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Abstract: This paper proposed new approaches to stabilization analysis and H∞ performance
for a class of discrete Takagi-Sugeno (T-S) fuzzy model. The main results given here concern
their H∞ controllers design using PDC-like control laws and nonquadratic Lyapunov functions.
New relaxed conditions and linear matrix inequality-based design methods are proposed that
allow outperforming previous found in the literature. Finally, an example is given to demonstrate
the efficiency of the proposed approaches.

1. INTRODUCTION

Over the past decade, there have been significant re-
search efforts devoted to stability analysis and system-
atic design of fuzzy control law of Takagi-Sugeno(T-S)
fuzzy model(Tanaka & Wang, 2001; Zhou et al, 2005;
Kim & Lee,2000 and reference therein). Some relaxed
stability and stabilization conditions for T-S fuzzy models
were presented to reduce the conservatism of basic condi-
tions(Johansson, Rantzer, & Arzen, 1999). More recently,
a number of works on stability analysis and control syn-
thesis of fuzzy models based on nonquadratic Lyapunov
function has appeared(Choi & Park, 2003; Guerra et al,
2002; Guerra, & Vermeiren, 2004). It was shown that,
with the use of nonquadratic Lyapunov functions, less
conservatism control results can be obtained than with
the use of a single Lyapunov quadratic function(Guerra,
& Vermeiren, 2004; Zhou, Feng, Lam & Xu, 2005). How-
ever, in(Guerra, & Vermeiren, 2004), a common additional
matrix variable is introduced to obtain a PDC control
law, which may be a new source of conservatism. The
other work(Zhou, Feng, Lam & Xu, 2005) developed a H∞

controller based on nonquadratic Lyapunov function with
no relaxtion procedure considered.

This paper focuses on the stabilization and H∞ perfor-
mance of discrete T-S fuzzy models based on a relaxed
approach towards the use of nonquadratic Lyapunov func-
tions and PDC-like control law. A new fuzzy controller
design method is proposed. It is shown that the solution
of the controller design problem can be obtained by solv-
ing a set of linear matrix inequalities(LMIs), which can
be implemented by using MATLAB software. The novel
features of our result are that the Lyapunov function as

⋆ This work was supported in part by the Natural Science Founda-

tion of Hubei Province by Grant 2007ABA361.

well as control law are different from the one used in(Zhou,
Lam & Zheng, 2007), which gives less conservative results.

The organization of this paper is as follows. The problem
formulation and preliminary results are given in section
2. In section 3, The nonquadratic approaches based on
two new Lyapunov functions and corresponding PDC-
like control laws are proposed. Sufficient conditions for
stabilization and H∞ performance are presented, which
will then be employed in section 4 to develop two H∞

controllers. a numerical example is given to illustrate the
effectiveness of the approaches in section 5. Finally, the
remark concluding is made in section 6.

2. PROBLEM FORMULATION AND
PRELIMINARIES

A affine nonlinear system can be represented as a T-S fuzzy
model(Takagi & Sugeno, 1985), which is composed of s
plant rules that can be represented as
Plant rule i: IF ξ1(k) is Wi1 and · · · and ξr(k) is Wir ,
THEN

xk+1 = Aixk + B1iωk + B2iuk

zk = Cixk + D1iωk + D2iuk, i ∈ S = {1, 2, . . . , s}

whereWij is a fuzzy set,ξk=[ξ1(k), . . . , ξr(k)]T is the premise
variable vector,xk ∈ Rnis the state,ωk ∈ Rp is the dis-
turbance input and ωk ∈ l2[0,∞),uk ∈ Rmis the control
input,zk∈Rqis the regulated output, andAi,B1i,B2i,Ci,D1i

and D2iare known matrices with appropriate dimensions.

