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Abstract: In this paper an observer-based novel design of robust control system with an estimate scheme of sensor states to

accommodate extended bounded-sensor-faults is proposed. The sensor faults taken into consideration are, in general, modeled as

polytopic bounds in robust control framework and are usually given as a priori assumption. But, in practice, the sensors that are

subject to fault are especially vulnerable to various conditions, such as temperature, humidity, etc. and, thus, their faults may fall

outside the presumed polytopic bounds easily. An estimate scheme of sensor state is integrated into the observer-based control

system where the sensor fault outside the presumed region is captured and, then, the notion of the well-known quadratic stability

is used to stabilize the system, while, in the mean time, a robust performance measure of an output error signal is guaranteed in

the presence of a set of extended admissible sensor faults. The effectiveness of the proposed approaches is shown by a numerical

example.

1. INTRODUCTION

The problem of designing fault-tolerant control systems has attracted consid-

erable attention, and a number of theoretical results and application examples

have now been described in the literature; see (Feng, 2007; Yang, 2001; Stous-

trup, 2004; Blanke et al., 2003; Zhou, 2001; Alwi, 2006; Liao, 2002; Veillette,

1995; Zhao, 1998; Kim, 2003; Tao, 2001; Jiang, 1994; Gao, 1991; Ye, 2006),

for example. The approaches to fault-tolerant control are, in general, divided

into two broad spectrums: active approach (Tao, 2001; Jiang, 1994; Gao, 1991;

Ye, 2006) and passive approach (Feng, 2007; Yang, 2001; Stoustrup, 2004;

Blanke et al., 2003; Zhou, 2001; Alwi, 2006; Liao, 2002; Veillette, 1995; Zhao,

1998; Kim, 2003). In the active approach, the reconfigurable mechanism of

systems has been design in the event of bounded faults. Due to flexible capacity,

the controller in such systems may not be in a fixed form. Thus increasing

the complexity of controller is inevitable. In contrast, the passive fault-tolerant

control is to exploit the inherent redundancy of the system components or to use

the remaining functions of the component to design a fixed compensator so as

to achieve a tolerable system performance in the presence of component faults.

The designed fixed controller guarantees satisfactory system performance not

merely during normal operations, but under various fault conditions.

In this paper we deal with extended bounded-sensor-faults in a passive form,

where an observer-based controller with an integrated estimate scheme of

sensor state is designed such that the system not merely is quadratically stable,

but a robust performance measure of output error signals is guaranteed in the

presence of a set of extended admissible sensor faults.

A basic idea to handle bounded sensor faults in an observer-based control

system relies on the plant states being correctly estimated under the corrupted

measurement signals. To reach this idea, Feng (2007) designed a novel observer

that integrates an estimate scheme of sensor state into it. The preliminary results

of asymptotic stability against sensor faults are stated in detail in Feng (2007),

in which the sensor faults are restricted to be bounded and piece-wise constant

function and which are somewhat unrealistic. We will, however, in this paper,

relax the piece-wise constant restriction to allow the sensor faults to be time-

varying and/or nonlinear with bounds, which in most cases are bounded in

a polytopic fashion. But for some cases these presumed faulty sensors are

vulnerable due to various conditions, such as temperature, humidity, etc., which

their faults may fall outside the designed bounds easily. Thus, an estimate

scheme of sensor state is integrated into the observer-based control system

where the sensor fault outside the presumed region is captured. The difference

of true sensor function, representing the remaining function that sensor has,

and the estimate sensor function is assumed to be within a norm-bound, which

results in an extended ball that contains the newly happened faults. The notion
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of quadratic stability will be used to ensure the stability and L2-gain measures

the robust performance of an error signal in response to the signals produced

by the difference of estimated sensor function and true sensor function.

It is worth noting that our goal as stated is to observe the plant states. Once we

have the correct states we can design the control law accordingly. The results

of estimate scheme are used to monitor the condition of sensors and to assist

in observing the correct plant states. In this paper the sensor fault will not be

identified and thus although we do not intend to find the true sensor functions,

we, however, assume their differences can be bounded.

