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Abstract: In this paper, we consider state feedback robust control problems for discrete-
time nonlinear systems subject to disturbances. The objective of the control is to minimize
a performance function while guaranteeing a prescribed quantitative input to state stability
(ISS) property for the closed-loop systems. By introducing the concept of ISS control invariant
set, a sufficient condition for the problem to be feasible is given. Built on the sufficient condition,
a computationally efficient control design algorithm based on one-step min-max optimization is
developed. An example is given to illustrate the proposed strategy.
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1. INTRODUCTION

The input to state stability (ISS) property is a robust
stability property for nonlinear systems subject to distur-
bances. It was first proposed in Sontag (1989). Since then,
the analysis and synthesis of ISS property has received a
lot of attention with a range of applications reported in
the literature. For example, a systematic analysis of the
ISS property has been conducted in Sontag and Wang
(1995, 1996), where its many different characterizations
have been described. The ISS small-gain theorems and
discrete-time ISS property were presented in Jiang et al.
(1994) and Jiang and Wang (2001). The control system
design to achieve closed-loop ISS is also called input-to-
state stabilization. Most of the techniques for input-to-
state stabilization are centered around the so called ISS
control Lyapunov functions, see for example Krstic and Li
(1998), Liberzon et al. (2002), and Malisoff et al. (2004).

Most of the work on analysis and synthesis of ISS had been
focused on the qualitative results. Such as looking for qual-
itatively equivalent characterizations (Sontag and Wang
(1996)) or designing system such that the closed-loop is
ISS with some ISS gain and transient bound (e.g. Liberzon
et al. (2002), Goularta et al. (2006), Kim et al. (2006),
Lazar et al. (2008)). However, quantitative ISS results
with explicitly prescribed ISS gain and transient bound
requirement is more preferable in control system design.
In our recent work Huang et al. (2005a), we considered
the ISS synthesis problem when the ISS gains and bounds
⋆ This work is supported by the ARC Centre of Excellence pro-
gramme, funded by the Australian Research Council (ARC) and the
New South Wales State Government.

on transients are given. We present a new technique for
the synthesis of ISS that is based on a recently obtained
result concerning l∞-bounded (LIB) robustness for nonlin-
ear systems (Huang and James (2003)). By introducing
two new state variables, the ISS synthesis problem is
transformed into an equivalent uniform LIB dissipation
synthesis problem and dynamic programming techniques
are used to obtain necessary and sufficient conditions for
the existence of state feedback and measurement feedback
controller that result in the closed loop system to be ISS.
Though the solutions in these work are optimal, the con-
troller is dynamic and the computation cost is extremely
high especially for higher order systems.

The focus of this paper is computationally efficient design
algorithms to achieve prescribed quantitative ISS property.
Since ISS is only a stability property, the control problem
considered in this paper is to achieve a prescribed quanti-
tative closed-loop ISS property while optimizing another
performance index (either integral-type performance or
hard bound type performance). The concept of ISS control
invariant set is proposed and it is shown that the robust
control problem is feasible as long as the initial state is
within an ISS control invariant set. Furthermore, controller
synthesis methods based on dynamic programming and
one step min-max optimization are provided.

The paper is organized as follows. The ISS property is
reviewed in Section 2. The state feedback control problems
considered in this paper are stated in Section 3. In Section
4, the definition of ISS control invariant set is given and a
sufficient condition for the state feedback control problems
to be solvable is proved. Section 5 formulates the simplified
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problems and proposed the solutions using dynamic pro-
gramming and one-step min-max optimization. In Section
6, an example is given to illustrate the proposed min-max
optimization strategy. Section 7 concludes the paper.

2. THE ISS PROPERTY

Sets of real numbers and nonnegative integers are denoted
respectively as R and Z+. Recall that a function γ :
[0,∞) → [0,∞) is of class K if it is continuous, strictly
increasing and γ(0) = 0. A function β : [0,∞) × [0,∞) →
[0,∞) is said to be a function of class KL if for each fixed
t ≥ 0, β(·, t) is of class K and for each fixed s ≥ 0, β(s, ·)
decreases to zero.

Consider nonlinear discrete-time system

xk+1 = f(xk, wk), k ≥ 0. (1)

Here xk ∈ Rn, wk ∈ W ⊆ Rs are the state and
disturbance input, respectively. The function f : Rn ×
W → Rn is well defined everywhere with f(0, 0) = 0. We
exploit the following notation:

w0,k−1 = {w0, · · · , wk−1},∀k ≥ 0,
W0,k−1 = {w0,k−1 : wi ∈ W, 0 ≤ i ≤ k − 1},

w0,∞ = {w0, · · · , wk−1, · · ·},
W0,∞ = {w0,∞ : wi ∈ W}.

