
Fault Detection of Distributed Networked Control Systems 
with Access Constraints 

 
Qun Zong , Wenjing Liu, Liqian Dou and Liankun Sun 

 
 Department of Electrical Engineering and Automation， 

Tianjin University, Tianjin 300072， 
P. R. China 

Abstract: This paper considers the fault detection problem of distributed networked control systems 
(DNCS) with limited data transmission rate. In order to deal with the limited bandwidth of the network, 
two steps are taken. The first one is the periodic communication sequence which is introduced to the two-
level DNCS to ensure that only some specified subsystems rather than all of them are connected to the 
central fault diagnosis unit at a certain time; the second one is that the signals which are transmitted to the 
central unit from each subsystem are not the inputs and outputs but the residuals which are smaller. 
Because periodic communication sequence’s introduction changes the observability of the system, a 
theorem is provided to discuss the observability of DNCS as well as to give a new system model under 
observable condition. On the basis of residuals transmitted from subsystems to the central unit, some steps 
are taken to get the inputs and outputs which are necessary for fault detection. Then, according to the new 
system model and obtained inputs and outputs, the central fault diagnosis unit based on the periodic 
system theory is designed under this communication pattern. Finally, a numerical example is provided to 
illustrate the effectiveness of the proposed method. 

1. INTRODUCTION 

It is increasingly popular to close control loops over a control 
network to form a networked control system (NCS). As an 
integration of sensors, controllers, actuators and field bus, 
NCS delivers enormous distinct advantages such as modular 
and flexible system design (e.g., distributed processing and 
interoperability), simple and fast implementation (e.g., 
reduced system wiring and powerful configuration tools), ease 
of system diagnosis and maintenance, and increased system 
agility (Walsh et al., 2001; Tipsuwan et al., 2003). Nowadays, 
NCS can be found in many fields including manufacturing 
automation factories, electric factories, robots, advanced 
aircraft and electrified transportation(Xia et al.,2005; Zhang 
and D.Hristu,2006). 

To authors’ knowledge, many existing results on fault 
detection of NCS were shown in (Fang et al., 2006); however, 
the researches on fault diagnosis of DNCS where the 
multilevel communication architectures are able to meet new 
requirements such as mobility, modularity, control and 
diagnosis decentralization and/or distribution, autonomy, 
redundancy, quick and easy maintenance, are very limited 
(Ding and Zhang, 2007;Ding and Zhang, 2006; Zhang and 
Ding ,2006; Sauter et al., 2006;Zong et al). The system 
structure of two-level DNCS, the information exchange 
between the central unit and subsystems, and the observer-
based fault diagnosis are considered in detail by (Ding and 
Zhang, 2006). A method based on system structural analysis 
is then proposed to provide fault detectability and fault 
isolability conditions, and an algorithm which allows 
distributing the FDI task on local autonomous nodes is 
provided in (Sauter et al., 2006).   

The overall behaviour of the DNCS is influenced by the 
limited bandwidth of the network, which is defined as the 

maximal amount of meaningful data that can be transmitted 
per unit time (Lian and Moyne et al., 2001; Ji et al., 2005). If 
the network is overloaded, the transmission delays and the 
packet loss rate begin to increase significantly, as there is 
more traffic on the network than what can be transmitted 
(Zhang and Ding, 2006). To reduce the network traffic in each 
subsystem, the periodic communication sequence is applied to 
realize the switch between different sensors and actuators in 
(Ding and Zhang, 2007; Ding and Zhang, 2006). With the 
distributed networked control system becoming more and 
more larger and lots of subsystems being connected to the 
central fault diagnosis unit, it is necessary to reduce the 
network traffic between the central fault diagnosis unit and 
subsystems, therefore the packet-based transmission 
mechanism is introduced to the DNCS in (Zong et al).In this 
paper, the periodic communication sequence which makes 
sure that at a certain time only some specified subsystems 
have access to the network is used to reduce the network 
traffic between the subsystems and the central fault diagnosis 
unit instead of in the subsystem like that in (Ding and Zhang, 
2007; Ding and Zhang, 2006)，and the method used in (Ding 
and Zhang, 2007; Ding and Zhang, 2006) is hard to be applied 
in this situation. It is known that the introduction of periodic 
communication sequence changes the observability of the 
DNCS.Therefore, before designing the observer-based fault 
detection method in the central unit, the observability of the 
system is analyzed firstly and the modified system model is 
obtained under the observable condition. Finally, in term of 
the modified system model, the model-based fault detection 
method based on the periodic system theory is presented.  