This paper is organized as follows. In Section 2, the system including observer

structure and fault models of bounded piece-wise constant function are for-

mulated. To proceed with Section 2, Section 3 gives the preliminary results

developed in Feng (2007). Section 4 presents the main results, which deal

with the robust performance against extended bounded-sensor-faults, which

is divided into three subsections including system reformulation, quadratic

stability and LMI (Linear matrix Inequality) characterizations. Section 5 in-

cludes the synthesis of observer and control gains in terms of LMIs. Section 6

demonstrates effectiveness of proposed method by a numerical example. Lastly,

in the Section 7 we conclude the overall results shown in this paper.

2. PROBLEM FORMULATION

Consider a linear time-invariant dynamical system with sensor faults










ẋ(t) = Ax(t)+Bu(t)+B1d(t), x(0) = x0

y(t) = Cx(t)

ys(t) = diag[y(t)]φ(t) = diag[φ(t)]y(t),

(1)

where x(t) ∈ ℜn is the state vectors and u(t) ∈ ℜm is the control signal of

actuator. y(t) ∈ ℜl is the output of the system and ys(t) ∈ ℜl is the true

measured output of sensor. d(t) ∈ ℜd is the disturbance. The representation

of diag[y(t)], when the vector y(t) is a vector with l components, is a square

matrix of dimension l with the elements of y(t) on the diagonal. The sensor

function, φ(t) ∈ ℜl , is to represent the remaining function of the associated

sensor. For example, if a sensor φk(t) = 0.8, in which φk(t) represents the

remaining function of kth sensor in the vector φ(t), then we say the sensor

is 80% functioning.

Now, consider a state observer with control law of the following form:
{

˙̂x(t) = Ax̂(t)+Bu(t)+L
(

ys(t)−diag[φ̂(t)]Cx̂(t)
)

u(t) = Kx̂(t)
(2)

where the vectors x̂ ∈ ℜn is the state of observer, which is an estimate of x(t).
Similarly, φ̂(t), an estimate of φ(t), which will be shown later in the sequel,

is useful to observe the state x(t) in the presence of sensor faults. L and K
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are the observer gain and control gain to be designed such that the control

objectives are achieved. Notice that the following expressions are interchange-

able when later deriving the formulas, diag[Cx(t)]φ(t) = diag[φ(t)](Cx(t)) and

diag[Cx̂(t)]φ(t) = diag[φ(t)](Cx̂(t)).

3. PRELIMINARIES

The following assumptions are used for demonstrating the asymptotic stability

based on Lyapunov method shown in the Theorem 1, which will be then relaxed

while L2-gain robust performance is pursued in the next section.

(1) φk(t) ∈ [0, 1].

(2) lim∆t→0
∆φk(ti)

∆t
= 0, where ∆φk(ti) = ∆φk(ti + ∆t)− ∆φk(ti), except at

some time instants that φk(t) jump toward zero.

The assumptions addressed above have the following interpretations: φk(t) = 0

means the sensor fails. φk(t) = 1 means the sensor works properly. A fault

sensor will be such that 0 < φk(t) < 1. Thus it is a bounded sensor fault.

The lim∆t→0
∆φk(ti)

∆t
= 0 and φk(t) jumping toward zero mean that the sensor

fault not only is a piecewise constant process but also indicate that φk(t) is a

bounded above function. The analysis of asymptotic stability of the closed-loop

system against bounded and piece-wise constant sensor faults is first studied

in Feng (2007), which is revealed in the following theorem and is stated for the

completeness. We define the following sets,

ΦΦΦ =
{

diag[φ ]
∣

∣

∣ φ = (φ T
1 φ T

2 · · · φ T
l )T ,

φk ∈ ℜ, φk ∈ [ φ k, φ k ]
}

and the vertex set of ΦΦΦ is defined as

BΦBΦBΦ =
{

diag[φ ]
∣

∣

∣ φ =(φ T
1 · · · φ T

l )T ,

φk = φ
k

or φk = φ k

}

(3)

Notice that it is easy to see that there are 2l vertices in BΦBΦBΦ to represent the

possible faults in a known convex set.

Theorem 1. Assumptions (1) and (2) hold. Consider the system (1) and (2) for

the case B1 = 0 and diag[φ ] ∈BΦBΦBΦ.

