and time-varying dynamics, 
so it is a potential solution to the active shimmy damping 
problem. With this motivation, in the framework of the FP7 
supported European DRESS project, an adaptive controller is 
developed to actively damp the shimmy phenomenon in 
aircraft NLGs. In fact, the aim of the DRESS project is to 
investigate not only new active shimmy damping solutions, but 
also new NLG steering system using electro-mechanical 
actuators to improve the competitiveness and aircraft safety. In 
this paper, a direct adaptive fuzzy active damping solution is 
discussed. The rest of this paper is organized as follows. In 
section 2, a NLG model is developed for control design. 
Section 3 briefly summarizes a direct adaptive fuzzy control 
algorithm. Section 4 presents the design of the active damping 
controller and the simulation results corresponding to different 
test scenarios. Finally, section 5 concludes this paper. 
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2. THE DYNAMICS OF THE SHIMMY PHENOMENON 

In this paper, the simplified NLG model presented in 
(Somieski, 1997) is further developed for active damping 
design by integrating an actuator. The considered system 
consists of the mechanical dynamics of the actuator, the 
torsional dynamics of the NLG, and the forces and moments 
describing the tire’s elasticity. The diagram of this model is 
illustrated in figure 1. 

 

Fig. 1. Nose landing gear model 

2.1 Nonlinear mathematic model 

The input to the model is the control torque u provided by an 
actuator, and the output of the model is the angle ψw of the 
wheel about its vertical rotating axis. Suppose that the link 
between the actuator and the turning tube is rigid, this means 
that the angle of the actuator output ψa is equal to the angle 
of the turning tube. Applying Newton’s second law to the 
rotating movements of the actuator and the NLG leads to the 
following equations: 

  21 MMBuJ aaaa −−−= ψψ &&&   (1) 
  4321 MMMMJ wz +++=ψ&&    (2) 

where Ja and Jz are the moments of inertia of the actuator and 
of the NLG, Ba is the viscous friction constant of the actuator, 

)(1 wacM ψψ −=  is the torsional moment provided by the 
torque link, )(2 wakM ψψ && −=  is the damping moment from 
viscous friction in the bearings of the oil-pneumatic shock 
absorber, M3 is the tire moment caused by the lateral tire 
deformations due to side slip, and M4 is the tire damping 
moment related to the yaw rate. The following equations 
summarize the nonlinear characteristics of the tire, which are 
discussed in detailed in (Somieski, 1997). 
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where Mz is the self-aligning torque, Fy is the side force, Fz is 
the vertical force, v is the aircraft ground speed, yl is the 
lateral displacement of the leading contact point of the tire, α 
is the slip angle of the wheel, e is the caster length, a is half 
of the contact length, and cFα, cFα, κ, δ, αg, σ  are constants as 
defined in (Somieski, 1997). 

It is important to note that there are two nonlinearities in the 
model related to the elasticity of the tires.  These 
nonlinearities may cause a limit cycle in the system. For this 
reason, the NLG is rather difficult to control. 

2.2 State space representation 

To design the adaptive damping controller, the state space 
representation of the NLG model is needed. By choosing the 
state variables wx ψ=1 , wx ψ&=2 , lyx =3 , ax ψ=4 , 

ax ψ&=5 , the nonlinear dynamics presented above can be 
expressed as:  
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The output of the system is y =ψw=x1. Consecutively taking the 
derivatives of the output leads to Equ. (12): 
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Substituting the derivatives of the state variables in (9) into 
(12), it is obvious that the input u appears on right hand side 

vertical force Fz 

caster e

tire 

half contact length a swivel axis 

torque link 

taxiing 
velocity V 

tire side force Fy

M1, M2 
spring+damping moments 

king pin 
yaw angle ψw 

slip angle α 
tire+gyroscopic+tread width 
moments Mz, M3, M4 

control torque u 

Jz 

Ja 
actuator 

V 

turning tube  

sliding tube  
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of the result. This means that the system has the relative 
degree of 3, and can be described by the following equation: 

  uxbxay ).()( +=&&&  (13)  

where x = [x1, x2,…, x5]T is the system’s state vector, a(x) and 
b(x) are nonlinear functions. The explicit descriptions of the 
two nonlinear functions can be obtained after some 
mathematical manipulations. However, even if the exact 
expressions are calculated, they might not well describe the 
dynamics of the system when it is operating, because of time-
varying parameters such as vertical force or tire 
characteristics. For that reason, a(x) and b(x) are considered 
as unknown functions, and adaptive control theory is adopted 
to cope with this uncertainty. 

