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Abstract: This paper, apart from the polynomial estimation technique based on the state-
space model, examines to develop an estimation method for the quadratic estimation problem
by applying the multivariate RLS Wiener estimator to the quadratic estimation of a stochastic
signal in linear discrete-time stochastic systems. The augmented signal vector includes the signal
to be estimated and its quadratic quantity. The signal vector is modeled in terms of an AR
model of appropriate order. A numerical simulation example for the speech signal as a practical
stochastic signal is implemented and its estimation accuracy is fairly improved in comparison
with the existing RLS Wiener estimators. It is advantageous that the proposed method can be
applied to the quadratic estimations of wide-sense stationary stochastic signals in general.

1. INTRODUCTION

It is reported that the quadratic filter improves the es-
timation accuracy in comparison with the optimal linear
filter De Santis et al. [1995]. The filter in De Santis et
al. [1995] is designed along with the state-space model in
discrete-time non-Gaussian stochastic system. In Bondon
[1994], the problem of estimating a signal by taking a poly-
nomial of the observation is considered and it is indicated
that the estimate variance decreases in comparison with
linear estimation technique. In Caravetta et al. [1997],
the general type of polynomial filter for linear systems
with multiplicative noise is proposed based on the state-
space model. In Uppala and Sahr [1997], a quadratic
filter is designed for edge detection in images. In Dalla
Mora et al. [2001], the quadratic estimation technique
in De Santis et al. [1995] is applied to the restoration
of images corrupted by additive non-Gaussian noise. For
the quadratic estimation approach using the state-space
models, the augmented signal and observation vectors are
introduced by aggregating their second-order powers to
each original vector, and orthogonal projection method is
applied to obtain the linear estimator of the augmented
signal based on the augmented observations. So, the ob-
tained quadratic estimator consists of a linear combination
of linear and quadratic filters and, hence, it has a struc-
ture in the form of a second-order Volterra series whose
input is just the set of measurements used for estimation.

⋆ This work was partially supported through the projets MTM2005-

03601 and P06-FQM-02271.

The specific properties of these measurements lead to a
recursive structure for the estimator. The Volterra filters
express general models for a various nonlinear systems and
are applied to nonlinear system identification problems
(Nowak [1998], Raz and Van Veen. [1998], Yamada et al.
[2003]).

In Nakamori [1995], the RLS Wiener fixed-point smoother
and filter using covariance information are shown in linear
discrete-time stochastic systems. The RLS Wiener esti-
mators use the information of the system matrix for the
state vector, the observation matrix for the signal and
the variance of the state vector. In addition, the variance
of the observation noise is necessary. In Nakamori [1996],
the linear multivariate RLS Wiener fixed-point smoother
and filter, using covariance information, are designed.
The multivariate stochastic signal is modeled in terms of
the autoregressive (AR) model of appropriate order. In
Nakamori et al. [2003], by using covariance information
of the signal and observation noise, the recursive mean-
squared error and second-order polynomial filtering and
fixed-point smoothing algorithms to estimate the signal,
from uncertain observations, are proposed. Here, the co-
variance information is expressed in the semi-degenerate
kernel form. It might have been a task to develop a
method applicable to the estimation of stochastic signals
generally in the engineering aspect. From these respects,
this paper, apart from the method adopted in De Santis et
al. [1995], newly examines to develop a technique for the
quadratic estimation problem by applying the multivariate
RLS Wiener estimators to the quadratic estimation of
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stochastic signals in linear discrete-time systems. The aug-
mented signal vector includes the signal to be estimated
and its quadratic quantity. The augmented signal vector
is modeled in terms of an AR model.

A numerical simulation example by the proposed quadratic
estimators is implemented for the speech signal as a prac-
tical stochastic signal. As expected from the literatures on
the quadratic estimators, its estimation accuracy is fairly
improved in comparison with the RLS Wiener estimators
in Nakamori [1995].

2. QUADRATIC ESTIMATION PROBLEM

Let z(k) and y(k) be m × 1 vectors which describe the
signal that we wish to estimate and the observed value
of the signal at time k, respectively. Let the observation
equation be given by

y(k) = z(k) + v(k), (1)

where v(k) is the observation noise vector.

By defining the random vector y[2](k) = y(k) ⊗ y(k),
where ⊗ denotes Kronecker product De Santis et al.
[1995], and by assuming that E[y[2]T (k)y[2](k)] < ∞, the
least mean squared error (LMSE) second-order polyno-
mial (or quadratic) estimate of z(k) based on the ob-
served values, y(1), · · · , y(L), is the orthogonal projection
of z(k) on the space of m-dimensional linear transfor-
mations of y(1), · · · , y(L) and their second-order powers

y[2](1), · · · , y[2](L).

In order to analyze the LMSE second-order polynomial
estimation problem, we assume the following hypotheses
on the signal and the noise processes involved in (1).