It is assumed in this paper that the premise variables ξk

does not explicitly depend on the input variable uk and the
disturbance ωk. Given a pair of (xk, uk), the final outputs
of the fuzzy system are inferred as follows
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Σ : xk+1 =
s

∑

i=1

hi(ξk)(Aixk + B1iωk + B2iuk) (1)

zk =
s

∑

i=1

hi(ξk)(Cixk + D1iωk + D2iuk) (2)

with ̟i(ξk) =
∏r

j=1 Wij(ξj(k)); hi(ξk) = ̟i(ξk)
∑

s

j=1
̟j(ξk)

Wij(ξj(k)) is the grade of membership of ξj(k) in Wij . It is
easy to see that ̟i(ξk) ≥ 0,(i ∈ S),

∑s

j=1 ̟j(ξk) > 0,∀k.
Therefore,

hi(ξk) ≥ 0, (i ∈ S)
s

∑

j=1

hj(ξk) = 1 (3)

for all k. In what follows, we will drop the argument of
hi(ξk) for simplicity.

The objective of this paper is to design state feedback
controllers such that the following specifications are met
for controlled discrete T-S fuzzy system Σ.

(Ξ1): The closed-loop system is asymptotically stable
for any fuzzy basis functions {hi}

s
i=1 satisfying (3) with

disturbance-free, i.e.ωk ≡ 0.
(Ξ2): The L2−gain between the exogenous input ωk and
the regulated output zk of the closed-loop system is less
than γ, that is, for any nonzero ωk ∈ l2[0,∞) and zero
initial condition x0 = 0, ‖zk‖2 < γ‖ωk‖2

In the sequel, we will refer system satisfying (Ξ1) and
(Ξ2) to as stable with H∞ norm bound γ. To develop the
required results, the following lemmas are needed.

Lemma 1. (Zhou, Lam & Zheng, 2007): If Pj > 0, then

AT
i PjAl + AT

l PjAi ≤ AT
i PjAi + AT

l PjAl

Lemma 2. (De Oliveira et al., 1999): With matrices of
appropriated dimensions, if there is P > 0, such that

[

−Γ ∗
ΨΦ −Ψ − ΨT + P

]

< 0

then ΦT PΦ − Γ < 0

3. H∞ PERFORMANCE ANALYSIS

In this section, with two approaches, we will give some new
relaxed conditions of stability with H∞ norm bound γ for
the system Σ.

3.1 Approach 1

For this approach, we choose the following PDC-like con-
trol law

uk = −(
s

∑

i=1

hiFi)(
s

∑

i=1

hiPi)
−1xk (4)

where Pi > 0, Fi (i ∈ S) are matrices with appropriate
dimensions. Thus, the closed-loop system of Σ is given by

Σc
1 : xk+1 =

s
∑

i=1

s
∑

j=1

hihj(G
ξ
ijxk + B1iωk) (5)

zk =
s

∑

i=1

s
∑

j=1

hihj(M
ξ
ijxk + D1iωk) (6)

with G
ξ
ij = Ai − B2iFj(

∑s

i=1 hiPi)
−1;Mξ

ij = Ci − D2iFj

(
∑s

i=1 hiPi)
−1

Theorem 1. The closed-loop system Σc
1 is stable with H∞

norm bound γ, if there exist matrices {Pi > 0}i∈S , {Fi}i∈S

and {Qij : QT
ij = Qij}i,j∈S such that

[

(Ḡξ
ij)

T (M̄ξ
ij)

T

BT
1i DT

1i

]







(
s

∑

i=1

h+
i Pi)

−1 0

0 I







[

Ḡ
ξ
ij B1i

M̄
ξ
ij D1i

]

+ Qij

−

[

Pi 0
0 γ2I

]

< 0 (7)









Q11 Q12 · · · Q1s

Q21 Q22 · · · Q2s

...
...

. . .
...