3. DIRECT ADAPTIVE FUZZY CONTROL 

3.1 Control strategy 

Consider the class of SISO nonlinear systems described by 
the following state equation: 

 




=
+=

)(
)()(

xhy
uxgxfx&

 (14) 

where x = [x1, x2,…, xn]T∈ℜn, u∈ℜ, y∈ℜ are respectively the 
system states, input and output; f(x)∈ℜn, g(x)∈ℜn, h(x)∈ℜ 
are smooth functions describing the dynamic of the system. If 
the system has the relative degree of r (r ≤ n), then its output 
can be expressed as (Sastry and Bodson, 1989): 

 uxbxay r )()()( +=  (15) 

where )()( xhLxa r
f=  and 0)()( 1 ≠= − xhLLxb r

fg . The notation 
)(xhL f  is the Lie derivative of the function h(x) with respect 

to f(x).  

The objective is to design a feedback control law to drive the 
system output y tracking a reference output ym. With the 
assumptions that all the states of the system are measurable 
and available for feedback, and the reference output ym(t) and 
its derivatives up to the rth order are measurable and 
bounded, the mentioned control objective can be met by 
applying the feedback linearization control law (Spooner and 
Passino, 1996): 
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Hurwitz. It is not difficult to prove that the closed-loop 
system with the control law (16) is stable and the output error 
asymptotically approaches zero.  

Assume that the functions a(x) and b(x) describing the system 
dynamics are unknown; the ideal control law cannot be 
implemented. Instead, the control law (16) is approximated 
by a universal approximator of the following form: 

 )(),(ˆ xxu T ξθθ =  (17) 

where ξ(x) is the basic function vector and θ is the parameter 
vector. In principle, any type of universal approximator can be 
used to implement (17). In this work, however, a fuzzy model 
is employed because it is possible to integrate human 
knowledge to define the basic function vector by choosing the 
membership functions. The fuzzy model consists of fuzzy rules 
of the following form: 

If 1x  is Fi1 and  … and nx  is Fin then iu θ=ˆ   (18) 

where Fij is the fuzzy set of the state variable j used in rule i 
(i=1..n, j=1..m). Using product norm to implement and 
operation, and weighted average method for defuzzification, 
the output of the fuzzy system (18) can be expressed in the 
form (17) with T
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where µij(xj) is the membership function of the fuzzy set Fij. 
The parameter vector θ is updated online so that the 
approximation error between û  and u* is minimal. Define the 
optimal parameter vector as: 

 |})(|sup{minarg ** uxT

x
−= ξθθ

θ
 (20) 

It is proven that the fuzzy system (18) can approximate 
smooth nonlinear functions with arbitrary small error if the 
number of fuzzy rules is large enough (Kosko, 1994). In 
general cases, û  is not identical to u* even when θ →θ*. Let 
δu(x) the structure error, the ideal control law can be expressed: 

 )()()( ** xxxu u
T δξθ +=  (21) 

The difference between the identified control and the ideal 
one is: 

 )()(~)()(ˆ * xxxuxu u
T δξθ −=−  (22) 

where ∗−= θθθ~  is the parameter error. 

Because of the structure error, an additional stabilizing 
control term us is used to compensate the modelling error and 
to make sure that the closed-loop system is stable. As a 
result, the final control law is of the form:   

 suuu += ˆ  (23) 

The block diagram of the controller is illustrated in figure 2. 
The parameter update law and the stabilizing term are 
discussed in detailed in the stability analysis below. 
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Fig. 2. Direct adaptive fuzzy controller. 

