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Abstract: Recycle systems exhibit steady state input multiplicities due to interactions of the
units, even though individual units are quite simple. When handling constraints, if prospective
constraint variables show such nonlinearity, control problems may arise because the steady state
gain changes its sign. Using the reactor/separator system with two material recycles as a process
example, a robust constraint handling controller is designed by confining the input into the large
gain directions. Such directions are obtained as the Pareto optimal front of the multi-objective
optimization problem which minimizes energy consumption in each unit. Performance of the
designed controller is demonstrated through simulations.
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1. INTRODUCTION

Recycle systems are very common in chemical plants,
where integration of units is favored for economic and envi-
ronmental reasons. It has been known that control system
design for processes with recycle presents some specific
difficulties, because all the units linked by recycle streams
must be accounted for simultaneously [Papadourakis et al.
(1987)].

In industrial practices, well developed linear control tech-
niques such as PID control and linear model predictive
control have been widely used. These linear control tech-
niques suffice for chemical processes which are operated
in a relatively small operating region where the assump-
tions of linearity hold. Linear model predictive control is
most often designed for maximum profitability, in which
case, control system design only around some fixed pro-
cess constraints is required. For recycle systems, although
some specific difficulties arise, linear control techniques can
achieve satisfactory performance as long as the operating
range is limited and the plant wide perspective is retained
in the control system design [Luyben (1994); Wu and Yu
(1996); Larsson et al. (2003)].

Meanwhile, with growing concern for the environment and
ever increasing global competition, chemical processes are
required to be more efficient, and forced to operate in
regions where the assumptions of linearity tend to break
down. One of the challenges in process control under
these circumstances is that control systems have to be
robust and flexible enough to cope with nonlinearities;
extra design consideration will be needed if a linear control
technique is to be utilized.

Among the nonlinearities exhibited by chemical processes,
steady state input multiplicity is known to pose one
of the most difficult control problems [Koppel (1982)],
because there are more than one set of inputs associated

with a given set of outputs, which implies that steady
state gain (in multivariable systems, determinant of the
steady state gain matrix) changes its sign and a linear
controller with integral action becomes unstable where
the signs of the controller gain and the process gain
are different [Morari (1983)]. As process examples which
exhibit input multiplicities, chemical reactors with specific
reaction kinetics are relatively well known [Dash and
Koppel (1989); Sistu and Bequette (1995); Chen et al.
(1995)], while Dash and Koppel (1989) pointed out that
the use of a recycle in a simple process flowsheet can also
cause this nonlinearity even when the individual process
units are quite simple.

In this paper, it is shown that a recycle system, which
is represented by the reactor/separator system with two
material recycles [Tyreus and Luyben (1993)], indeed ex-
hibits steady state input multiplicities when the system is
to be operated over a wider range, and their implication
for constraint handling control is elaborated. Nonlinear
control techniques may be applied to this kind of pro-
cesses [Sistu and Bequette (1995); Chen et al. (1995); Seki
and Morari (1997)], but Skogestad (2000) showed that
self-optimizing control, which is basically linear, is quite
efficient in handling processes with input multiplicity, so
that a practical solution on the basis of self-optimizing
control is introduced and performances of the designed
controller are demonstrated through simulations.

2. REACTOR/SEPARATOR SYSTEM WITH
MATERIAL RECYCLE

2.1 Description of the Process with Self-optimizing Control

Fig.1 shows the reactor/separator system which consists of
a liquid phase CSTR(continuous stirred tank reactor) and
two distillation columns interconnected with two material
recycles [Tyreus and Luyben (1993)]. The fresh feeds
containing pure A and B are fed to the reactor where
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the irreversible reaction A+B→C takes place. The reactor
effluent is sent to the distillation column train where
the unconverted reactants A, B and the product C are
separated; the unconverted reactants are recycled back to
the CSTR, while the product C is withdrawn from the
system. The specific design data and basic control system
design used for this study can be found in Seki and Naka
(2007).

A nonlinear process model in the form of an ordinary
differential equation:

ẋ = f(x, u) (1)

y = h(x, u) (2)

has been developed and used for control system design,
where x is the state variable, u is the input, and y is the
measurement.