If there exist

(1) the matrices Q and L satisfying
{

Q = QT > 0

Ξ1(Q) < 0,
(4)

where

Ξ1(Q) = (A−L(diag[φ ])C)T Q+Q(A−L(diag[φ ])C),

(2) the matrices P and K satisfying
{

P = PT > 0

Ξ2(P) < 0,
(5)

where

Ξ2(P) = (A+BK)T P+P(A+BK),

(3) for a given matrix S > 0, the matrices W > 0 and Γ satisfying
{

Γ = ΓT > 0

W +W T −S > 0,
(6)

then the closed-loop system:


















ẋ = Ax+BKx̂

˙̂x = (A+BK −L(diag[φ̂ ])C)x̂+Lys

˙̂φ =

{

Γ
(

diag[Cx̂]
)

LT Qx̃ for φ̂ ∈ D

−ΓW φ̂ +Γ
(

diag[Cx̂]
)

LT Qx̃ for φ̂ ∈ D

(7)

is asymptotically stable for φ̂ ∈ D, where D is as follows:

D =

{

φ̂
∣

∣

∣‖φ̂‖2 ≤
λ l

ρ

}

and D =

{

φ̂
∣

∣

∣‖φ̂‖2 >
λ l

ρ

}

.

The parameters, λ and ρ , are the maximum and minimum eigenvalues of

W T S−1W and W +W T −S, respectively, for some positive definite symmetric

matrices W and S and W +W T −S > 0.

Proof. Refer to Feng (2007) for the proof.

4. ROBUST PERFORMANCE

In the last section the asymptotic stability, based on Lyapunov method, has

been shown for the system with bounded sensor faults under piecewise constant

assumption. Now, we will turn our focus on the system (7) where the robust

performance is studied for a set of extended admissible sensor faults. Notice

that, from now on, we will relax the piecewise constant assumption and not

only admit bounded time varying and/or nonlinear sensor function in the vertex

set, BΦBΦBΦ, but also let the true sensor faults, which may fall outside the presumed

bound, be norm-bound. A closed-loop autonomous system will be reformulated

in the following subsection.

4.1 System Reformulation

Consider closed-loop system (7), which can be rewritten as


















ẋc = Acxc +Bcw, xc(0) ∈ B

q = Cqxc

e = Cexc

w = diag[φ̃ ]q,

(8)

where

xc =





x̃

x

φ̂



 , Bc =





−L

0

0



 ,

Cq =
(

C C 0
)

, Ce =
(

C 0 0
)

,

Ac =





A−L(diag[φ ])C 0 0

BK A+BK 0

Γ(diag[Cx̂])LT X1 0 −ΓW



 ,

for x̃ = x̂− x, diag[φ ] ∈ BΦBΦBΦ, and diag[φ̃ ] = diag(φ̃1, · · · , φ̃l). We have used

the case where φ̂ ∈ D for the representation purpose in (8). The matrices K,

L, Γ, and X1 are to be determined in the sequel. The signal, w, is a bounded

exogenous signal that comprises φ̃ and Cx̂, i.e. w = diag[φ̃ ]Cx̂, where φ̃ is

the difference of estimated sensor function, φ̂ , and true sensor function, φ , i.e.

φ̃ = φ̂ − φ . The estimation error φ̃(t) is assumed to belong to the following

diagonal norm-bound set:

∆∆∆ ,
{

φ̃i(t)
∣

∣ |φ̃i(t)| ≤ 1, i = 1, · · · , l
}

,

which defines the extended sensor faults.

Remark 2. We have noticed that if the true sensor function falls within the

presumed polytopic bound, BΦBΦBΦ, then the diagonal norm-bound set, which is

confined within ∆∆∆, are partially (or maybe completely) overlaid with the BΦBΦBΦ.

However, if the true sensor function does not fall into the set BΦBΦBΦ, then it is

possible that BΦBΦBΦ intersects ∆∆∆ partially or their intersection is an empty set.