The paper is organized in five sections as follows. The two-
level DNCS with periodic communication sequence is 
introduced and the observability of the system is discussed in 
Section 2. Section 3 refers to the observer-based fault 
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diagnosis for the proposed system. Section 4 describes a case 
study to validate the fault diagnosis method. Finally, some 
concluding remarks end the paper. 

2. DNCS WITH PERIODIC COMMUNICATION 
SEQUENCES 

2.1 Two-level DNCS 

As shown in Fig.1, the two-level DNCS is composed of the 
central unit and banks of subsystem which include sensors, 
controllers, actuators, and they interact with each other 
through the Ethernet. 

Assume that each subsystem is described by the following 
dynamic model: 

1 1
1,

2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )  1,2,...,   

n
i i

i ii i ij j i i
j j i

i i
i i i i i

x t A x t A x t Bu t E d t F f t
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where the superscript i  denotes the matrices or vectors 
related to the subsystem,ith i nx R∈ , , ,denotes 
the state vector ,the actuator input vector and the measurable 
output vector of the ith subsystem, ,

i nu R∈ iy R∈ n

nd R∈ nf R∈ denotes the 
unknown disturbance vector and the fault 
vector. i

1 2 1 2, , , , , , , ,i i i
ii ij i i iA A B C D E E F F ，  , 1,...,i j n=

are known matrices of appropriate dimensions. n denotes the 
total number of the subsystems in the DNCS 

The overall dynamics of the physical system can be described 
by  
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If the delay and packet loss are negligible, then by a 
discretization with sampling period , the dynamic of system 
is : 

h

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
d f

d f
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y k Cx k Du k F d k F f k

+ = + + +
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where AhA e= ,
0

h AtB e Bdt= ∫ , 10

h At
dE e E dt= ∫  

10

h At
fE e F dt= ∫ , C C= D D= , 2dF E= , 2fF F=  

2.2 DNCS with Periodic Communication Sequence 

In order to avoid problems caused by limited bandwidth, the 
ideal way is to improve the capacity of the network. 

Alternatively, reducing the flow rate would also reduce the 
uncertainty caused by the delays and the packet loss. To this 
aim, two steps are taken. The first one is the periodic 
communication sequence which is introduced to the two-level 
DNCS to ensure that at a certain time only part of the 
subsystems rather than all of them are connected to the central 
fault diagnosis unit, just as shown in Fig.1; the second one is 
that the signals which are transmitted to the central unit from 
each subsystem are not the inputs and outputs but the 
residuals which are smaller.  

1r 2r nr

Fig.1 DNCS with periodic communication sequence 
We assume that all the subsystem have the same sampling 
period , and the communication sequence is h

{ }1 2( ) ( ), ( ) ( )pk k k kβ β β β= ,where the integer   denotes 

the number of steps in a communication period . 

p
sT ph=

,1 ,2 ,( ) ( ), ( ) ( )
T

i i i i nk k k kβ β β β⎡ ⎤= ⎣ ⎦ 1, 2i p= where { }, ( ) 0,1i j kβ ∈  
1, 2j n= denotes whether the subsystem is connected to 

the central unit at step i . If 
j

, ( ) 1i j kβ = , it represents that the 
subsystem  transmits some signals to the central unit and 
vice versa. 

j

, ( )i j kβ must satisfy the condition: 

,
1

,   ( ) 
n

i i i j
j

N n N kβ
=

≤ =∑ ,   1, 2i p= .  When iN n= , the 

DNCS is the one without any periodic communication 
sequence. The case 1iN =  is discussed in this paper.  