(I) The signal process {z(k); k ≥ 0}, z(k) = Hx(k), has
zero mean. Let the autovariance function of the state
vector x(k) be denoted byKx(k, k). Then the autovariance
function of the signal is given by

E[z(k)zT (k)] = HKx(k, k)HT . (2)

(II) The noise process {v(k); k ≥ 0} is a zero-mean white
sequence and the matrices

Rv(k) = E[v(k)vT (k)] (3)

Rvv[2](k) = E[v(k)v[2]T (k)] (4)

Rv[2](k) = E[(v[2](k) −E[v[2](k)])(v[2](k) − E[v[2](k)])T ]
(5)

are known. Here, v[2](k) represents its Kronecker power of
v(k).

(III) The processes {z(k); k ≥ 0} and {v(k); k ≥ 0} are
mutually independent.

Our aim is to obtain the LMSE second-order polyno-
mial fixed-point smoothing estimate ẑ(k, L), at the fixed
point k, of the signal z(k), based on the observed values
{y(s), 1 ≤ s ≤ L,L > k} and the filtering estimate
ẑ(k, k) of z(k) based on the observed values {y(s), 1 ≤
s ≤ k}.The fixed-point smoothing estimate ẑ(k, L) is
a linear function of y(1), · · · , y(L) and their Kronecker
powers y[2](1), · · · , y[2](L).

To treat this problem, let us define the augmented signal
and observation vectors by adding to the original vectors
their second-order powers that is

ζ(k) =

[
z(k)

z[2](k)

]
, ψ(k) =

[
y(k)

y[2](k)

]
(6)

Here, z[2](k) represents its Kronecker power of z(k).Then
the vector constituted by the first m entries of the LMSE
linear estimate of ζ(k) based on ψ(1), · · · , ψ(L) provides
the LMSE second-order polynomial fixed-point smoothing
estimate of the signal z(k).

In the next section, we analyze the properties of the
random vectors ζ(k) and ψ(k) which will be utilized to
obtain the LMSE linear estimates of ζ(k).

3. AUGMENTED OBSERVATION EQUATION

To study the properties of the vector ψ(k) we need to
obtain an appropriate expression for y[2](k). By employing
the Kronecker product properties Nakamori et al. [2003],
it can be shown that

y[2](k) = z[2](k) + f(k) (7)

with

f(k) = (Im2 +Km2 )(z(k) ⊗ v(k)) + v[2](k), (8)

where Im2 is the m2 × m2 identity matrix and Km2 is
the m2 ×m2 commutation matrix satisfying Km2 (z(k) ⊗
v(k)) = v(k) ⊗ z(k). Then, by denoting

υo(k) =

[
v(k)
f(k)

]
, (9)

it is clear that ψ(k) satisfies the following equation

ψ(k) = ζ(k) + υo(k). (10)

It should be noted that the signal and noise in this
equation, ζ(k) and υo(k) respectively, have non-zero mean.
Anyway, we can subtract the mean values and we obtain
that Y (k) = ψ(k)−E[ψ(k)] satisfies the following equation

Y (k) = Z(k) + V (k), (11)

where Z(k) = ζ(k)−E[ζ(k)] and V (k) = υo(k)−E[υo(k)].

In the following proposition the statistical properties of
the process {V (k); k ≥ 0} involved in (11) are established.

Proposition. Under hypotheses (I)-(III), the noise of (11)
is a sequence of zero-mean mutually uncorrelated random
vectors with covariance matrices

RV (k) =

[
Rv(k) Rvv[2](k)
RT

vv[2](k) R22(k)

]
(12)

being

R22(k) = (Im2 +Km2 )(HKx(k, k)HT ⊗Rv(k))

× (Im2 +Km2 ) + Rv[2](k). (13)

Moreover, {V (k); k ≥ 0} is uncorrelated with the process
{Z(k); k ≥ 0}.

Proof. Clearly, ∀k ≥ 0, E[V (k)] = 0, and, ∀k, s ≥ 0,

E[V (k)V T (s)]

= E[(υo(k) − E[υo(k)])(υo(s) −E[υo(s)])
T ]. (14)

Using the independence hypotheses on the model we have
that, for k 6= s, E[V (k)V T (s)] = 0, and, for k = s,

RV (k) = E[(υo(k) − E[υo(k)])(υo(k) −E[υo(k)])
T ]. (15)
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Using the independence hypotheses on the model and
expression (8), the Kronecker product properties lead to

E[(υo(k) − E[υo(k)])(υo(k) −E[υo(k)])
T ]

=

[
Rv(k) Rvv[2](k)
RT

vv[2](k) R22(k)

]
, (16)

where

R22(k) = (Im2 +Km2 )E[z(k)zT (k)] ⊗E[v(k)vT (k)]

× (Im2 +Km2 ) + Rv[2](k). (17)

¿From hypotheses (I), E[z(k)zT (k)] = HKx(k, k)HT , and
from (II), Rv(k) = E[v(k)vT (k)], so, expression (13) is
obtained.

