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Abstract: In the context of aircraft, shimmy is an oscillatory phenomenon of the landing gear
mainly due the tire dynamics and the landing gear structural dynamics. This phenomenon,
which can result in severe structural damages of the landing gear, is here actively damped by an
indirect fuzzy adaptive controller. The difficulties to model the ground/wheel interface require
the use of an adaptive controller that can modify its behavior in accordance with the plant
dynamics. Thus, the proposed controller uses a fuzzy system to estimate the plant dynamics,
and then implements this estimate to generate the control law. Based on Lyapunov’s theory,
it is shown that the proposed adaptive control solution guarantees that the tracking errors
will asymptotically converge to zero even if approximation errors appear in the estimation.
Simulation results show that the proposed control law creates a realistic control input which
properly damps the oscillations. This work is supported by the European DRESS project
(Distributed and Redundant Electromechanical nose gear Steering System).

1. INTRODUCTION

Shimmy, the lateral vibration of towed wheel, is a well-
known example of self-excited nonlinear oscillation. This
phenomenon is influenced by many parameters, from the
landing gear structure to the tire properties. It induces
oscillations responsible for severe damages of the landing
gear. The intimate relation between tire mechanics and
shimmy problems is well known, but it is troublesome due
to the difficulties of modeling the tire. However, in the
available literature, an important number of models have
been developed to describe shimmy phenomena. These are
based on different ways of modeling the elasticity of tires
Somieski [1997], Stépán [1991].
Because of the risk of landing gear damages, different so-
lutions have been proposed to damp the unstable shimmy
oscillations. Classical solutions suggest to improve the sta-
bility by modifying the nose landing gear (NLG) Besselink
[2000] (adding masses to change the gravity center, in-
creasing the damping constant with a shimmy damper,
...). One of the main drawbacks of such passive damping
solutions is that the damping characteristics may vary un-
der changing load conditions or ground/wheel interfaces.

Recently, active damping solutions have been investigated
for general oscillated systems and different possibilities
have been studied. First, simple controllers such as PD
controllers are developed to damp oscillation of linear
second order type systems Houlston et al. [2006]. After-
ward, modern control theories such as optimal control,
adaptive control, robust control and fuzzy controller or
neural networks have been used to design damping con-
troller for more complex oscillatory systems . Concerning
active shimmy damping of the NLG, only a few papers are
available in the literature Goodwine and Stépán [2000].

This work presents a controller using the feedback lin-
earization method. However, the applicability of feedback
linearization is limited due to the requirement of a detailed
knowledge of the system in order to synthesize a precise
nonlinear controller. To cope with the drawbacks of feed-
back control, an adaptive nonlinear control is proposed.
These types of algorithms have had an important interest
over the last years and recently, the theory of fuzzy logic
has been incorporated in the conventional adaptive control
solution. Two approaches could be distinguished in the
design of a fuzzy adaptive controller: direct or indirect
solutions. For the direct solution, the fuzzy system is
adjusted directly to ensure the control objectives, while the
indirect adaptive approach uses fuzzy systems to estimate
the plant dynamics and then calculate the control law
Spooner and Passino [1996].

In this paper, an indirect fuzzy adaptive controller is
described to perform an active damping of the NLG
shimmy phenomenon. First, the difficulties to model the
tire and its nonlinearities induced at the ground/wheel
interface explain the use of a fuzzy system to estimate the
plant dynamics. Secondly, the particularities of the model,
with a constant and independent state control gain, enable
to use the indirect adaptive solution without apparition of
singularities.

This paper is organized as follows: the nonlinear NLG
model is described in Section 2. Section 3 presents the
fuzzy system and the adaptive control algorithm with its
respective stability analysis. Simulation results with the
proposed control solution are shown in Section 4. Finally,
some concluding remarks are given in Section 5.