Let { }1, 2, ,,   ,q w p va qβ β β w v n= ≤ denote all the steps 
that the subsystems are access to the central unit at a 
communication period, and a  is obtained by selecting all the 

, ( ) 1,   i j k i p and j nβ = ≤ ≤  in sequence from the periodic 

communication sequence ( )kβ . 
Example 1:  Assume that the communication sequence is 
 [ ] [ ] [ ]{ }( )  0  1  0 , 1  0  0 , 0  0  1T Tkβ = T , therefore 3p = , 

3n =  1 2 3 1N N N= = = ,  { }1,2 2,1 3,3 , ,a β β β=

Let ( ) ( ( ))iQ k diag kiβ= denotes the “matrix form” of 
( )i kβ (Zhang and Dimitrios, 2006), so we thus have: 

( )c s
i iy Q k y= i , where ,1 ,2 ,,

Ts s s s
i i i i ny y y y⎡ ⎤= ⎣ ⎦        

, where ( )c s
i iu Q k u= i ,1 ,2 ,,

Ts s s s
i i i i nu u u u⎡ ⎤= ⎣ ⎦                (4) 

, , 1, 2s
i jy j = n denotes the output of the ith subsystem at step 

,  denotes the outputs obtained by the central unit. i c
iy

From formula (4), we can find that the periodic 
communication sequence affects the observability of the 
system, so before designing the observer-based fault detection 
method, we must guarantee the observability of DNCS with 
periodic communication sequence. 
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2.3 Observability of DNCS with Periodic Communication 
Sequence 

The following theorem is used to discuss the observability of 
DNCS with periodic communication sequence. 
Theorem 1 For the system with periodic communication 
sequence { }1 2( ) ( ), ( ) ( )pk k k kβ β β β=  and { }1, 2, ,,q w p va β β β= , 
We can call it -step observable(Zhang and Dimitrios, 2006), 
if the following conditions are met :( 1)  

z
,   z mp m= ∈

(2)  1( )   ( )  ( ( ) )
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( )p mA A′ =       represents the first row of C . (1,:)C
Proof: The periodic communication sequence’s introduction 
transforms the DNCS into periodic time-varying system; so 
many existing methods are failed to be used in DNCS with 
periodic communication sequence to validate its observability. 
Therefore, the lifting technique is used to obtain the time-
invariant system model from working at the basic period  to 
the observable period . 

h
oT z= h

①For DNCS without any periodic communication sequence, the 
DNCS model is changed from working at the basic period h  to the 
communication period . sT ph=

  From formula (3), we can get the following result: 
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Finally, DNCS model  is obtained at the communication 
period ： sT p=

( 1) ( ) ( ) ( ) (

( ) ( ) ( ) ( ) ( )

c c c c c c c c c
d f

c c c c c c c c c
d f

x k A x k B u k E d k E f

y k C x k D u k F d k F f k

+ = + + +

= + + +

k
         (5)                    

where 

1 1( )  ( )    ( ( 1) )  ( ( 1) )
Tc T s T s T s T s

n nu u kT u kT u kT p h u kT p h⎡ ⎤= + − + −⎣ ⎦

1 1( )  ( )   ( ( 1) )  ( ( 1) )
Tc T s T s T s T s

n ny y kT y kT y kT p h y kT p h⎡ ⎤= + − + −⎣ ⎦

3 4

2 3

0 0 0
0 0

0

c

p p

p p

D
CB D

D
CA B CA B D
CA B CA B CB D

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

c pA A=   

1 2[     ]c p pB A B A B B= − − 2 1[       ]c p TC C CA CA CA= −  

1 2

1 2

0 0
0 0

0

d

d d
c

d
p p

d d d
p p

d d d

F
CE F

F
CA E CA E F
CA E CA E CE F

− −

− −

0

d

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

    

1 2[     ]d
c p p
d d dE A E A E E− −= 1 2[     c p p ]f f fE A E A E E− −= f  

2 2

1 2

0 0
0 0

0

f

f f
c
f

p p
f f f

p p

0

f f f

F
CE F

F
CA E CA E F
CA E CA E CE F

− −

− −
f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where TA denotes the transpose of A . 
②For DNCS without any periodic communication sequence, the 
DNCS model is changed from working at the communication 
period  to the observable period . sT p= h h
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The DNCS model at the communication period oT z=   is 
obtained by taking the same steps as that in ①. 
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③The effect of the periodic communication sequence on the system 
model is considered to get the modified system model. In term of the 

set , modified system model is obtained by 

cancelling all the parameters related to the ones that are not in the 
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,1 ,1 ,1 ,1 ,1 ,1