Remark 3. It is worth noting that, under the above assumption, the signal w is

such that

wT w = x̂TCT (diag[φ̃ ])T (diag[φ̃ ])Cx̂ ≤ x̂TCTCx̂,

which for asymptotically stable systems can be bounded above and will be

demonstrated in the sequel.

4.2 Robust Performance Measure

In this subsection, we shall define a robust performance measure, which is

used in the rest of the paper and also state an important theorem on which

the robust performance is established. We assume that not all state information

is available and we are concerned with designing a fixed structure of observer-

based controller to stabilize the system (8) with a given L2-gain constraint of an

error signal in respond to an exogenous signal for all admissible sensor faults.

We will be concerned with the following notion of stabilizability for the

system (8).

Definition 4. Let the constant γ > 0 be given. The system (8) is said to be

stabilizable with a robust L2-gain measure γ if there exists a fixed control

law u = Kx̂ and observer gain L such that for any admissible sensor faults the

following conditions are satisfied.

(1) The system is uniformly asymptotically stable.

(2) Subject to the assumption of zero initial condition, the controlled output e

satisfies
‖e‖2

‖w‖2
≤ γ.
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Here, we will also use the notion of quadratic stability with an L2-gain measure

which was introduced in Boyd (1994). This concept is a generalization of that

of quadratic stabilization to handle L2-gain measure constraint on exogenous

attenuation. To this end, the characterizations of robust performance based on

quadratic stability will be given in terms of matrix inequalities, where if LMIs

can be found then the computations by finite dimensional convex programming

are efficient.

Theorem 5. Consider the closed-loop system (8), the following statement hold:

the closed-loop system is said to be quadratically stable with a robust L2-gain

measure γ from input w to output e if there exists X > 0 and λ ≥ 0 such that

Π < 0, (9)

where

Π =

(

AT
c X +XAc +CT

e Ce +λCT
q Cq XBc

BT
c X −γ2I

)

. (10)

Proof. Let quadratic Lyapunov function be V (xc) = xT
c XxT

c , with X > 0 such

that

∀ xc, and w satisfying (8),

d

dt
V (xc)+ eT e− γ2

1 wT w < 0, (11)

and constraint

wT w ≤ xT
c CT

q Cqxc.

Then, it follows from the S-procedure that the equivalent condition of (11) is

the existence of λ ≥ 0 satisfying

d

dt
V (xc)+ eT e− γ2

1 wT w+λ (xT
c CT

q Cqxc −wT w) ≤ 0,

which can be equivalently written as

d

dt
V (xc)+λxT

c CT
q Cqxc + eT e− γ2wT w ≤ 0 (12)

for γ2 = γ2
1 + λ . Then the L2-gain of the (8) is less than γ . To show this, we

integrate (12) from 0 to T , with the initial condition xc(0) = 0, to get

V (xc(T ))+λ

∫ T

0
xT

c CT
q Cqxcdt +

∫ T

0
(eT e− γ2wT w)dt ≤ 0. (13)

Since V (xc(T ))+λ
∫ T

0 xT
c CT

q Cqxcdt ≥ 0, this implies

‖e‖2

‖w‖2
≤ γ. (14)

The inequality (9) and definition (10) are obtained by substituting (8) into (12).

Without loss of generality, we will adopt only strict inequality in this paper.

This completes the proof.

4.3 Matrix Inequality Characterizations

The following lemma is to show that the energy of the estimated output signals

by observer can be limited by some matrix inequalities, which can actually

provide an upper bound of the exogenous signal, w.

Lemma 6. Given










ẋc = Acxc, xc(0) ∈ B,

ŷi = Cq,ixc

B =
{

xc

∣

∣xT
c Xxc ≤ ν

}

, X > 0, ν > 0

(15)

If there exist X > 0 and θi > 0 satisfying

AT
c X +XAc < 0

ϒi > 0, i = 1, · · · , l, (16)

then the following statements are equivalent,

(1) ŷ2
i < θi

ν ,

(2) Θ̂ > 0, where

ϒi =





X CT
q,i

Cq,i
θi

ν
I



 , (17)

Θ̂ = (diag[Cx̂])(−νI)(diag[Cx̂])+Θ, (18)

Θ = diag(θ1, · · · ,θl).