This work is supported by the European DRESS project
(Distributed and Redundant Electromechanical nose gear
Steering System). The goal of this project is to research,

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15058 10.3182/20080706-5-KR-1001.0615



develop and validate a distributed and redundant electrical
steering system technology for an aircraft nose landing
gear, that will provide improved competitiveness and im-
proved aircraft safety. One of the objective of the DRESS
project, in direct link with this paper, is to analyse the
impact of the new electrical steering system on the shimmy
phenomenon and to study the different method of shimmy
damping.

2. DYNAMICS OF THE SHIMMY PHENOMENON

In this paper, the simplified NLG model presented in
Somieski [1997] is further developed for active damping
design by integrating an actuator. The considered system
consists of the mechanical dynamics of an actuator, the
torsional dynamics of the NLG, and the forces and mo-
ments describing the tire’s elasticity. The diagram of this
model is illustrated in figure 1:

vertical force Fz

actuator

control torque u

Ja

caster e

torque link

Jz

taxiing velocity V tire

half contact length a

sliding tube

turning tube

spring+damping moments (M1,M2)

V

king pin

tire+gyroscopic+tread width moments (Mz,M3,M4)

e tire side force Fy

yaw angle ψw

slip angle α

Fig. 1. Nose Landing Gear model as presented by Somieski
[1997]

2.1 Nonlinear mathematical model

The input of the model is the control torque u that
must be provided by an actuator, and the output of the
model is the angle ψw of the wheel about its vertical
rotating axis. Let us suppose that the link between the
actuator and the turning tube is rigid, this means that the
angle of the actuator output ψa is equal to the angle of
the turning tube. Applying Newton’s second law to the
rotating movements of the actuator and the NLG leads to
the following equations:

{

Jaψ̈a = u−Baψ̇a −M1 −M2

Jzψ̈w = M1 +M2 +M3 +M4
(1)

where M1 = ks(ψa−ψw) is the torsional moment provided

by the torque link, M2 = kd(ψ̇a − ψ̇w) is the damping

moment from viscous friction in the bearings of the oil-
pneumatic shock absorber, M3 is the tire moment caused
by the lateral tire deformations due to side slip and M4

is the tire damping moment related to the yaw rate,
Ja is the inertia of the actuator, Jz is the inertia of
the NLG and Ba is the viscous friction constant of the
actuator. The following equations summarize the nonlinear
characteristics of the tire, which are discussed in detail in
Somieski [1997]:

M3 = Mz − eFy (2)

Fy =

{

cFααFz

cFαδFzsign(α)
for |α| ≤ δ
for |α| > δ

(3)

Mz =







cMαFz

αg

180
sin

(

180

αg

α

)

0

for |α| ≤ αg

for |α| > αg
(4)

M4 =
κ

v
ψ̇ (5)

ẏl +
v

σ
yl = vψw + (e− a)ψ̇w (6)

α ≈ arctanα =
yl

σ
(7)

where Mz is the self aligning torque, Fy is the side force,
Fz is the vertical force, v is the aircraft ground speed, yl is
the lateral displacement of the wheel and α is the slip angle
of the wheel, e is the caster length, a is half of the contact
length and cfα

, cMα
, κ, δ, αg, σ are constants defined in

Somieski [1997].

It is important to note that there are two nonlinearities
in the model related to the elasticity of the tires. These
nonlinearities may cause limit cycles in the system. Hence,
the nose landing gear is rather difficult to control.