(2)

ISS Property: (Jiang and Wang (2001)) Nonlinear
discrete-time system (1) is called input to state stable
(ISS) if there exist β ∈ KL and γ ∈ K such that the
state trajectory satisfies

|xk| ≤ β(|x0| , k) + γ(‖w0,∞‖∞),
∀x0 ∈ Rn,∀w0,∞ ∈ W0,∞,∀k ∈ Z+

(3)

where

‖w0,∞‖∞ = sup
i≥0

|wi| (4)

and |·| denotes a norm (e.g. 2-norm) of a vector.

By causality, the required inequality is equivalent to

|xk| ≤ β(|x0| , k) + γ(‖w0,k−1‖∞),
∀x0 ∈ Rn,∀w0,k−1 ∈ W0,k−1,∀k ∈ Z+

(5)

where

‖w0,k−1‖∞ = max
0≤i≤k−1

|wi| . (6)

Remark 2.1. A typical KL function used in the ISS prop-
erty is in the form

β(|x0| , k) = |x0| ak, (7)

where 0 < a < 1. That is, it is exponentially decaying
in time step k. In this paper, we assume that the KL
functions in the ISS requirement is with the form (7).

3. THE STATE FEEDBACK CONTROL PROBLEMS

Consider nonlinear discrete-time control system

xk+1 = f(xk, uk, wk), k ≥ 0.
zk = g(xk, uk, wk), k ≥ 0.

(8)

Here xk ∈ Rn, uk ∈ U ⊆ Rm, wk ∈ W ⊆ Rs, zk ∈
R are the state, control input, disturbance input, and

performance output, respectively. The functions f : Rn ×
U×W → Rn and g : Rn ×U×W → R are well defined
everywhere.

The state feedback robust control problems considered in
this paper are stated as follows.

Robust Control Problem I (using integral type
performance): Given β ∈ KL in the form of (7), γ ∈
K, and x0 ∈ Rn, find, if possible, a control sequence
u0, u1, u2, · · · with uk ∈ U (0 ≤ k < ∞), such that the
state trajectory of the resulting control system satisfies
the ISS inequality

|xk| ≤ β(|x0| , k) + γ(‖w0,k−1‖∞),
∀w0,k−1 ∈ W0,k−1,∀k ∈ Z+,

(9)

and the integral-type performance

Jsum = sup
w0,∞∈W0,∞

∞
∑

k=0

zk

= sup
w0,∞∈W0,∞

∞
∑

k=0

g(xk, uk, wk),

(10)

is minimized.

Robust Control Problem II (using hard bound
type performance): Given β ∈ KL as in (7), γ ∈ K, and
x0 ∈ Rn, find, if possible, a control sequence u0, u1, u2, · · ·
with uk ∈ U (0 ≤ k < ∞), such that the state trajectory
of the control system satisfies the ISS inequality (9) and
the hard bound type performance

Jmax = sup
w0,∞∈W0,∞

sup
0≤k<∞

zk

= sup
w0,∞∈W0,∞

sup
0≤k<∞

g(xk, uk, wk),
(11)

is minimized.

Remark 3.1. For control systems design, stability and per-
formance are two key requirements. For nonlinear system
with disturbances, a prescribed ISS property is a good
stability requirement. For the performance, in some ap-
plications we may prefer integral type (e.g. minimize the
total energy) and in some applications we may prefer
hard bound type (e.g. minimize absolute tracking errors).
Since stability is more critical, we treat the ISS inequality
(robust stability) as a constraint.

Remark 3.2. The property described by inequality (9) is
not a global ISS property since it is only required to
hold for a given initial state x0 and disturbances sequence
w0,∞ within the set W0,∞. Though inequality (9) is a
weaker property than global ISS defined in Jiang and
Wang (2001), the semi-global ISS defined in Nešić and
Laila (2002), and the regional ISS defined in Magni et al.
(2006), we believe that it is a reasonable requirement for
state feedback nonlinear systems design since the system
state is assumed to be available.

4. ISS CONTROL INVARIANT SET

The first important question to ask is when the Robust
Control Problems I and II are feasible. That is, there exist
at least one control sequence such that the ISS inequality
(9) holds.
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The ISS requirement (9) can be regarded as an infinite
number of state constraints for k = 1, 2, · · ·. Now we prove
a simple sufficient condition for the ISS requirement to be
satisfied.