0 0
0 0

0
 

s

c c s
s s

c
s

c m c c m c s
s s s s
c m c c m c c c s
s s s s s s

D
C B D

D
C A B C A B D
C A B C A B C B D

− −

− −

0⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎤⎦

 

⑤ It is obvious that the formula (7) or (8) represents the time-
invariant system, so the regular observability criterion for discrete 
system can be applied to the system denoted by the model above 
(Wilson, 1996). It is well known that the system above is 
observable if the following condition is met: 

T T 1 T( )   ( ) ( ( ) )
Tc c c c c n

s s s s srank C C A C A n−⎡ =⎣                    (9)             
3. FAULT DIGANOSIS 

3.1 Inputs and Outputs 

It is known that inputs and output are necessary for fault 
diagnosis, but in our system in order to keep little traffic on 
Ethernet, we just transmit the residual of each subsystem to 
the central unit, so we should know the inputs and outputs 
firstly to design the fault diagnosis method. 

Before getting the inputs and outputs, we should introduce 
new parameters , 1,2ja j n= which are obtained by collecting 

elements in { }1, 2, ,,q w p va β β β= , and these elements represent 
that the same subsystem is access to the central unit. For 
example, { }1,1 2,2 3,1 4,1 5,2 6,1 7,1 8,2 9,1,           a β β β β β β β β β= ，we can 

get { }1 1,1 3,1 4,1 6,1 7,1 9,1,  ,   ,  ,  ,   a β β β β β β= ,and { }2 2,2 5,2 8,2,  ,  a β β β= . 

For convenience, we take { }, , , ,,g faδ δ δ λ δ τ δβ β β β= for 
example, and we assume that the observer is predefined for 
the subsystem δ  as follows; 

,ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))
ˆ ˆ( ) ( ) ( )

ˆx k A x k B u k L y k y k
y k C x k D u k
δ δ δ δ δ δ δ δ

δ δ δ δ

+ = + + −

= +
            (10) 

where ˆ ( 1)x kδ + is short for ˆ (( 1) )x k hδ +  

Formula (11) is used to get ˆ (x kδ )λ+  with the premise that all 
the parameters related to ,f δβ  are known such 

as ˆ( )x k f+ , ( )u k f+ , (r k f )+ and so on. 

1

, ,
0

1

,
0

ˆ ˆ( ) ( ) ( ) ( ) (

              ( ) ( 1)

f
f j

j

f
j

j

x k A x k f A B u k j

A L r k j

λ
λ

δ δ δ δ δ δ δ

λ

δ δ δ δ

λ λ

λ

− −
−

=

− −

=

1)+ = + + + −

+ + − −

∑

∑

−

)

  (11) 

When a new period of periodic communication sequence 
starts, the following formula is used to get 
ˆ (x k ip gδ + + related to ,g δβ  with the premise that all the 
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parameters related to ,τ δβ  are known at the last 
period.

When the estimation of state like 

1

1

, ,
0

,
0

ˆ ˆ( ) ( ) ( ( 1) ) ( ) ( 1)

              ( ) ( 1)                                                     (12)         

p g

p g

p g j

j

j

j

x k ip g A x k i p A B u k ip g j

A L r k ip g j

τ

τ

τ
δ δ δ δ δ δ δ

δ δ δ δ

τ
− + −

− + −

− +

=

=

+ + = + − + + + + − −

+ + + − −

∑

∑

)ˆ (x kδ λ+ is known it is easy 
to get ˆ (y kδ )λ+ and ( )u kδ λ+  

ˆ( ) ( ) ( ) (y k C x k D u k r kδ δ δ δ )λ λ λ+ = + + + + + λ                       (13) 

ˆ( ) ( )u k K x kδ δλ λ+ = +  

where Kδ is predefined. 