2.2 State space representation

The state space representation of the nose landing gear
model is needed to design the adaptive damping controller.
By choosing the state variables x1 = ψw, x2 = ψ̇w, x3 = yl,
x4 = ψa, x5 = ψ̇a and considering the control torque u,
the nonlinear dynamics presented above can be expressed
as:






































ẋ1 = x2

ẋ2 =
ks(x4 − x1)

Jz

+
kd(x5 − x2)

Jz

+ f1(x3) + f2(x2)

ẋ3 = vx1 + (e− a)x2 −
v

σ
x3

ẋ4 = x5

ẋ5 = −
Bax5

Ja

−
ks(x4 − x1)

Ja

−
kd(x5 − x2)

Ja

+
1

Ja

u

(8)

where:

f1(x3) =
M3(α)

Jz

=
M3(yl/σ)

Jz

(9)

f2(x2) =
M4(ψ̇w/v)

Jz

(10)

The output of the system is y = ψw = x1. Then, the third
derivative of the output is:

y(3) =
ks(ẋ4 − ẋ1)

Jz

+
kd(ẋ5 − ẋ2)

Jz

+ · · ·

· · · + ḟ1(x3)ẋ3 + ḟ2(x2)ẋ2

(11)
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Substituting the derivatives of the state variables (8) into
(11), it is obvious that the input u appears on the right
hand side of the result. This means that the system has the
relative degree of 3, and can be described by the following
equation:

y(3) = a(x) + b(x)u (12)

where x = [x1, x2, . . . , x5]
T is the system’s state vector,

a(x) and b(x) are nonlinear functions. The explicit descrip-
tions of these two nonlinear functions can be obtained after
some mathematical manipulations. However, even if the
exact expressions are calculated, they might not accurately
describe the dynamics of the system when it is operating,
because of time-varying parameters such as vertical force
or tire characteristics. For this reason, a(x) is considered
as an unknown function.

3. INDIRECT FUZZY ADAPTIVE CONTROL

3.1 Problem formulation

Let us consider the class of SISO nonlinear systems de-
scribed by the following state equations:

{

ẋ = f(x) + g(x)u
y = h(x)

(13)

where x = [x1, x2, ..., xn]T ∈ ℜn, u ∈ ℜ and y ∈ ℜ
are respectively the system states, input and output;
f(x) ∈ ℜn, g(x) ∈ ℜn and h(x) ∈ ℜ are smooth functions
describing the dynamic of the system. If the system has
the relative degree of r (r ≤ n), then its output can be
expressed Sastry and Bodson [1989]:

y(r) = a(x) + b(x)u (14)

where a(x) = Lr
fh(x) and b(x) = LgL

r−1
f h(x) 6= 0 such

that Lfh(x) is the Lie derivative of the function h(x)
with respect to f(x). Moreover, the particularity of the
Somieski’s model is seen while developing equation (11).
It is possible to formulate the control gain B by a constant
value:

B =
kd

JaJz

(15)

The control gain is thus independent of the state variables.
Considering this constant, equation (14) is simplified and
becomes:

y(r) = a(x) +Bu (16)

The aim is then to design a feedback control law to drive
the system output y tracking a given reference output
ym Spooner and Passino [1996], considering the following
assumptions: all the states of the system are measurable
and available for feedback, the reference output ym(t) and
its derivatives up to the rth order are measurable and
bounded. In this study, a(x) is an unknown nonlinear
function which must be estimated to calculate the feedback
linearization control law. In this situation, fuzzy system
enables to find an estimation of this unknown function.

3.2 Fuzzy system

In this paper, a MISO (multi input, single output)
fuzzy logic system mapping from an input vector x =
[x1, x2, ..., xn]T ∈ ℜn to an output â(x) ∈ ℜ is considered.
Let F ki

i , ki = 1, ..., pi, be the fuzzy sets defined on the
ith input. Using the standard fuzzy systems Passino and
Yurkovich [1998], the fuzzy logic system is characterized

by a set of P =
n
∏

i=1

pi fuzzy rules R1, ..., RP such that:

Rk : If(x1 is F
k1

1 and ... andxn is F
kn

n ) then ck (17)

where ck is the crisp output for the kth rule.
Using product norm to implement the and operation, and
weighted average method for defuzzification, the output of
the fuzzy system can be expressed as:

â(x) =

P
∑

i=1

ciµi(x)

P
∑

i=1

µi(x)

(18)

where µi =
n
∏

k=1

µF ki

i

(xk), ki ∈ 1, 2, ..., pi. Moreover,

µF ki

i

(xk) is the membership function of the fuzzy set F ki

i

and is a Gaussian function.
Moreover, (18) can be expressed by:

â(x) = cT ς (19)

where cT := [c1 . . . cP ] and ςT := [µ1 . . . µP ] /
[

∑P
i=1 µi

]

.