3.2 Stability analysis 

To prove the stability of the close-loop system, the following 
assumptions are required: 

Assumption 1: b(x) is finite and bounded away from zero, and 
its sign is unchanged. For simplicity the proof below only 
considers the case b(x)>0, but we have similar result when 
b(x)<0. Assume that b(x) satisfies ∞<≤≤< bxbb )(0 . 

Assumption 2: The derivative of b(x) is bounded, meaning 
that it exists a positive constant Db so that bDxb ≤|)(| & . 

Assumption 3: The structure error is bounded, meaning that 
there is a constant uδ  so that uu x δδ ≤)( . 

The rth derivative of the output error is: 
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Substituting se  into (24) leads to:  

  su
T

ss bubbee −+−=+ δξθη ~
&   (25) 

Consider the Lyapunov candidate function:  
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where Q∈ℜd×d (d=dimθ) is a positive definite matrix. Take 
the derivative of V with respect to time and notice that 
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Chose the parameter update law to cancel the parameter error 
as follow:  

   seQ ξθ 1−=&    (28) 

Substitute the update law (28) into (27), we have: 
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Chose the stabilizing control as follow:    

  )sgn(
2 2 ss

b
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+= δ  (30) 

Substitute (30) into (29), and notice that sss eee =)sgn( , we 
have: 

    0
2

≤−≤
b
eV sη&  (31) 

Since V is a quadratic function and 0≤V& , the control system 
is proven to be stable. It is clear that V∈L∞, which implies 
es∈L∞ and ∞∈Lθ~ . Because of the assumptions 1-3 and 
es∈L∞, from (30) we infer us∈L∞ , and consequently, from 
(25) we have ės∈L∞. From the definition of es, we have 

sj
j

o esGe )()( = , where Gj(s) = s j/∆(s) (j=1,…,r−1), and Gj(s) 
is stable because ∆(s) is Hurwitz, so ∞∈L)( j

oe  (j=1,…,r−1). 
This means the output error and its derivatives up to (r−1)th 
order are bounded. From (31) we can infer: 
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VVdtVdt
b
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which implies that es∈L2. Because es∈L2∩L∞ and ∞∈Lse& , by 
Barbalat’s lemma (Satry and Bodson, 1989) we conclude that 

0)(lim =∞→ test ,  and consequently 0)(lim =∞→ teot . This 
means that the system output asymptotically approaches to 
the desired output. 

4. ACTIVE SHIMMY DAMPING DESIGN AND 
RESULTS 

4.1 Controller design 

The active shimmy damping controller for an aircraft NLG is 
designed on the direct adaptive fuzzy control algorithm 
discussed in the previous section. Suppose that the system 
moves straight forward, then the reference output ym can be 
set to zero for the problem of shimmy damping. The 
following section details the design of the active damping 
controller corresponding to the NLG parameters given in 
(Somieski, 1997), and the actuator parameters chosen as Ja = 
0.1 kg·m2, and Ba = 0.1 N·m/rad/s. 

Tracking error. As presented in section 2, the considered 
NLG model is a 5th order nonlinear system with the relative 
degree of 3. The tracking error is es(t) = ëo + k1ėo + k2eo, with 
k1 = 100, k2 = 25. 

Fuzzy system. Three Gaussian membership functions for state 
variable x1, and two membership functions for each other 
state variables have been designed. The membership 
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functions are uniformly distributed in the range ),( ii xx−  for 
each state variable, with 10/1 π=x , π=2x , 1.03 =x , 

10/4 π=x , and π=5x . The fuzzy system consists of 48 rules 
of the form (18). 

Stabilizing control term. From the mathematical description 
of the NLG discussed in section 2, it is easy to verify that 

za JJkxb =)( . Suppose that the uncertainty of the 
parameters is 10%, the lower bound of b(x) can be calculated 
as 38.74=b . In the ideal case: 0)( =xb& , because b(x) is 
constant for the considered plant. However, the plant’s 
parameters may be slowly time-varying, so we can assume 
that |)(| xb&  is bounded by a small constant. In this design, we 
choose Db=1. The last parameter needed to calculate us is the 
bound uδ  of the structure error. Because the fuzzy model 
defined above is flexible enough, uδ  is chosen to be small to 
limit the chattering phenomenon, which may occur in the 
switching stabilizing control signal.  