Qs1 Qs2 · · · Qss









> 0 (8)

here Ḡ
ξ
ij = Ai(

∑s

i=1 hiPi) − B2iFj ; M̄
ξ
ij = Ci(

∑s

i=1 hiPi)
−D2iFj

Proof. The considered Lyapunov function is

Vk = xT
k (

s
∑

i=1

hiPi)
−1xk (9)

when ωk = 0, system (5) becomes

xk+1 =
s

∑

i=1

s
∑

j=1

hihjG
ξ
ijxk (10)

By some algebraic manipulations, the increment of Vk

along the solution of (10) is given by

∆Vk|(10) =
s

∑

i=1

s
∑

j=1

s
∑

p=1

s
∑

q=1

hihjhphq

xT
k

{

(Gξ
ij)

T (
s

∑

i=1

h+
i Pi)

−1(Gξ
pq) − (

s
∑

i=1

hiPi)
−1

}

xk

= xT
k

s
∑

i=1

s
∑

j=1

s
∑

p=1

s
∑

q=1

hihjhphq

1

2

{

(Gξ
ij)

T (
s

∑

i=1

h+
i Pi)

−1(Gξ
pq) − 2(

s
∑

i=1

hiPi)
−1

+(Gξ
pq)

T (

s
∑

i=1

h+
i Pi)

−1(Gξ
ij)

}

xk

where h+
i = hi(ξk+1). By lemma 1, one has

∆Vk|(10) ≤ xT
k

s
∑

i=1

s
∑

j=1

s
∑

p=1

s
∑

q=1

hihjhphq

1

2

{

(Gξ
ij)

T (
s

∑

i=1

h+
i Pi)

−1(Gξ
ij) − 2(

s
∑

i=1

hiPi)
−1
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+(Gξ
pq)

T (
s

∑

i=1

h+
i Pi)

−1(Gξ
pq)

}

xk

= xT
k

s
∑

i=1

s
∑

j=1

hihj(
s

∑

i=1

hiPi)
−T

{

(Ḡξ
ij)

T

(

s
∑

i=1

h+
i Pi)

−1Ḡ
ξ
ij − Pi)

}

(

s
∑

i=1

hiPi)
−1xk (11)

It follows from (7) that










(Ḡξ
ij)

T
(

s
∑

i=1

h+
i Pi

)−1
Ḡ

ξ
ij − Pi + (M̄ξ

ij)
T M̄

ξ
ij

BT
1i

(

s
∑

i=1

h+
i Pi

)−1
Ḡ

ξ
ij + DT

1iM̄
ξ
ij

(Ḡξ
ij)

T (
s

∑

i=1

h+
i Pi)

−1B1i + (M̄ξ
ij)

T D1i

BT
1i(

s
∑

i=1

h+
i Pi)

−1B1i + DT
1iD1i − γ2I











+ Qij < 0 (12)

Now partition matrices for all i, j ∈ S conformably with
the first matrix in (12)

Qij =

[

Q
(11)
ij Q

(12)
ij

Q
(21)
ij Q

(22)
ij

]

(13)

Inequalities (12) and (13) imply that

(Ḡξ
ij)

T (

s
∑

i=1

h+
i Pi)

−1Ḡ
ξ
ij − Pi + Q

(11)
ij < 0 (14)

It follows from (11) and (14) that

∆Vk|(10)≤−xT
k

s
∑

i=1

s
∑

j=1

hihj

(

s
∑

i=1

hiPi

)−T
Q

(11)
ij

(

s
∑

i=1

hiPi

)−1
xk

= −xT
k

s
∑

i=1

s
∑

j=1

hihjQ̄
(11)
ij xk

=−









h1xk

h2xk

...
hsxk









T












Q̄
(11)
11 Q̄

(11)
12 · · · Q̄

(11)
1s

Q̄
(11)
21 Q̄

(11)
22 · · · Q̄

(11)
2s

...
...

. . .
...

Q̄
(11)
1s Q̄

(11)
2s · · · Q̄(11)

ss





















h1xk

h2xk

...
hsxk









(15)

here Q̄
(11)
ij = (

∑s

i=1 hiPi)
−T Q

(11)
ij (

∑s

i=1 hiPi)
−1.

By (8) and (13), the following inequality holds













Q
(11)
11 Q

(11)
12 · · · Q

(11)
1s

Q
(11)
21 Q

(11)
22 · · · Q

(11)
2s

...
...

. . .
...