One of the fresh feeds, FB , is chosen as an independent
variable to directly specify the production rate, while
the product compositions xA,2 and xB,2 are specified at
some fixed values and controlled using the composition
measurements. The regulatory loops which control inven-
tories and compositions are configured using multi-loop PI
controllers with the pairings shown in Fig.1.

On top of the regulatory control system, self-optimizing
control [Skogestad (2000)] has been realized by manipu-
lating the remaining degree-of-freedom: the fresh feed FA

and the two recycle streams B1, D2 appropriately. For that
purpose, the following steady state optimization problem
in terms of energy consumption for a fixed throughput is
solved:

min
x,u

J(x, u) = V1 + V2 (3)

subject to

f(x, u) = 0, (4)

yR = yset
R , (5)

where yR is the controlled variable in the regulatory
control system and yset

R is its setpoint. After finding the
optimal operation u∗ for various feed rates, correlation
between the operational variables FA, B1, D2 and the
manipulated variables of the regulatory controllers are
evaluated to obtain

F̃A = a1L1 + b1

B̃1 = a2V1 + b2 (6)

D̃2 = a3V2 + b3,

where the coefficients ai, bi, (i = 1, 2, 3) are determined
through the linear regression of these variables, and (̃·) de-
notes the variable is that of the self-optimizing controller.

2.2 Nonlinearity of Recycle Processes - Steady State Input
Multiplicities

Recycle processes tend to exhibit nonlinearities, namely
steady state input multiplicities, due to interactions of
the units, even though nonlinearity of each isolated unit
is not very strong. In the process example, increase of
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Fig. 1. Reactor/separator system with two material recy-
cles.

the recycle flows may lead to increased consumption of
the species in the reactor and increased load on the
separators simultaneously. These competing effects result
in complicated behavior such as input multiplicity.

Here, a new manipulated variable vector δ = (δFA
δB1 δD2)

T

is defined as deviation from the self-optimizing control:
uop = ũop + δ, (7)

where uop = (FA B1 D2)T , ũop = (F̃A B̃1 D̃2)T .

For illustrative purposes, the input δ is confined to the
2-dimensional space spanned by the two input singular
vectors v1 and v2 of the steady state gain matrix G between
δ and (V1 V2)T around the nominal operating point:

G = UΣV T ,

U = (u1 u2), ui ∈ <2 (8)

V = (v1 v2 v3), vi ∈ <3

and the steady state responses of V1 and V2 are shown
as contour plots in Fig. 2 for various values of the input
vector δ:

δ = θ1v1 + θ2v2, θ1, θ2 ∈ <.

In fact, the output singular vectors are u1 = (1/
√

2 −
1/
√

2)T , u2 = (1/
√

2 1/
√

2)T , and the second largest
singular value is σ2 = 0, because at the nominal operating
condition where θ1 = θ2 = 0, V1 + V2 is minimized. There
is a strong directionality in the steady state responses,
which leads to existence of input multiplicities; in the
direction of u2, which reduces the energy consumptions
of the two columns simultaneously, the gain is small and
easily changes its sign.

It should be noted that the manipulated variable choice (7)
is not the origin of the input multiplicity; the intrinsic
nature of the process that the minimum for V1 + V2

is unconstrained is the root cause. Even if FA, B1 and
D2 are directly chosen as the manipulated variables, the
input multiplicity still persists in the input/output relation
between these manipulated variables and V1, V2. Even a
nonlinear control scheme which tries to regulate V1 + V2

at its unconstrained minimum using V1 + V2 directly as
a controlled variable would encounter a difficult problem,
whereas the self-optimizing control that is constructed by
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Fig. 2. Contour plots for the steady state responses for the
energy consumptions of the two columns. Solid: V1,
dotted: V2

the simple ratio scheme (6) is readily able to keep the
process around the unconstrained optimum.

Now, consider a control scenario in which mode of oper-
ations may be switched between feed maximization and
energy minimization, according to economical and other
situations. Energy minimization can be easily achieved
by the self-optimizing control, while in the case of feed
maximization, the vapor boilups V1, V2 and the reflux
flows L1, L2 would be the prospective constraint variables
which limit the production rate. For feed maximization,
regulation of these variables around their constraints are
required and the input multiplicities may cause a severe
control problem, since the sign of the determinant of the
steady state gain matrix changes in the operating region.