3.2 Observer-based Fault Diagnosis 

Based on formula (11), (12) and (13), the inputs and outputs 
of the subsystems obtained above in the central FDI unit are 
employed to design the observer: 

     

ˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ) ( )

ˆ( ) ( ( ) ( ))

c c c
s s s

c c
s s

c
s

x k A x k B u k L y k y k

y k C x k D u k

r k W y k y k

+ = + + −

= +

= −

                    (14) 

where  is the residual which is zero when there is no fault 
and non-zero when fault occurs.  is the observer gain 
matrix.W is the weighting matrix. 

r
L

Based on the (8) and (14), the formulation is obtained: 

                        (15) 
, ,

1
, , , ,

1
, , , ,

( ) ( ( ) ( ))

( ) (

( ) (

r d r f

c c c c c c
r d d s s s s d s d s

c c c c c c
r f f s s s s f s f s

r z W G d z G f z

G F C zI A LC E LF

G F C zI A LC E LF

−

−

= +

= + − + −

= + − + −

)

)

In order to get a compromise between the sensitivity and the 
robustness, the fault diagnosis problem is transferred to the 
optimization problem: 

      ,

, ,
,

min min r d

L W L W
r f

WG
J

WG
∞

∞

=                                                       (16)  

To get the optimal solution of (16), the following lemma 
is employed 
Lemma: Given the LTI system (8), assume 
that ,( , , , )c c c c

,s d s s d sA E C F  is detectable and has no transmission 
zeros on the unit circle, no unreachable modes on the unit 
circle, and no unobservable modes at the origin. 
Then solve the optimization problem (16), 
where  is the left inverse of a full-column rank matrix H  
satisfying , and 

0W W= 0
TL L= −

0W

, ,( ) ( )T c c T c c
s s d s d sHH C X C F F= + T

0( , )X L is the 
stabilizing solution to the DTARS（Discrete-Time Algebraic 
Riccati  System） 

, , , ,

0, , , ,

( ) ( )   ( ) ( )
0

( ) ( )         ( ) ( )

c c T c c T c c T c c T
s s d s d s s s d s d s

c c T c c T c c T c c T
s s d s d s s s d s d s

A X A X E E A X C E F I
LC X A F E C X C F F

⎡ ⎤− + + ⎡ ⎤
=⎢ ⎥⎢ ⎥

+ +⎢ ⎥⎣ ⎦⎣ ⎦
       (17)          

The proof is given in (Zhang et al., 2002), but it does not 
mention how to solve the DTARS. 
The follow formulation is obtained based on (17) 

, , , , 0

, , , , 0

( ) ( ) ( ( ) ) 0

( ) ( ) ( ) ( ( ) ( ) ) 0

c c T c c T c c c c T
s s d s d s s s d s d s

c c T c T c T c c T c c T
s s d s d s s s d s d s

A X A X E E A XC E F L

C X A F E C X C F F L

− + + + =

+ + +

Make some changes to (18) 
1

, , , ,

, , , ,

( ) ( ( ) ( ) )( ( ) ( ) )

( ( ) ( ) ) ( ) 0                                (19)      

c c T c c T c c T c c T c c T
s s s s d s d s s s d s d s

c c T c c T c c T
s s d s d s d s d s

A X A X A X C E F C X C F F

C X A F E E E

−− − + +

+ + =
 The optimal solution X of (19) is obtained by the stand 
function DARE in MATLAB, and  

1
0 , , ,( ( ) ( ) ) ( ( ) ( )c c T c c T c c T c c T

s s d s d s s s d s d sL C X C F F C X A F E−= − + + , )  

4. CASE STUDY 
Consider the following two-level DNCS consisting of two 
interconnected subsystems, the simple form of the case in 
(Patton, 2007). 