Q
(11)
1s Q

(11)
2s · · · Q(11)

ss













> 0 (16)

Pre-multiplying diag{(
∑s

i=1 hiPi)
−T , (

∑s

i=1 hiPi)
−T , · · · ,

(
∑s

i=1 hiPi)
−T } and post-multiplying diag{(

∑s

i=1 hiPi)
−1,

(
∑s

i=1 hiPi)
−1, · · · , (

∑s

i=1 hiPi)
−1} to (16) gives













Q̄
(11)
11 Q̄

(11)
12 · · · Q̄

(11)
1s

Q̄
(11)
21 Q̄

(11)
22 · · · Q̄

(11)
2s

...
...

. . .
...

Q̄
(11)
1s Q̄

(11)
2s · · · Q̄(11)

ss













> 0 (17)

(15) combines together with (17) implies that system(10)
is stable. Next, our objective is to derive the H∞ norm
bound, i.e.‖zk‖2 < γ‖ωk‖2. Let

JN =
N−1
∑

k=0

(zT
k zk − γ2ωT

k ωk)

For any nonzero ωk ∈ l2[0,∞) and zero initial condition
x0 = 0, one has

JN =
N−1
∑

k=0

(zT
k zk − γ2ωT

k ωk)

=

N−1
∑

k=0

(zT
k zk − γ2ωT

k ωk + ∆Vk|(5)) − VN

where ∆Vk|(5) defines the increment of Vk along system
(5). It is noted that

zT
k zk − γ2ωT

k ωk

= ϕT
k

s
∑

i=1

s
∑

j=1

s
∑

p=1

s
∑

q=1

hihjhphq

{

[

(Mξ
ij)

T

DT
1i

]

[

M ξ
pq D1p

]

−

[

0 0
0 γ2I

]

}

ϕk

∆Vk|(5) = ϕT
k

s
∑

i=1

s
∑

j=1

s
∑

p=1

s
∑

q=1

hihjhphq

{

[

(Gξ
ij)

T

BT
1i

]

(

s
∑

i=1

h+
i Pi

)−1[
Gξ

pq B1p

]

−







(
s

∑

i=1

hiPi)
−1 0

0 0







}

ϕk

where ϕk = [xk ωk]T , then one has

JN ≤
N−1
∑

k=0

ϕT
k

s
∑

i=1

s
∑

j=1

s
∑

p=1

s
∑

q=1

hihjhphq

1

2

{

[

(Gξ
ij)

T (Mξ
ij)

T

BT
1i DT

1i

]







(
s

∑

i=1

h+
i Pi)

−1 0

0 I







[

Gξ
pq B1p

Mξ
pq D1p

]

+

[

(Gξ
pq)

T (Mξ
pq)

T

BT
1p DT

1p

]







(
s

∑

i=1

h+
i Pi)

−1 0

0 I







[

G
ξ
ij B1i

M
ξ
ij D1i

]

−2







(
s

∑

i=1

hiPi)
−1 0

0 γ2I







}

ϕk

By lemma 1, the following inequality holds

JN ≤

N−1
∑

k=0

ϕT
k

s
∑

i=1

s
∑

j=1

s
∑

p=1

s
∑

q=1

hihjhphq

1

2
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{

[

(Gξ
ij)

T (Mξ
ij)

T

BT
1i DT

1i

]







(
s

∑

i=1

h+
i Pi)

−1 0

0 I







[

G
ξ
ij B1i

M
ξ
ij D1i

]

+

[

(Gξ
pq)

T (Mξ
pq)

T

BT
1p DT

1p

]







(
s

∑

i=1

h+
i Pi)

−1 0

0 I







[

Gξ
pq B1p

Mξ
pq D1p

]

−2







(
s

∑

i=1

hiPi)
−1 0

0 γ2I







}

ϕk

=
N−1
∑

k=0

ϕT
k

s
∑

i=1

s
∑

j=1

hihj







(
s

∑

i=1

hiPi)
−T 0

0 I







{

[

(Ḡξ
ij)

T (M̄ξ
ij)

T

BT
1i DT

1i

]







(
s

∑

i=1

h+
i Pi)

−1 0

0 I







[

Ḡ
ξ
ij B1i

M̄
ξ
ij D1i

]

−

[

Pi 0
0 γ2I

]

}







(
s

∑

i=1

hiPi)
−1 0

0 I






ϕk (18)

It follows from (7) and (18) that

JN≤−
N−1
∑

k=0

ϕT
k

s
∑

i=1

s
∑

j=1

hihj







(
s

∑

i=1

hiPi)
−T 0

0 I






Qij







(
s

∑

i=1

hiPi)
−1 0

0 I






ϕk

=−
N−1
∑

k=0









h1ϕk

h2ϕk

...
hsϕk









T







Q̄11 Q̄12 · · · Q̄1s

Q̄21 Q̄22 · · · Q̄2s

...
...