3. CONTROL SYSTEM DESIGN

3.1 Restriction on Input Directions

In the context of the linear control theory, the problem of
input multiplicities may be related to ill-conditioned multi-
variable systems. With the well-known distillation column
composition control problem, simultaneous regulation of
the top and bottom compositions poses a severe robustness
problem [Skogestad et al. (1988)]. In such a case, directions
of the manipulated variables may be restricted in the larger
gain direction.

Following the same line, we may give up manipulating
the operational variable vector in the direction which
simultaneously reduces the energy consumption of the two
distillation columns.

The first idea is to confine the movement of δ into the
direction of the input singular vector v1 corresponding
to the largest singular value, which has been obtained
through the singular value decomposition of the gain
matrix G shown in (8). Describing the operational vector
δ as

δ = θv1, θ ∈ <, (9)

steady state responses of the prospective constraint vari-
ables are shown in Fig. 3 for various operating conditions
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Fig. 3. Steady state relation between θ and prospective
constraint variables. Input direction (9) obtained from
the steady state gain analysis. Dotted: FB = 0.8F̄B ,
solid: FB = F̄B , dashed:FB = 1.2F̄B .

(in the figure, F̄B is the nominal feed rate). Although input
multiplicities are not found in the responses of V1, V2 and
L1, the sign of the gain changes with L2. The sign change
in one of the elements of the steady state gain matrix
does not immediately imply instability of closed loops in
multivariable control system, but a stability problem may
be expected if the constraint for L2 becomes active.

In order to find a better input direction which covers
a wider operating region, the following multi-objective
optimization problem is considered:

min
x,u

Jmobj(x, u) = (V1 V2)T ,

subject to (4), (5),

where energy consumption of each distillation column is
selected as the performance index; the Pareto optimal
front will be used as the input direction in which the
manipulated variable moves are restricted.

Figure 4 shows the Pareto optimal front obtained for
various values of the fresh feed rate. Operations on the
Pareto optimal front yield, for example, minimization of
V1 for a fixed V2, which is quite reasonable in terms
of constraint control. Moreover, reflux flows and vapor
boilups of distillation columns are physically correlated, so
that minimization of V1 most often leads to reduction in
L1, which may be also convenient in constraint handling.

Fortunately, it has been found that the Pareto optimal
front in terms of the operational variable vector δ can
be approximated by a nonlinear 1-dimensional vector
space. To make controller implementation (slightly) easier,
the nonlinear vector is linearized around the nominal
operating condition and the operational vector is described
as

δ = θvp, |vp| = 1, vp ∈ <3, (10)

where vp is the linearized vector for the Pareto optimal
front. Note that the operation for the minimum energy
consumption lies on the Pareto optimal front with θ = 0.
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Fig. 4. Pareto optimal front for various feed rates. Dotted:
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Fig. 5. Steady state relation between θ and prospective
constraint variables. Input direction (10) obtained
through the linearization of the Pareto optimal front.
Dotted: FB = 0.8F̄B , solid: FB = F̄B , dashed:FB =
1.2F̄B .

Figure 5 shows the steady state relation between θ and
the prospective constraint variables; steady state input
multiplicities are effectively eliminated.

3.2 Constraint Handling Controller

To handle constraints, a linear model predictive control
technique is employed. A quadratic problem is introduced
to determine the steady state target based on the predicted
future response of the process.

Controlled and manipulated variables The manipulated
variables are

umpc = (FB θ)T

and the controlled variables, for which constraints are
considered, are

ympc = (V1 L1 V2 L2)T .

Model A linear approximation of the process around the
nominal operating condition is used as the process model:

ξ̇ = Aξ + Bumpc

ζ̇ = 0 (11)

ŷmpc = Cξ + ζ,

where (A,B, C) are the model matrices obtained through
step testing or the local linearization of the process model,
ξ is the state variable, ζ ∈ <4 is the output disturbance,
and ŷmpc is the measurement estimate.

State estimation and prediction of steady state responses
A state estimator is constructed for the linear process

model (11) as

ξ̇ = Aξ + Bumpc + Kξ(ympc − ŷmpc) (12)

ζ̇ = Kζ(ympc − ŷmpc), (13)

where Kξ and Kζ are the estimator gain matrices.