Proof. B is an invariant ellipsoid: Let V (xc) = xT
c Xxc. Since

V̇ (xc) = xT
c

(

AT
c X +XAc

)

xc < 0

then we have

V (xc(t)) ≤V (xc(0)) ≤ ν .

Hence, xc(t) ∈ B, ∀t ≥ 0 and

ŷ2
i ≤ max

xc∈B

xT
c CT

q,iCq,ixc. (19)

Let θi = maxxc∈B xT
c CT

q,iCq,ixc. We have





X CT
q,i

Cq,i
θi

ν
I



 > 0, ⇔ CT
q,iCq,i <

θi

ν
X , ∀i (20)

From (19) and (20), we have

ŷ2
i ≤ max

xc∈B

xT
c CT

q,iCq,ixc <
θi

ν
, ∀i. (21)

This completes the proof of (1). The equivalence of (1) and (2) is straightfor-

ward.

Before stating the main theorem for the robust L2-gain measure γ of the

closed-loop system (8), which ensures the robust performance of the original

system (1) and (2) against sensor faults, the following matrices are defined:

Π1 =





Ξ2(X2)+λCTC X2BK +λCTC 0

(BK)T X2 +λCTC (⋆) −X1L

0 −LT X1 −γ2I



 , (22)

Π2 =

(

−(ΓW )T X3 −X3(ΓW )+2κX3 X3Γ

ΓT X3 −νI

)

, (23)

where

(⋆) = Ξ1(X1)+(λ +1)CTC +(X1L)Θ(LT X1).

Theorem 7. Let the γ > 0, κ > 0, and ν > 0 be given. The closed-loop

system (8) with the admissible bounded sensor faults is said to be quadratically

stable with a robust L2-gain measure γ , if, let the matrix X be in the set χ

χ =
{

block diag(X1,X2,X3)|Xi = XT
i > 0

}

,

there exist K, L, Γ > 0, Θ > 0, and X ∈ χ such that Π1 < 0, Π2 < 0, and

ϒi > 0, i = 1, · · · , l.

Proof. We consider the signals e(·) in response to the signals w(·) with the zero

initial states, and a (candidate) quadratic Lyapunov function V (xc) , xT
c Xxc.

For any nonzero vectors, ς1 and ς2, are defined as

ς1 =





x

x̃

w



 and ς2 =

(

φ̂

diag[Cx̂]LT X1x̃

)

.

We have

ϖ = ςT
1 Π1ς1 + ςT

2 Π2ς2

=

(

V̇ (xc)+λqT q+ eT e− γ2wT w

+ x̃T (X1L)Θ̂(LT X1)x̃+ φ̂ T (2κX3)φ̂

)

,
(24)

where Θ̂ is defined in (18). To prove statement (1), let ζ =

(

xc

w

)

, thus

ϖ = ζ T Πζ + x̃T (X1L)Θ̂(LT X1)x̃+ φ̂ T (2κX3)φ̂ ,

where Π is defined by (10). If the matrix inequalities, Π1 < 0, Π2 < 0, and

ϒi > 0, are satisfied, we have ϖ < 0, or equivalently,

ζ T Πζ < −x̃T (X1L)Θ̂(LT X1)x̃− φ̂ T (2κX3)φ̂ < 0, (25)

for nonzero x̃ and φ̂ , which implies Π < 0. Hence, by Theorem 5, the closed-

loop system is quadratically stable with a robust L2-gain measure γ is ensured.

This completes the proof.

Remark 8. It is highlighted that the κ is defined to be the decay rate of the

estimated sensor function φ̂ shown in (7) such that limt→∞ eκt‖φ̂‖ = 0, when

φ̂ ∈ D.

Before presenting the synthesis results in the next section, a useful and impor-

tant lemma will be stated for clarity:
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Lemma 9. (Elimination Lemma). (Boyd, 1994) Given H = H T ∈ℜn×n, V ∈
ℜn×m, and U ∈ ℜn×p with Rank(V ) < n and Rank(U T ) < n . There exists a

matrix K such that

H +V KU
T +U KT

V
T < 0

if and only if

V
T
⊥ H V⊥ < 0 and U

T
⊥ H U⊥ < 0,

where V⊥ and U⊥ are orthogonal complement of V and U , respectively, i.e.