. . .
...

Q̄1s Q̄2s · · · Q̄ss

















h1ϕk

h2ϕk

...
hsϕk









(19)

where

Q̄ij =







(
s

∑

i=1

hiPi)
−T 0

0 I






Qij







(
s

∑

i=1

hiPi)
−1 0

0 I







=











(
s

∑

i=1

hiPi)
−T Q

(11)
ij (

s
∑

i=1

hiPi)
−1 ∗

Q
(21)
ij

s
∑

i=1

hiPi)
−1 Q

(22)
ij











=

[

Q̄
(11)
ij ∗

Q̄
(21)
ij Q

(22)
ij

]

i, j ∈ S

Pre-multiplying diag{(
∑s

i=1hiPi)
−T , I, (

∑s

i=1 hiPi)
−T , I,

· · ·,(
∑s

i=1hiPi)
−T,I},post-multiplying diag{(

∑s

i=1 hiPi)
−1

, I, (
∑s

i=1 hiPi)
−1, I, · · · , (

∑s

i=1 hiPi)
−1, I} to (8) gives









Q̄11 Q̄12 · · · Q̄1s

Q̄21 Q̄22 · · · Q̄2s

...
...

. . .
...

Q̄1s Q̄2s · · · Q̄ss









> 0 (20)

(19) combines with (20) implies that for any N , JN < 0,
which further gives ‖zk‖2 < γ‖ωk‖2, for any nonzero
ωk ∈ l2[0,∞), zk ∈ l2[0,∞) and x0 = 0. The proof of
theorem 1 is completed.

3.2 Approach 2

Now, reconsider the control law as follows

uk = −(
s

∑

i=1

hiFi)(
s

∑

i=1

hiGi)
−1xk (21)

which leads to the closed-loop system of Σ is

Σc
2 : xk+1 =

s
∑

i=1

s
∑

j=1

hihj(Y
ξ
ijxk + B1iωk) (22)

zk =
s

∑

i=1

s
∑

j=1

hihj(W
ξ
ijxk + D1iωk) (23)

with Y
ξ
ij = Ai − B2iFj(

∑s

i=1 hiGi)
−1;W ξ

ij = Ci − D2iFj

(
∑s

i=1 hiGi)
−1.

If the Lyapunov function is chosen as

Vk = xT
k (

s
∑

i=1

hiGi)
−T (

s
∑

i=1

hiPi)(
s

∑

i=1

hiGi)
−1xk (24)

then, with the idea of proof in theorem 1, the following
result can be obtained easily.

Theorem 2. The closed-loop system Σc
2 is stable with

H∞ norm bound γ, if there exist matrices {Pi > 0}i∈S ,
{Gi}i∈S , {Fi}i∈S and {Qij : QT

ij = Qij}i,j∈S such that

Qij +











(Ȳ ξ
ij)

T (
s

∑

i=1

h+
i Gi)

−T (W̄ ξ
ij)

T

BT
1i(

s
∑

i=1

h+
i Gi)

−T DT
1i

















s
∑

i=1

h+
i Pi 0

0 I













(
s

∑

i=1

h+
i Gi)

−1Ȳ
ξ
ij (

s
∑

i=1

h+
i Gi)

−1B1i

W̄
ξ
ij D1i






−

[

Pi 0
0 γ2I

]

< 0

(25)









Q11 Q12 · · · Q1s

Q21 Q22 · · · Q2s

...
...

. . .
...