4.2 Simulation results 

To illustrate the performance of the proposed shimmy 
damping controller, simulations have been done with three 
different test scenarios.  

Scenario 1: Constant ground speed, pulse disturbance. In this 
simulation, the system is supposed to have a constant ground 
speed of v =80m/s, and the disturbance is a torque pulse of 
1000Nm during 0.1 second acting directly on the vertical axis 
at the wheel level. If the damping constant of the NLG is low, 
e.g. k=10N·m/rad/s, shimmy oscillation occurs. Figure 4 
shows the shimmy oscillation considering that the turning 
tube is strictly kept at zero position; the oscillation is even 
more drastic in the case of free castoring. Figure 5 shows the 
response of the NLG with the active damping controller in 
action. It is obvious that no shimmy appears, and the 
oscillation is damped within two cycles. However, as the 
figure reveals, there is a small bias angle when the 
disturbance remains; the wheel angle only returns to its 
original position when the disturbance disappears. This 
behaviour of the proposed active damping controller is quite 
similar to what of current passive shimmy damping solutions. 
Notice that the main purpose of the designed controller is not 
to drive the wheel, but to avoid the shimmy oscillation. For 
that reason, the control algorithm just requires the maximum 
torque of about 500Nm to effectively prevent the oscillation, 
while the disturbance magnitude is 1000N·m. In fact, it is 
possible to choose the design parameters of the adaptive 
controller so that the wheel angle will return to its zero 
position even when the disturbance exists, but in this case the 
control torque must be larger than the disturbance.  

Scenario 2: Constant ground speed, random disturbance. 
The purpose of this test is to investigate the effect of the 
shimmy active damping controller while the NLG is used at 
maximum speed, and considering the influence of the 
roughness of the runway on the tire. This aspect is modelled 
by a random  disturbance, which is a white noise with zero 
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Fig. 4. Shimmy caused by a pulse disturbance 
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Fig. 5. Active shimmy damping result (scenario 1) 
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Fig. 6. Shimmy caused by random disturbances 
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Fig. 7. Active shimmy damping result (scenario 2) 
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mean and standard deviation of 100N·m. Without any 
shimmy damper, this disturbance causes shimmy oscillation 
(figure 6). With the proposed active damping controller, as 
shown in figure 7, shimmy does not occur and the variation 
of the wheel angle is very small (less than 0.2 degrees). In 
practice, this small variation cannot cause any damage or 
malfunction to the NLG. 

Scenario 3: Variant ground speed, random disturbance. This 
test is to investigate the behaviour of the NLG when the system 
is under varying speed conditions. This simulation has been 
performed with the forward velocity v changing from 0 to 
80m/s with an acceleration of 4.9m/s2. The disturbance is a 
white noise as discussed above. Figure 8 shows the 
simulation result with the active shimmy damping controller 
in action, there is no shimmy occurs. Notice that the variation 
of the wheel angle at low speed is larger than at high speed, 
meaning that the influence of the forward acceleration on the 
behaviour of the NLG is stronger at low speed. This is 
because the tire damping moment M4 is more sensitive to the 
acceleration when the forward velocity is low.  
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Fig. 8. Active shimmy damping result (scenario 3) 

5.  CONCLUSIONS 

The paper showed a first attempt at designing an active 
shimmy damping controller based on direct adaptive fuzzy 
approach for an aircraft NLG. The proposed controller, which 
consists of an adaptive term and a stabilizing term, is designed 
based on Lyapunov stability theory. The adaptive term is 
implemented by a fuzzy system with tuneable parameters. 
Simulation results show that the designed controller can 
effectively avoid shimmy phenomenon in test scenarios with 
different disturbance forms and forward velocity profiles. The 
main drawback of the proposed active damping solution is that 
the control algorithm needs to feedback all the state variables. 
Nevertheless, this requirement might not be met in some 
practical cases. Shimmy active damping using output feedback 
adaptive control will be considered in the future.  
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