The unknow function a(x) can be formulated by:

a(x) = c∗T ς + d(x) (20)

where d(x) is the optimal approximation error of a(x) by
the fuzzy system and c∗ is the best value of the parameter
c:

c∗ := arg min
c

[

sup
x

∣

∣cT ς − a(x)
∣

∣

]

(21)

We can thus prove that the fuzzy system (17) can approx-
imate a smooth nonlinear function with arbitrary small
error if the number of fuzzy rules is large enough Kosko
[1994].

The parameter error vector φ(t) represents the difference
between the current estimated parameter and the best
value of this parameter and is defined by:

φ(t) = c(t) − c∗. (22)

3.3 Fuzzy adaptive control

The adaptive solution consider in this paper is represented
in figure 2. This algorithm uses the following adaptive
control law:

u = uce + usi (23)

where the “certainty equivalence” control term uce is used
to estimate the feedback linearization control term. The
“sliding mode” control term usi enables to overcome the
modeling error due to the limited number of fuzzy rules.
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L(s)

Sliding mode
δa

B
sign(es)
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uceCertainty eq.

1
B

(−â(X) + ν)

â(X)

θ̇a = −Q−1
a ςaes

Update law

Fuzzy system

â(X) = θT
a ςa

u

X

ςa

Plant

y(r) = a(X) + Bu

θa

Fig. 2. Indirect Fuzzy Adaptive control Scheme

Certainty equivalence control term The “certainty equiv-
alence” control term is defined by:

uce =
1

B
(−â(x) + υ) (24)

where υ(t) := y
(r)
m + ηes + ēs and ēs := ės − e

(r)
o .

The tracking error is defined as es := kT e with e :=

[e0 ė0 . . . e
(r−1)
0 ], k := [k0 . . . kr−2 1] and e0 = ym − y.

The elements of k are chosen such that L(s) := sr−1 +
kr−2s

r−2 + . . .+ k1s+ k0 is Hurwitz.

Sliding mode control term The “sliding mode” control
term used in this control law is:

usi =
D

B
sign(es) (25)

It has been chosen to enable the proof of the stability. The
constant D ∈ ℜ is defined such that:

|d(x)| ≤ D (26)

It represents a known bound of the error estimation due to
the fuzzy system. This term is used in this control law to
counteract the modeling error between the real nonlinear
function a(x) and its estimate â(x).

Adaptation Algorithm The estimation of the function
â(x) needs to be updated to follow the right function.
Then, the following fuzzy system update law is chosen:

ċ(t) = −Q−1ςes (27)

with Q a square positive semidefinite matrix.

3.4 Lyapunov stability

Aeronautical constraints are very strict and it is funda-
mental to be assured that the control solution is stable.
The properties of the indirect fuzzy adaptive controller
are presented in the following theorem.

Theorem 1. Stability and tracking error results:
Considering the system defined in (16) and assuming the
following assumption:

A1 : the error estimation due to the fuzzy system is
bounded (Equation (26)).

It can be concluded that:

C1 : the plant output and its derivatives up to (r-1) order
are bounded.

C2 : the control signal is bounded.
C3 : the output error e0 will converge to zero.

Proof.