V T
⊥ V = 0 and (V⊥ V ) is of maximum rank.

5. CONTROL AND OBSERVER GAIN SYNTHESIS

In this section according to the analyzed results shown in the last section,

the observer gain, L, and control gain, K, will be synthesized. The general

LMI synthesis problem involves sets of the form X ∈ χ and a list of matrices

A, B, C, L, K, Γ, and W and scalars ν , κ , and θi. We will conclude the

quadratic stability with a robust L2-gain measure γ control problem in an

convex optimization fashion. We will also specify the details in the following

and the results will be concluded in an algorithm of computation.

Assume diag[φ ]∈BΦBΦBΦ and φ̃i ∈∆∆∆, ∀i. Given pre-specified matrices A, B, C, W >
0 and scalars ν > 0 and κ > 0. If, according to Theorem 7, there exist matrices

X ∈ χ, L, K, Γ, Θ > 0, and γ2 such that Π1 < 0, Π2 < 0, and ϒi > 0, ∀ i,

are satisfied, then the closed-loop system is quadratically stable with a robust

L2-gain measure γ . Let the matrix Π1 be decomposed into

Π1 = Π1 1 +Π1 2 < 0, (26)

where

Π1 1 =





Ξ2(X2) X2BK 0

(BK)T X2 (⋆⋆) −X1L

0 −LT X1 −γ2I



 ,

Π1 2 = λ





CT

CT

0





(

C C 0
)

,

(⋆⋆) = Ξ1(X1)+CTC +(X1L)Θ(LT X1).

Thus,

ςT
1 Π1ς1 = ςT

1 Π1 1ς1 + ςT
1 Π1 2ς1.

It is noted that

ςT
1 Π1 2ς1 = λqT q ≥ 0 (27)

for λ ≥ 0. Next, by S-procedure, the requirement of ςT
1 Π1ς1 < 0 is equivalent

to

ςT
1 Π1 1ς1 < 0,

which implies Π1 1 < 0. Hence, by the well known Schur Complement, the

matrix Π1 1 < 0 can be rewritten as








Ξ2(X2) X2BK 0 0

(BK)T X2 Ξ1(X1)+CTC −X1L X1L

0 −LT X1 −γ2I 0

0 LT X1 0 −Θ−1









< 0. (28)

The inequality (28) can be again rewritten as

H +V KU
T +U KV

T < 0, (29)

where

H =









AT X2 +X2A 0 0 0

0 Ξ1(X1)+CTC −X1L X1L

0 −LT X1 −γ2I 0

0 LT X1 0 −Θ−1









, (30)

V =









X2B

0

0

0









, and U =









I

I

0

0









. (31)

Next, the orthogonal complement of V and U is given by

V⊥ =









X−1
2 B⊥ 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I









and U⊥ =









I 0 0

−I 0 0

0 I 0

0 0 I









, (32)

which B⊥ is defined as the orthogonal complement of B and is such that

BT
⊥B = 0 and [B B⊥] is of maximum rank. Similarly, V and U are defined

as orthogonal complement of V and U , respectively.

It is followed by using the well known Elimination Lemma stated in Lemma 9

that the matrix variable, K, can be eliminated from the inequality (29), which is

equivalent to the following two inequalities,

V
T
⊥ H V⊥ < 0 and U

T
⊥ H U⊥ < 0. (33)

Substituting (30) and (32) into (33), we have

V
T
⊥ H V⊥ =









BT
⊥(X−1

2 AT +AX−1
2 )B⊥ 0 0 0

0 Ξ1(X1)+CTC −X1L X1L

0 −LT X1 −γ2I 0

0 LT X1 0 −Θ−1









< 0,
(34)

which is equivalent to

BT
⊥(X−1

2 AT +AX−1
2 )B⊥ < 0, (35)





Ξ1(X1)+CTC −X1L X1L

−LT X1 −γ2I 0

LT X1 0 −Θ−1



 < 0, (36)

and

U
T
⊥ H U⊥

=





AT X2 +X2A+Ξ1(X1)+CTC X1L −X1L

LT X1 −γ2I 0

−LT X1 0 −Θ−1



 < 0.
(37)