Qs1 Qs2 · · · Qss









> 0 (26)

where

Ȳ
ξ
ij = Ai(

s
∑

i=1

hiGi) − B2iFj ; W̄
ξ
ij = Ci(

s
∑

i=1

hiGi) − D2iFj

Proof. The procedure is similar to that one in theorem 1
and is thus omitted.

Remark 1. it is necessary to check first the existence of
(
∑s

i=1 hiGi)
−1 with approach 2, which has been done

in(Guerra & Vermeiren, 2004).

Remark 2. In Theorem 1 and Theorem 2, we have chosen
a nonquadratic Lyapunov function which is the same as
that given in (Guerra & Vermeiren, 2004).
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4. CONTROLLER DESIGN

Theorem 3. If there exist appropriate dimension matrices

{Pi > 0}i∈S , {Q
(11)
ij }i,j∈S , {Q

(21)
ij }i,j∈S , {Q

(22)
ij }i,j∈s and

{Fi}i∈S such that









−Pi + Q
(11)
ij ∗ ∗ ∗

Q
(21)
ij −γ2I + Q

(22)
ij ∗ ∗

AiPl − B2iFj B1i −Pα ∗
CiPl − D2iFj D1i 0 −I









< 0

i, j, l, α ∈ S (27)









Q11 Q12 · · · Q1s

Q21 Q22 · · · Q2s

...
...

. . .
...

Qs1 Qs2 · · · Qss









> 0 (28)

where

Qij =

[

Q
(11)
ij ∗

Q
(21)
ij Q

(22)
ij

]

(29)

then the closed-loop system Σc
1 is stable with H∞ norm

bound γ.
Proof. With (27), it follows from Schur complement that

[

(Ḡξ
ij)

T (M̄ξ
ij)

T

BT
1i DT

1i

]







(
s

∑

i=1

h+
i Pi)

−1 0

0 I







[

Ḡ
ξ
ij B1i

M̄
ξ
ij D1i

]

+ Qij

−

[

Pi 0
0 γ2I

]

< 0 i, j ∈ S

The result then follows from theorem 2.

Theorem 4. If there exist appropriate dimension matri-

ces {Pi > 0}i∈S , {Q
(11)
ij }i,j∈S , {Q

(21)
ij }i,j∈S , {Q

(22)
ij }i,j∈S ,

{Gi}i∈S and {Fi}i∈S such that









−Pi + Q
(11)
ij ∗ ∗ ∗

Q
(21)
ij −γ2I + Q

(22)
ij ∗ ∗

AiGl − B2iFj B1i −Gα − GT
α + Pα ∗

CiGl − D2iFj D1i 0 −I









< 0

i, j, l, α ∈ S (30)









Q11 Q12 · · · Q1s

Q21 Q22 · · · Q2s

...
...

. . .
...

Qs1 Qs2 · · · Qss









> 0 (31)

where

Qij =

[

Q
(11)
ij ∗

Q
(21)
ij Q

(22)
ij

]

(32)

then the closed-loop system Σc
2 is stable with H∞ norm

bound γ.
Proof. By lemma 2, let

Ψ =







s
∑

i=1

h+
i Gi 0

0 I







with (30), one has

Qij +











(Ȳ ξ
ij)

T (
s

∑

i=1

h+
i Gi)

−T (W̄ ξ
ij)

T

BT
1i(

s
∑

i=1

h+
i Gi)

−T DT
1i

















s
∑

i=1

h+
i Pi 0

0 I







×







(
s

∑

i=1

h+
i Gi)

−1Ȳ
ξ
ij (

s
∑

i=1

h+
i Gi)

−1B1i

W̄
ξ
ij D1i






−

[

Pi 0
0 γ2I

]

< 0

The result then follows from Theorem 2.

Remark 3. The conditions in Theorem 3 can be obtained
by letting Gi = Pi in Theorem 4. Thus Theorem 4 has less
conservatism than Theorem 3.