Definition 4.1. Given U ⊆ Rm,W ⊆ Rs, β ∈ KL as in
(7), and γ ∈ K, a set S ⊂ Rn is called an ISS controlled
invariant set if ∀x ∈ S, there exists u∗(x) ∈ U, such that

f(x, u∗(x), w) ∈ S and
|f(x, u∗(x), w)| ≤ a |x| + (1 − a)γ(|w|) (12)

for all w ∈ W.

Lemma 4.2. Given U ⊆ Rm,W ⊆ Rs, β ∈ KL as in (7),
and γ ∈ K, if x0 ∈ S where S is an ISS controlled invariant
set defined in Definition 4.1, then the Optimal Control
problems I and II are feasible. That is, there exists control
sequence u0, u1, u2, · · · such that the ISS requirement (9)
is satisfied.

Proof: Suppose an arbitrary x0 ∈ S is given.

At time k = 0, since x0 ∈ S, we can choose u0 = u∗(x0),
suppose the disturbance is w0 ∈ W, then we have

x1 = f(x0, u0, w0) ∈ S,
|x1| = |f(x0, u0, w0)| ≤ a |x0| + (1 − a)γ(|w0|). (13)

At time k = 1, choose u1 = u∗(x1), suppose the distur-
bance is w1 ∈ W, then we have

x2 = f(x1, u1, w1) ∈ S,
|x2| = |f(x1, u1, w1)| ≤ a |x1| + (1 − a)γ(|w1|). (14)

Combining (13) and (14), we have

|x2| ≤ a |x1| + (1 − a)γ(|w1|)
≤ a(a |x0| + (1 − a)γ(|w0|)) + (1 − a)γ(|w1|)
= a2 |x0| + a(1 − a)γ(|w0|) + (1 − a)γ(|w1|)
≤ a2 |x0| + a(1 − a)γ(‖w0,1‖∞)

+ (1 − a)γ(‖w0,1‖∞)
= a2 |x0| + (1 + a)(1 − a)γ(‖w0,1‖∞).

(15)

In general, we will have xk ∈ S and

|xk| ≤ a |xk−1| + (1 − a)γ(|wk−1|)
≤ ak |x0| + (1 + a + a2 + · · · + ak−1)

· (1 − a)γ(‖w0,k−1‖∞)
= ak |x0| + (1 − ak)γ(‖w0,k−1‖∞)
≤ ak |x0| + γ(‖w0,k−1‖∞)

(16)

This is the ISS inequality (9) with β(|x0| , k) = ak |x0|.
The proof is completed. 2

5. THE SIMPLIFIED CONTROL PROBLEM AND
SOLUTIONS

Suppose there exist an ISS control invariant set S. For any
x ∈ S, define the set of admissible control U(x) as

U(x) = {u ∈ U : for all w ∈ W, (12) holds.} . (17)

By Definition 4.1, the set U(x) is non-empty for any x ∈ S.

Once the ISS control invariant set S and the set of
admissible control U(x),∀x ∈ S are obtained, the robust
control problems can be simplified and solved.

5.1 The simplified problems

Now the Robust Control Problems I and II are simplified
as follows.

Simplified Problem I (using integral type performance):
minimize

Jsum = sup
w0,∞∈W0,∞

∞
∑

k=0

zk

subject to

uk ∈ U(xk). (18)

Simplified Problem II (using hard bound type perfor-
mance): minimize

Jmax = sup
w0,∞∈W0,∞

sup
0≤k≤∞

zk

subject to (18).

5.2 Solution using Dynamic Programming

For the simplified problems, dynamic programming tech-
niques (e.g. Huang and James (2003)) can be applied to
solve the problems.

Simplified Problem I (using integral type performance)
Define value function V : S → R as

V (x) = inf
u0,∞

sup
w0,∞∈W0,∞

{ ∞
∑

k=0

g(xk, uk, wk)

: xk+1 = f(xk, uk, wk), uk ∈ U(xk), x0 = x} .

(19)

The dynamic programming equation is

V (x) = inf
u∈U(x)

sup
w∈W

{g(x, u, w) + V (f(x, u, w))} . (20)

Simplified Problem II (using hard bound type performance)
Define value function V : S → R as

V (x) = inf
u0,∞

sup
w0,∞∈W0,∞

{

sup
0≤k≤∞

g(xk, uk, wk)

: xk+1 = f(xk, uk, wk), uk ∈ U(xk), x0 = x} .

(21)

The dynamic programming equation is

V (x) = inf
u∈U(x)

sup
w∈W

max {g(x, u, w), V (f(x, u, w)} . (22)

Although dynamic programming approach gives the for-
mula for optimal solution of the simplified problems, to
solve the dynamic programming equation is not easy. An-
alytical solution to dynamic programming equation is usu-
ally impossible to derive. To obtain a numerical solution of
the dynamic programming equation, a discretization over
the set S is necessary and the convergence depends on the
nonlinear functions f and g.