It is noted that (35), (36), and (37) can not be solved simultaneously using LMI

Toolbox of Matlab due to its non-convexity in matrix variable, X2. We therefore

propose that X−1
2 of (35) be solved first. It is easy to find X2 using X−1

2 . If we

let L̂ = X1L, then (36) and (37) are LMIs in variables, X1, L̂, γ2, and Θ, which

can be solved simultaneously by the LMI Toolbox of Matlab. The rest LMIs

considered are Π2 < 0 for a pre-specified decaying rate, κ > 0, ν > 0, and

matrix W > 0, we have
(

−Γ̂W −W T Γ̂T +2κX3 Γ̂

Γ̂T −νI

)

< 0, X3 > 0, (38)

where Γ̂ = X3Γ. And lastly for ϒi > 0 using Schur Complement, we equivalently

have

X −

(

ν

θi

)

CT
q,iCq,i > 0, i = 1, · · · , l, (39)

where Θ = diag(θ1, · · · ,θl).

Remark 10. (Step of computation). Now, we can summarize the step of com-

putation.

(1) Find feasible solutions of X−1
2 > 0 and thus X2 where LMI (35) is satisfied.

(2) Use the computed matrices X2 found in step 1), the robust L2-gain perfor-

mance problem is placed as the following optimization problem:

minimize γ2

subject to (36), (37), (38), and (39)

X1 > 0,X3 > 0,Θ > 0.

(40)

(3) Reconstruct control gain, K, the matrices found in step (1) and (2) are

substituted into the inequality (29), which is LMI on one matrix variable, K

and can be solved by LMI Toolbox of Mtalab.

6. NUMERICAL EXAMPLE

This example adopted from Yang (2001) will be used to illustrate the proposed

design with the following parameters:

A =
(

0 1 0
0 0 1
6 −1 −4

)

, B =
(

0
0
1

)

, and C =
(

1 0 0
0 1 0

)

.

We will test three cases to verify the superiority of the designed observer-based

controller. First, case #1: one sensor fault where the conditions for simulation

are similar to those in Yang (2001), in which the sensor y1 is perfectly normal

and sensor y2 is subject to faults with 50% reduction in signal strength. That is,

by Theorem 1, φ1 is equal to 1 and φ2 is allowed to be time varying or nonlinear

function and varies between 0 and 0.5, i.e. 0 ≤ φ2 ≤ 0.5. In the simulation we

let φ2 = 0.25 +0.1sin(10t) to examine the design. Using Matlab LMI Control

toolbox and following the step of computation in Remark 10, the matrix, X2, is

computed:

X2 =
(

1.5829 1.6959 0.9610
1.6959 3.8158 1.6959
0.9610 1.6959 1.5829

)

.
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Then we solve optimization problem proposed by (40). We find

X1 = 107

(

9.3574 −7.9408 −1.4166
−7.9408 8.8721 −0.9313
−1.4166 −0.9313 2.3478

)

, L =
(

20.0010 0.0263
20.0010 0.0263
20.0010 0.0263

)

K = (−7.0000 −1.7000 1.3000)

and the optimal value of γ2 is 56.0603. The control gain K places the eigen-

values of matrix A + BK at {-1.00, -0.85± j0.5268}. It is of interest that

the eigenvalues of A− L(diag[φ ])C are placed around {−19,−2,−3} for all

φ2 = 0.25 + 0.1sin(10t). It is highlighted that L(diag[φ ])C intend to closely

map the fault sensor signal into the its null space. This claim can be verified by

viewing,

L(diag[φ ])C =

(

20.0010φ1 0.0263φ2 0
20.0010φ1 0.0263φ2 0
20.0010φ1 0.0263φ2 0

)

,

where the effectiveness of φ2 on the eigenvalues of A−L(diag[φ ])C has been

greatly reduced. Fig.1 and Fig.2 show the complete simulation results. In Fig.1,

the observed states, x̂, converge to the plant states, x, eventually. In Fig.2, it

is noted that the estimate sensor function φ̂1 approaches very closely to its

true value. However, for fast variation of sensor function φ2 the estimated

sensor function, φ̂2 does not follow it but stay at certain value as t → ∞. We

must highlight that the estimate scheme of sensor function may not be able to

approach the true sensor function, see Astrom (1994) for detail, if lacking of

persistent excitation, but to keep the the difference of estimated signal and true

sensor function within a bound. It is seen from Fig7(a) that the φ̃i ∈∆∆∆, i = 1,2.