( 1) ( ) ( ) ( ) ( )
( ) ( ) ( )

x k Ax k Bu k Ed k Ff
y k Cx k Du k

k+ = + + +
= +

 

where [ ]11 12 13 21 22 23
Tx x x x x x x=  [ ]1 2

Tu u u=  
0.5 0 0 0 0 0
0 0.1 0 0.1 0 0
0 0 0.02 0 0 0.1

0.1 0 0 0.2 0 0
0 0.1 0 0 0.1 0

0.1 0 0.1 0 0 0.02

A

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−

= =⎢ ⎥
−⎢ ⎥

⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 

1 1 0 0 0 0
0 0 0 0 1 1

T

B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 1 0 0 0 0
0 0 0 0 1 1

T

E ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 0
0 1

D ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

0.1 0.1 0.2 0 0 0
0 0 0 0.2 0.1 0.1

C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 1 0 0 0 0
0 0 0 0 1 0

T

F ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

Assume that the basic sampling time is 0.1h = , and the 
periodic communication sequence is  

[ ] [ ] [ ] [ ]{ }( ) 0  1 ,  1   0 ,  1  0 , 0  1T T Tkβ =
T , so we get that 

4p = , 2n = , { }1,2 2,1 3,1 4,2, , ,a β β β β= , { }1 2,1 3,1,a β β=  

{ }2 1,2 4,2,a β β= and the system is 4-step observable. 
Setting the system sampling time is 0.4s, the modified system 
model is: 

, ,

, ,

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

c c c c c c c c c
s s s s s d s s f s s

c c c c c c c c c
s s s s s d s s f s s

x k A x k B u k E d k E f

y k C x k D u k F d k F f k

+ = + + +

= + + +

k
 

where  
2 1 1 2( ) ( 0.1) ( 0.2)  ( 0.3)c T T T T

su u KT u KT u KT u KT⎡ ⎤= + + +⎣ ⎦   

2 1 1 2( ) ( 0.1) ( 0.2)  ( 0.3)c T T T T
sy y KT y KT y KT y KT⎡ ⎤= + + +⎣ ⎦     

and the observer is obtained according to the section 3: 

0 0 0 0
0.0016 0.0137 0.002 0.9804
0.0006 0.0072 0.0144 0.4412

0 0 0 0
0.0023 0.0209 0.0451 2.451

0.0007 0.0016 0.0294 0.2941

L

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −

= ⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

4.994 49.8128 0.0294 0.9067
0 500.6246 0.6864 6.1261
0 0 9.8058 48.0292
0 0 0 499.9039

W

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

=
         (18) 
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The simulation is realised in MATLAB/SIMULINK and 
Truetime, and a fault happens in subsystem 1 at time 15-
35s.Because the effect of fault on subsystem 2 is very small, 
only the subsystem 1 simulation result is shown in Fig.2.From 
it we can conclude that with the premise that the data 
transmitted through the network is reduced by half, we still 
get the acceptable result of fault diagnosis. The simulation 
validates the effectiveness of the method applied in two-level 
DNCS.  

Fig.2 Simulation result

6. CONCLUSIONS 

This paper considers the fault detection problem of two-level 
DNCS. In order to deal with the limited bandwidth of the 
network and to reduce the network load and thus avoid the 
uncertainty caused by transmission delays and packet loss, 
two-level DNCS with periodic communication sequences is 
presented and central fault diagnosis unit is designed under 
this communication pattern. The simulation result guarantees 
that the fault diagnosis result is still acceptable while the total 
data sent in the network is greatly reduced. 

APPENDIX 

0.0625 0 0 0 0 0
0.0047 0.0001 0 0.0015 0 0

0 0 0.0001 0 0 0.0001
0.0203 0 0 0.0016 0 0
0.0009 0.0004 0 0.0011 0.0001 0

0 0 0.0001 0 0 0.0001

c
sA

⎡
⎢ ⎥−⎢
⎢

= =⎢
⎢
⎢ −
⎢

−⎢⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎥
⎥
⎥
⎦

0.0009 0 0 0
0 0.07 0.1 0

0.001 0.02 0.1 1
0.0006 0 0 1

c
sB

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥− −
⎢ ⎥
⎢ ⎥⎣ ⎦

 

0 0 0 0.2 0.1 0.1
0.05 0.01 0.004 0.01 0 0.02

0.024 0.001 0.0019 0.003 0 0.0008
0.0079 0.0003 0.0001 0.002 0.0001 0.0001

c
sC

⎡ ⎤
⎢ ⎥− − − −⎢=
⎢ − −
⎢

− − −⎣

 

0 0.25 0.5 0
0 0 0.1 0 1 0 0 0

0 1 0 0
0.02 0.2 1 0

0 0.01 0 1

c
sD

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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