5.3 Solution using one step min-max optimization

Lemma 4.2 shows that the Optimal Control Problems can
be greatly simplified by treating the ISS requirement as
one constraint (18). However, the control problems are still
infinite time horizon optimal control problems which are
difficult to solve.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14188



Here we proposed a simplified solution to the problem
using one step min-max optimization.

At time k, the following min-max optimization problem

inf
uk∈U(xk)

sup
wk∈W

g(xk, uk, wk) (23)

is solved and the solution u∗
k is performed. Since u∗

k ∈
U(xk), the ISS inequality (9) holds. Though the optimality
is sacrificed as compared with dynamic programming
approach, the computation cost is significantly reduced.

In summary, the whole controller design process using the
one step min-max optimization can be stated as:

Control design algorithm:

• Step 1, compute the ISS control invariant set S and
the admissible control set U(x) for x ∈ S.

• Step 2, at each time k, solve the one step min-max
optimization problem (23), apply the control u∗

k.

6. EXAMPLE

Consider one-dimensional discrete-time system with dy-
namics:

xk+1 = f(xk, uk, wk) = xk +
1

3
x3

k + uk +
1

2
wk (24)

where the state xk ∈ R, the control uk ∈ U = [−1, 1],
the disturbance input wk ∈ W = [−1, 1]. Obviously,
the system is unstable when uk = 0 and wk = 0. The
performance function is supposed to be

zk = g(xk, uk, wk) = x2
k+1 + u2

k − w2
k

= (xk +
1

3
x3

k + uk +
1

2
wk)2 + u2

k − w2
k.

(25)

Suppose the required ISS inequality is (9) with

β(s, k) = s · 2−k, γ(δ) = δ. (26)

For this example, S = [−1, 1] is an ISS control invariant
set and the ISS admissible control set is given by U(x) as
follows.

If x ≥ 0,

U(x) =

[

−3

2
x − 1

3
x3,−1

2
x − 1

3
x3

]

⋂

[−1, 1]

=

[

max{−3

2
x − 1

3
x3,−1},−1

2
x − 1

3
x3

]

.

(27)

If x < 0,

U(x) =

[

−1

2
x − 1

3
x3,−3

2
x − 1

3
x3

]

⋂

[−1, 1]

=

[

−1

2
x − 1

3
x3,min{1,−3

2
x − 1

3
x3}

]

.

(28)

In fact, for any x ∈ S and any u ∈ U(x),

|f(x, u, w)| =

∣

∣

∣

∣

u + x +
1

3
x3 +

1

2
w

∣

∣

∣

∣

≤ 1

2
|x| + 1

2
|w| ,

∀w ∈ W.

This is inequality (12) with a = 1
2 .

Now the one step min-max optimization problem is:

inf
u∈U(x)

sup
w∈W

g(x, u, w)

= inf
u∈U(x)

sup
w∈[−1,1]

{

(x +
1

3
x3 + u +

1

2
w)2 + u2 − w2

}

= inf
u∈U(x)

sup
w∈[−1,1]

{

(x +
1

3
x3 + u)2 + u2

− 3

4
w2 + (x +

1

3
x3 + u)w

}

= inf
u∈U(x)

sup
w∈[−1,1]

{

(x +
1

3
x3 + u)2 + u2

−3

4
[w − 2

3
(x +

1

3
x3 + u)]2 +

1

3
(x +

1

3
x3 + u)2

}

= inf
u∈U(x)

sup
w∈[−1,1]

{

4

3
(x +

1

3
x3 + u)2 + u2

− 3

4
[w − 2

3
(x +

1

3
x3 + u)]2

}

.

(29)

By (27) and (28), when x ∈ S and u ∈ U(x),

−1

2
|x| ≤ x +

1

3
x3 + u ≤ 1

2
|x| ,

thus

−1

3
≤ −1

3
|x| ≤ 2

3
(x +

1

3
x3 + u) ≤ 1

3
|x| ≤ 1

3
.

Since

−1 ≤ 2

3
(x +

1

3
x3 + u) ≤ 1,

we have

w∗ =
2

3
(x +

1

3
x3 + u)

in (29) and the optimization problem is

inf
u∈U(x)

{

4

3
(x +

1

3
x3 + u)2 + u2

}

= inf
u∈U(x)

{

7

3
u2 +

8

3
(x +

1

3
x3)u +

4

3
(x +

1

3
x3)2

}

.