5. NUMERICAL EXAMPLE

To illustrate the proposed methods, a design example is
worked out. The system under consideration is a nonlinear
system, which is similar to that one used in(Guerra, &
Vermeiren, 2004).

x
(1)
k+1 = x

(1)
k − x

(1)
k x

(2)
k + [5 + x

(1)
k ]uk + 0.5ωk (33)

x
(2)
k+1 = −x

(1)
k − 0.5x

(2)
k + 2x

(1)
k uk − 0.1ωk (34)

zk = −0.1x
(1)
k − 0.5x

(2)
k + 0.5uk + 0.1ωk (35)

defining xk = [x
(1)
k x

(2)
k ]. assum that x

(1)
k ∈ [−β, β], the

nonlinear system (33)−(35) can be exactly represented by
T-S model as
Plant rule 1: IF x

(1)
k is about χ1, THEN

xk+1 = A1xk + B11ωk + B21uk

zk = C1xk + D11ωk + D21uk

Plant rule 2: IF x
(1)
k is about χ2, THEN

xk+1 = A2xk + B12ωk + B22uk

zk = C2xk + D12ωk + D22uk

with

χ1 =
x

(1)
k + β

2β
; χ2 = 1 − χ1; A1 =

[

1 −β
−1 −0.5

]

;

A2 =

[

1 β
−1 −0.5

]

; B11 = B12 =

[

−0.03 0.01
0 0.01

]

;

B21=

[

5 + β
2β

]

;B22=

[

5 − β
−2β

]

;C1 = C2 = [−0.1 −0.05 ] ;

D11 = D12 = [−0.1 −0.05 ] ; D21 = D22 = 0.5;

Let β = 1 and γ = 0.5. Using MATLAB LMI Toolbox
to solve the LMIs in Theorem 3, a feasible set of solution
obtained as follows:
F1 = [ 0.6479 −0.7043 ] ; F2 = [ 0.3379 0.5238 ]

P1 =

[

4.4852 −2.9007
−2.9007 5.1014

]

; P2 =

[

4.4683 −2.9029
−2.9029 5.1151

]

To illustrate the behavior of the control action, Fig.1
depicts the trajectories of the closed-loop system with
starting point x0 = [−0.9 1]T . Fig.2 shows that the
disturbance ωk and the output response zk.
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Fig.1 The state trajectories of closed-loop system with
control law in Theorem 3
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Fig.2 The disturbance ωk and the output response zk

The same operation is done to solve the LMIs in Theorem
4, a feasible set of solution is:
F1 = [ 0.7044 −0.8398 ];F2 = [ 0.4574 0.4432 ]

G1 =

[

5.1554 −3.1881
−3.1213 5.6781

]

; G2 =

[

4.9387 −3.3358
−3.0070 5.8254

]

Fig.3 depicts the trajectories of the closed-loop system
with starting point x0 = [−0.9 1]T . Fig.4 show the
disturbance ωk and the output response zk.
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Fig.3 The state trajectories of closed-loop system with
control law in Theorem 4
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Fig.4 The disturbance ωk and the output response zk

Table 1 summarizes the minimum values of the H∞ norm
bound γmin by solving the LMIs in Theorem 3 and
Theorem 4 with a given fixed β > 0. It is noted from Table

1 that for a given fixed β > 0, the controllers obtained
from Theorem 3 and Theorem 4 can guarantee a smaller
minimum value of the H∞ performance level than that one

Table 1
γmin computed by Th.3 and Th.4 for different β

β γminin th.3 γminin th.4 γminin(Zhou’07)
0.01 0.0167 0.0167 0.0167
0.10 0.0169 0.0169 0.0169
0.50 0.0184 0.0184 0.0192
1.00 0.054 0.053 0.3322

1.01459 0.065 0.062 99.9499
1.45 infeasible infeasible infeasible

given in (Zhou, Lam & Zheng, 2007). Judging from this
example, one can conclude that the results of this paper
are of less conservatism than that one in (Zhou, Lam &
Zheng, 2007).

6. CONCLUSION

This paper presents stabilization analysis and H∞ per-
formance for a class of discrete fuzzy systems. By using
nonquadratic Lypunov functions associated with PDC-like
control law, several relaxed results are obtained based on
LMIs. Finally, a numerical example is given to illustrate
the main results. The results can also be easily extended
to the systems with uncertainties and time-delay.
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