Then, the steady state output response, under the as-
sumption that the manipulated variable umpc and the
disturbance variable ζ are held constant at the current
values, can be predicted by

ŷ∞mpc = −CA−1Bumpc + ζ

Target calculation At each sampling time, the following
quadratic program is solved to determine the manipulated
variable increment ∆umpc:

min
∆umpc

Jmpc = (r − u∞mpc)
T R1(r − u∞mpc)

+∆uT
mpcR2∆umpc (14)

subject to

u∞mpc = umpc + ∆umpc

yLL
mpc ≤ ŷ∞mpc − CA−1B∆umpc ≤ yUL

mpc (15)

where r = (F set
B 0)T is a “setpoint” to the manipulated

variable with F set
B being a target value for the fresh feed

rate, R1, R2 ∈ <2×2 are positive definite weight matrices,
and yLL

mpc, y
UL
mpc are the lower and upper limits of the

controlled variables respectively.

At each sampling time, the above quadratic program is
solved to update the manipulated variable as umpc +
∆umpc. Then, the operational variable δ is reconstructed
by (10) and the fresh feed increment is implemented on
the process.

Expected controller behavior will be as follows:

As long as none of the inequality constraints (15) are
violated, the controller tries to realize r = u∞mpc(FB =
F set

B , θ = 0) for t → ∞, thus realizing self-optimizing
control; since the control update ∆umpc is penalized by
the second term in the objective function (14) at each
optimization, the controller asymptotically approaches its
target r.

When some of the constraints (15) become active, con-
troller behavior depends on the choice of the weight ma-
trix R1. If θ is heavily weighted, equivalently deviation
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Fig. 6. Simulation results. Solid: feed maximizing con-
troller. Dashed: self-optimizing controller.

from the self-optimizing control is not allowed, the con-
troller stops changing u∞mpc and stays there. If θ is lightly
weighted, the controller starts to deviate from the self-
optimizing control (θ 6= 0), trying to realize FB = F set

B
while respecting the active constraints, until the next
constraint becomes active.

4. SIMULATION

Simulation calculations are performed using the nonlinear
process model (1).

A very crude approximation has been made in designing
the controller for the simulation studies: as the linear
process model (11), the matrices A and C are chosen
as A = diag(1/5 1/5 1/5 1/5), C = I4, which assume
uncoupled 1st order dynamics with the time constant
being 5h. The matrix B is then calculated so that the
steady state gain matrix −CA−1B coincides with that
obtained from the locally linearized model around the
nominal operating condition.

4.1 Feed Maximization

Responses to +20% increase in the fresh feed rate FB are
simulated by giving the setpoint as r = (1.2F̄B 0)T . The
upper and lower constraints are set as±20% of the nominal
values of the variables.

Comparisons are made for two parameter settings: one
with a large weight on θ (R1 = diag(1 106): self-optimizing
control), the other with a small weight on θ (R1 =
diag(1 10−6): feed maximizing control).

Figure 6 compares the responses of the two controllers.
In both cases, as the fresh feed FB is increased, the
upper limit constraint for V2 becomes active first. The
self-optimizing controller, then, stops increasing the feed.
On the other hand, the feed maximizing controller keeps
increasing the feed rate, while respecting the constraint on
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Fig. 7. Simulation results. Solid: feed maximizing con-
troller whose input direction is defined by Eq. (9) (The
calculation is terminated around t = 40h). Dashed:
feed maximizing controller whose input direction is
defined by Eq. (10).

V2 by manipulating δ, until another constraint, in this case
the upper limit for L1, becomes active.

Consequently, the steady state feed rates are F∞B = 2550
with the self-optimizing controller, and F∞B = 2585 with
the feed maximizing controller.

As shown in this example, modes of operations can be
easily switched simply by changing the control parameter,
without the need for tedious logic in reconfiguring control
loops.

4.2 Instability due to Input Multiplicities

In this case study, the performance of the controller whose
input direction is defined by (9) is evaluated. The input
weight is chosen as R1 = diag(1 10−6).

Under the same operating conditions as the previous simu-
lation studies, it was found that the controller was capable
of achieving stable responses (results not shown), with L1

and V2 being the constrained variable. The achieved feed
rate was F∞B = 2578, which is slightly smaller than that
of the feed maximizing controller.