The r-derivative of the output error can be written as:

e
(r)
0 = y(r)

m − y(r)

= y(r)
m − a(x) −B(uce + usi)

=−a(x) + â(x) − ηes − ēs −Busi (28)

The tracking error equation becomes:

ės + ηes =−Busi − a(x) + â(x)

=−Busi + (φT ς − d(x)) (29)

Considering the Lyapunov function candidate:

V =
1

2
e2s +

1

2
φTQφ (30)

where Q ∈ ℜd×d (d=dimφ) is a positive definite matrix.
Differentiating V (t) with respect to time leads to:

V̇ = −ηe2s −Busies + (â(x) − a(x))es + φTQφ̇ (31)

Considering equations (22) and (27), the derivative of the
parameter error vector becomes:

φ̇ = ċ (32)

Consequently V̇ becomes:

V̇ = −ηe2s −Busies + (â(x) − a(x))es − φT ςes (33)

Equations (20) and (22) enable the following simplifica-
tion:

V̇ = −ηe2s −Busies + (φT ς − d(x))es − φT ςes (34)

Now the assumptions A1 and the definition of usi (equa-
tion 25) allow to write:

V̇ =−ηe2s −Dsign(es)es − d(x)es

≤−ηe2s −Dsign(es)es + |d(x)| |es|

≤ −ηe2s (35)

This means that V ∈ L∞ and by definition of the
Lyapunov function, es ∈ L∞ and φ ∈ L∞.
If Gi(s) is defined by:

Gi(s) =
si

L(s)
(36)
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for i = 0, . . . , r−1, it is simple to show that Gi(s) is stable
because L(s) has its r−1 roots in the open left half plane.
Thus, the error becomes:

e
(i)
0 = Gi(s)es (37)

with es ∈ L∞.

Then, error e
(i)
0 is bounded for i = 0, . . . , r − 1 and e

(k)
0 =

y
(k)
m − y(k), so the conclusion is that y(t), . . . , y(r−1)(t) are

bounded.

As proven above, φ is bounded so the “certainty equiv-
alence” control term is bounded. Moreover, the “sliding
mode” control term is bounded. The conclusion is that u
is bounded.

If equation (35) is used:
∞
∫

0

ηe2sdt ≤ −

∞
∫

0

V dt = V (0) − V (∞) (38)

then es ∈ L2. Moreover previous considerations show that
â(x), φ, d(x) and ς(x) are bounded. From (29) and the
fact that es and usi are bounded, it is obvious that ės is
bounded. Thus, by Barbalat’s Lemma, the tracking error
es will converge to zero and e0 will converge to zero.

4. ACTIVE SHIMMY DAMPING RESULTS

4.1 Controller design

The active damping controller is applied to the NLG
system with the parameters given in Somieski [1997]. The
actuator parameters are chosen such that: Ja = 0.1 kg.m2

and Ba = 0.1Nm/rad/s.

The active shimmy damping controller is designed on the
indirect adaptive fuzzy control algorithm discussed in the
previous sections. For the problem of shimmy damping,
the aim of the control law is to keep the wheel angle at 0◦.
Then, the reference output ym must be set to zero.
The fuzzy system is constructed with 72 rules such that
ψw and ψ̇w are defined with three Gaussian member-
ship functions and the other states are defined with two
Gaussian membership functions. The membership func-
tions are uniformly distributed on the whole range of each
state variable.
The considered NLG model is a 5th order nonlinear system
with a relative degree of 3. Then, the tracking error is
es(t) = ë0 +k1ė0 +k0e0, with k0 = 0.0001 and k1 = 0.014.
The particularity of this algorithm is the use of a constant
value for the control gain. This constant, defined by the

model parameters, is equal to B =
kd

JaJz

= 100. More-

over, the simulation showing that the maximum value of
the estimates â(x) is approximately equal to 10, 000, it
is decided to major the error estimation by 10% of this
maximum value, so D = 1, 000 is obtained.

4.2 Simulation results

To illustrate the performances of the proposed shimmy
damping controller, simulations have been made with two
different test scenarios.