The optimization problem can be solved easily as

inf
u∈U(x)

sup
w∈W

g(x, u, w)

= inf
u∈U(x)

{

7

3
u2 +

8

3
(x +

1

3
x3)u +

4

3
(x +

1

3
x3)2

}

= inf
u∈U(x)

{

7

3
[u2 +

8

7
(x +

1

3
x3)u] +

4

3
(x +

1

3
x3)2

}

= inf
u∈U(x)

{

7

3
[u +

4

7
(x +

1

3
x3)]2 − 7

3
· 16

49
(x +

1

3
x3)2

+
4

3
(x +

1

3
x3)2

}

= inf
u∈U(x)

{

7

3
[u +

4

7
(x +

1

3
x3)]2 +

4

7
(x +

1

3
x3)2

}

.

(i) If x ≥ 0 and x ≤
√

2
2 , then

3

7
(x +

1

3
x3) ≤ 1

2
x, (30)

and

−1

2
x ≤ 3

7
(x +

1

3
x3) ≤ 1

2
x, (31)

thus

−3

2
x − 1

3
x3 ≤ −4

7
(x +

1

3
x3) ≤ −1

2
x − 1

3
x3,
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since x ≤ 1, we also have

−1 ≤ −4

7
· 4

3
≤ −4

7
(x +

1

3
x3)

and thus by (27),

u∗ = −4

7
(x +

1

3
x3) ∈ U(x)

with

inf
u∈U(x)

sup
w∈W

g(f(x, u, w), u, w) =
4

7
(x +

1

3
x3)2.

(ii) If x ≥ 0 and x >
√

2
2 , then

3

7
(x +

1

3
x3) >

1

2
x, (32)

and

−4

7
(x +

1

3
x3) > −1

2
x − 1

3
x3,

and thus

u∗ = −1

2
x − 1

3
x3 ∈ U(x)

with
inf

u∈U(x)
sup

w∈W

g(f(x, u, w), u, w)

=
7

3
(

1

14
x − 1

7
x3)2 +

4

7
(x +

1

3
x3)2.

(iii) If x ≤ 0 and x ≥ −
√

2
2 , then

3

7
(x +

1

3
x3) ≥ 1

2
x, (33)

then
1

2
x ≤ 3

7
(x +

1

3
x3) ≤ −1

2
x, (34)

thus

−1

2
x − 1

3
x3 ≤ −4

7
(x +

1

3
x3) ≤ −3

2
x − 1

3
x3,

since x ≥ −1 we also have

−4

7
(x +

1

3
x3) ≤ 4

7
· 4

3
≤ 1,

by (28),

u∗ = −4

7
(x +

1

3
x3) ∈ U(x)

with

inf
u∈U(x)

sup
w∈W

g(f(x, u, w), u, w) =
4

7
(x +

1

3
x3)2.

(iv) If x ≤ 0 and x < −
√

2
2 , then

3

7
(x +

1

3
x3) <

1

2
x, (35)

and

−4

7
(x +

1

3
x3) < −1

2
x − 1

3
x3,

thus

u∗ = −1

2
x − 1

3
x3 ∈ U(x)

with
inf

u∈U(x)
sup

w∈W

g(f(x, u, w), u, w)

=
7

3
(

1

14
x − 1

7
x3)2 +

4

7
(x +

1

3
x3)2.

In summary, the control law obtained by the one step min-
max optimization is

u∗(x) =











−4

7
(x +

1

3
x3), if −

√
2

2
≤ x ≤

√
2

2
;

−1

2
x − 1

3
x3, if x < −

√
2

2
or x >

√
2

2
.

(36)

The state feedback control law (36) is given in (a) of Figure
1. A simulation of the closed-loop system is illustrated in
(b)-(d) of Figure 1, which demonstrates consistency with
the ISS requirement.

7. CONCLUSION

The state feedback robust control design problems with
quantitative input-to-state stability (ISS) requirement are
studied. The concept of ISS control invariant set is pro-
posed to derive sufficient conditions for the problems to
be solvable. The one-step min-max optimization is ap-
plied for the robust controller design. The key difference
between the problems considered in this paper and those
considered in the ISS control design literature is that the
ISS requirement here is quantitative. As such, the ISS
control invariant set we defined depends on the particular
quantitative ISS requirement.

Just like the importance of other invariant sets in control
reviewed in Blanchini (1999), ISS control invariant set
plays a key role in the system design to achieve ISS.
However, the computation of the ISS control invariant
set is not trivial for general nonlinear systems. We are
currently working on numerical methods for computing
the ISS control invariant set. We are also looking at the
Model Predictive Control strategy to solve the problem
such that the system performance may be improved.
The corresponding measurement feedback robust control
design problems are more challenging and is our future
research work.
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