However, as implied by Fig. 3, a problem can be expected
when the constraint for the reflux L2 becomes active.
To demonstrate such a situation, the upper limit for L2

is set at a smaller value (LUL
2 = 3800) for a reachable

feed setpoint F set
B = 2500, and simulation calculations

are performed. Figure 7 shows the result: the closed loop
becomes unstable, while the feed maximizing controller
can safely handle the same operating condition.

In this case study, since one of the manipulated variables,
namely the feed rate FB , is constrained, the control prob-
lem is reduced to a single-input/single-output problem,
so that the sign change in the gain ∂L2/∂θ immediately
results in instability of the closed loop.
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As shown in this simulation, stability of the controller
depends on which constraints become active. For chemical
processes which exhibit input multiplicities, extra care
should be taken in control system design by considering
several control scenarios and evaluating stability for each
set of constraints.

5. CONCLUSION

It has been shown that the reactor/separator system
with two material recycles exhibit steady state input
multiplicities which cause control problems, even though
nonlinearity of each individual unit may not be very
strong.

A practical solution to control system design for the
example process has been shown: the operational variable
vector is confined into the the Pareto optimal front, which
has been obtained by the multi-objective optimization
problem posed as minimization of energy consumptions of
the comprising units. The resulting controller is linear and
easily implementable. The simulation studies have shown
that the poorly defined input direction causes stability
problem.

Frequent use of recycles in chemical processes suggests
that the problem of steady state input multiplicity may
not be a rare occurrence. As long as operating ranges
are limited, this problem does not occur. However, once
processes are required to be operated in a wider range
and with a varieties of scenarios for more flexibility, extra
design consideration such as shown in this study may
become necessary.
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dictive control of a benchmark CSTR. In Proc. Eu-
ropean Control Conference., pages 3247–3252, Rome,
Italy, 1995.

S. K. Dash and L. B. Koppel. Sudden destabilization of
controlled chemical processes. Chem. Eng. Comm., 84:
129–157, 1989.

L.B. Koppel. Input multiplicities in nonlinear multivari-
able control systems. AIChE J., 28:935–945, 1982.

T. Larsson, M.S. Govatsmark, S. Skogestad, and C.C. Yu.
Control structure selection for reactor, separator and
recycle processes. Ind. Eng. Chem. Res., 42:1225–1234,
2003.

W.L. Luyben. Snowball effects in reactor/separator pro-
cesses with recycle. Ind. Eng. Chem. Res., 33:299–305,
1994.

M. Morari. Robust stability of systems with integral
control. In Proc. IEEE 22nd CDC., pages 865–869, San
Antonio, Texas, 1983.

A. Papadourakis, M.F. Doherty, and J.M. Douglas. Rel-
ative gain array for units in plants with recycle. Ind.
Eng. Chem. Res., 26:1259–1262, 1987.

H. Seki and M. Morari. Receding horizon implementation
of optimal servo problem: application to a nonlinear pro-
cess with input multiplicities. In Proc. 1988 American
Control Conference, pages 791–795, Philadelphia, PA,
1997.

H. Seki and Y. Naka. Control structure design for a
reactor/separator process with two recycles. In Proc. 8th

Int. Symp. on Dynamics and Control of Process Systems
(DYCOPS2007), volume 2, pages 117–122, Cancun,
Mexico, 2007.

P.B. Sistu and B.W. Bequette. Model predictive control
of processes with input multiplicities. Chem. Eng. Sci.,
50:921–936, 1995.

S. Skogestad. Plantwide control: the search for the self-
optimizing control structure. J. Process Control, 10:
487–507, 2000.

S. Skogestad, M. Morari, and J.C. Doyle. Robust control
of ill-conditioned plants: High-purity distillation. IEEE
Trans. on Automatic Control, 33:1092–1104, 1988.

B.D. Tyreus and W.L. Luyben. Dynamics and control
of recycle systems. 4. Ternary systems with one or two
recycle streams. Ind. Eng. Chem. Res., 32:1154–1162,
1993.

K.L. Wu and C.C. Yu. Reactor/separator processes with
recycle-1. Candidates control structure for operability.
Comput. Chem. Eng., 20:1291–1316, 1996.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9367