Scenario 1: Constant ground speed, pulse disturbance In
this simulation, the system is supposed to have a speed of
v = 80m/s. The disturbance is a torque pulse of 1000Nm
during 0.1 s acting directly on the vertical axis at the
wheel level. If the damping constant of the NLG is low,
kd = 10Nm/rad/s, shimmy oscillations occur. Figure 3
shows the shimmy oscillations considering that the turning
tube is kept strictly. Figure 4 shows the response of the
NLG with the active damping controller in action. It is
obvious that no shimmy appears, and the oscillation is
damped. However, revealed in figure 4, there is a small bias
angle (1.5◦) during the time the disturbance is applied.
The wheel angle only returns to its original position when
the disturbance torque disappears. Notice that the main
purpose of the designed controller is not to drive the wheel,
but to avoid the shimmy oscillation. The control algorithm
just needs the maximum torque of about 600N.m to
effectively prevent the oscillation, while the disturbance
magnitude is 1000N.m. In fact, it is possible to choose
the design parameters of the adaptive controller so that
the wheel angle will return to its nominal position even
when the disturbance exists, but in this case, the control
torque must be larger than the disturbance.

Wheel Angle (◦)

Disturbance (N.m)

Time (s)

0
0

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

500

1000

-20

20

Fig. 3. Shimmy caused by a pulse disturbance

Wheel Angle (◦)

Control Torque (N.m)

Disturbance (N.m)

Time (s)

0

0

0

0

0

0

0.2

0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.6

0.8

0.8

0.8

1

1

1

-1000

-1000

1000

1000

-2

2

Fig. 4. Active shimmy damping result (scenario 1)

Scenario 2: Constant ground speed, random disturbance
The purpose of this test is to investigate the effect of

the shimmy active damping controller while the aircraft
is running at a maximum speed of 80m/s and considering
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the influence of the roughness of the runway on the tire.
This aspect is modeled by a random disturbance, which is
a white noise with zero mean and standard deviation of
100N.m. Without any shimmy damper, this disturbance
causes shimmy (Figure 5). With the proposed active
damping controller (Figure 6), shimmy does not occur and
the variation of the wheel angle is very small (less than
0.2◦). In practice, this small variation cannot cause any
damage or malfunction to the NLG.

Wheel Angle (◦)

Disturbance (N.m)

Time (s)

0

0

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1
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-20

20

Fig. 5. Shimmy caused by random disturbances
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Control Torque (N.m)

Disturbance (N.m)

Time (s)

0

0

0

0

0

0

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.6

0.8

0.8

0.8

1

1

1

-200

200

-0.2

-500

500

Fig. 6. Active shimmy damping result (scenario 2)

5. CONCLUSION

In this paper, the shimmy, an oscillatory phenomenon
which can induce severe structural damages of an aircraft
landing gear is introduced. The dynamics of the shimmy
phenomenon are modeled according to the mechanical dy-
namics of an actuator, the torsional dynamics of the nose
landing gear, and the forces and moments describing the
tire’s elasticity. To counteract the oscillatory phenomenon,
an active shimmy damping control strategy is developed.
This active solution, based on an indirect fuzzy adaptive
controller enables to well damp the shimmy. This new
solution uses a fuzzy logic system to estimate the unknown
and nonlinear dynamics of the system. Then, the control
solution consists of an adaptive term and a stabilized
term based on the fuzzy estimations. At last, due to the
aeronautical constraints, the stability of the algorithm is
proved by using the Lyapunov theory.

The performances of the indirect fuzzy algorithm are
presented in two particular conditions (pulse disturbance
and random disturbance). The results are satisfying taking
into consideration the achieved damping results.

However, this active damping has two main drawbacks.
First, the tuning of the controller is quite difficult and
the initial conditions of the update law have an important
influence. Moreover, the control algorithm needs to feed-
back all the state variables and this requirement might not
meet some practical cases. In future works, an algorithm
with the feedback of the output of the system must be
considered to enable the active shimmy damping.
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