In Fig.2, the control input, u, is also shown.

The second simulation, case #2, uses the condition, which is similar to the

previous case, where true sensor function φ1 = 1 and the true sensor function

φ2 is not in the designed interval, i.e. φ2 /∈ BΦBΦBΦ, which makes φ2 > 0.5 or

φ2 < 0. In the simulation, we let true sensor function, φ2 = 1.5 + 0.1sin(10t).
The simulation results can actually be predicted and are similar to the previous

case since the computed observer gain L closely maps the second sensor signal

into its null space. It is easy to predict that the states, x and x̂, will be similar

to Fig.1 and is shown in Fig.3. In Fig.4, the true sensor functions, φ1 and φ2,

estimated sensor functions, φ̂1 and φ̂2, and control signals, u are depicted. It is

shown that although the estimated signal, φ̃2 is within the diagonal norm-bound,

∆∆∆, which is shown in Fig7(b), its results are deteriorated by the poor guess of

its initial states.

The third simulation, i.e. case #3, is to show two sensor faults. We allow the true

sensor function φ1, shown in Fig.6, to be varying in the pulse form between 0.4

and 0.7 for the first 0.8 second and then φ1 = 0.6+0.03sin(10t), t ≥ 0.8, while

keeping φ2 = 0.25+0.1sin(10t) for t ≥ 0. To compute K and L, we assume the

polytopic bound with 0.4 ≤ φ1 ≤ 1 and 0 ≤ φ2 ≤ 0.5. We surprisingly found

K = (−6.9980 −1.6965 1.3033), which is close to the one sensor fault case, and

LT =
(

199.9852 199.9852 199.9852
0.0333 0.0333 0.0333

)

. Under two sensor fault case we have raised

the γ2 = 222.5654. It is not surprising to have the result since the signals for

feedback is extremely week. We have shown the comparison of the true states

and observed states in Fig.5, where the large ripples of the observed states are

produced due to the pulses of the true sensor function in the first 0.8 second but

soon died out. In Fig.6, the control input, the true sensor signals and estimate

sensor signals are depicted. We recognize again from Fig.6 and Fig.7 that

although we assume that φ̃i ∈∆∆∆, i = 1,2, it really depends on the good guess of

initial states on the estimate scheme due to viewing the fact that φ̂2 maintains

at its initial states. This, however, can be understood that the associated sensor

function is not subject to persistent excitation (Astrom, 1994) since it is mapped

closely to its null space.

7. CONCLUSION

This paper has developed an observer-based robust control system with an

estimate scheme of sensor states against extended bounded-sensor-faults. In this

design the control system not only can deal with the sensor fault in a prescribed

polytopic bound but also can endure the faults outside the bound. Based on

the notion of quadratic stability with a robust L2-gain measure γ , sufficient

conditions for the solvability of the robust control problem have been obtained

and a complete solution was given in terms of LMIs. The numerical example

shows the effectiveness of the designed method.

0 0.5 1 1.5 2 2.5 3
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time (sec)

x2
x̂2

x̂3

x3

x1

x̂1

Fig. 1. Case #1: the comparison of the plant states, x, and observed states, x̂,

of one sensor fault for the true sensor function φ2 ∈BΦBΦBΦ.
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Fig. 2. Case #1: true sensor functions, φ1 = 1 and φ2 = 0.25+0.1sin(10t), and

estimated sensor functions, φ̂1 and φ̂2, for φ2 ∈BΦBΦBΦ. The control input,

u, is also shown.
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Fig. 3. Case #2: the comparison of the plant states, x, and observed states, x̂,

of one sensor fault for the true sensor function φ2 /∈BΦBΦBΦ.
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