Finally, the uncorrelation between {V (k); k ≥ 0} and the
process {Z(k); k ≥ 0} is derived in a similar way, by using
hypotheses (I) and (III) (Q.E.D.).

4. EXPRESSION FOR AUTO-COVARIANCE
FUNCTION OF THE AUGMENTED SIGNAL

In Nakamori [1995], the linear RLS Wiener estimators
use the information of the system matrix for the state
vector, the observation vector and the variance of the state
vector for the observation equation (1) particularly for
m = 1. In Nakamori [1996], the linear multivariate RLS
Wiener estimators are designed for multi-channel obser-
vation equations, where the signal process is expressed in
terms of an AR model. From the AR model, the state
equations for the state vector and the observation matrix
are obtained. The system matrix is included in the state
equation. The variance of the state vector is expressed in
terms of the auto-covariance function of the signal. Since
the stochastic signal process is fitted to the AR model, this
kind of approach might be applicable to the estimation of
stochastic signals generally.

Now, in Nakamori et al. [2003], by using covariance infor-
mation of the signal and observation noise, the recursive
LMSE and second-order polynomial filtering and fixed-
point smoothing algorithms to estimate the signal, from
uncertain observations, are proposed. Here, the covariance
information is expressed in the semi-degenerate kernel
form. In Nakamori et al. [2003], it is shown that the
quadratic estimators improve the estimation accuracy in
comparison with the linear estimators using covariance
information for non-Gaussian observation noise.

From these respects, this paper derives the quadratic RLS
Wiener estimators. For this purpose, let us consider the
augmented observation equation (11) expressed in the
following form:

Y (k) = Z(k) + V (k)

=

[
z(k)

z[2](k) − E[z[2](k)]

]
+

[
v(k)

f(k) − E[f(k)]

]

=
[
Im(m+1) 0m(m+1)×m(m+1)(n−1)

]





χ1(k)
χ2(k)

...
χn−1(k)
χn(k)





+

[
v(k)

f(k) −E[f(k)]

]
,

Z(k) = Hχ(k),
H =

[
Im(m+1) 0m(m+1)×m(m+1)(n−1)

]
,

(18)

where χ(k) = [ χ1(k) χ2(k) · · · χn(k) ]
T

is am(m+1)n×1
state vector for both the signal z(k) and the quadratic
quantity z[2](k)−E[z[2](k)]. H represents the m(m+1)×
mn(m + 1) observation matrix for Z(k).

The expressions of the state vector and the observation
matrix in (18) are obtained by an extension of the treat-
ment for the multivariate signal Nakamori [1996] to the
case of the quadratic estimation problems. Namely, we
assume that the augmented signal Z(k) is generated by
the AR model of order n:

Z(k) = −a1Z(k − 1) − a2Z(k − 2) − · · ·anZ(k − n)
+e1(k), e1(k) = u(k − n).

(19)

Hence, as in Nakamori [1996], it is seen that the processes
χi(k), i = 1, 2, · · · , n, are generated by the stochastic
system of order m(m+ 1)n





χ1(k + 1)
χ2(k + 1)

...

...
χn(k + 1)





=





0 Im(m+1) 0 · · · 0 0
0 0 Im(m+1) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 Im(m+1)

−an −an−1 −an−2 · · · −a2 −a1





×





χ1(k)
χ2(k)

...

...
χn(k)




+





0
0
...
...

Im(m+1)




u(k),

E[u(k)uT (s)] = σ2Im(m+1)δK(k − s). (20)

Let the auto-covariance function of the augmented signal
Z(k) be expressed by

KZ(k, s) = E[Z(k)ZT (s)] = HΦk−sKχ(s, s)HT ,

Z(k) = Hχ(k), 0 ≤ s ≤ k, (21)

where Φ represents a system matrix for χ(k) and Kχ(s, s)
represents the variance matrix of χ(s).

For the signal process with the wide-sense stationary
property KZ(k, k) = KZ(k − k) = KZ(0), the variance
of the state vector χ(k) is expressed as Nakamori [1996]

Kχ(k, k) = E[χ(k)χT (k)]

=





KZ(0) KT
Z (1) · · · KT

Z (n− 1)
KZ(1) KZ(0) · · · KT

Z (n− 2)
...

...
. . .

...
KZ(n− 2) KZ(n − 3) · · · KT

Z (1)
KZ(n− 1) KZ(n − 2) · · · KZ(0)




.

(22)

Then the AR parameters, a1, a2, · · · , an, are calculated by
the Yule-Walker equations Nakamori [1996],
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KZ(0) KT
Z (1) · · · KT

Z (n− 1)
KZ(−1) KZ(0) · · · KT

Z (n− 2)
...

...
. . .

...
KZ(−(n− 2)) KZ(−(n− 3)) · · · KT

Z (1)
KZ(−(n− 1)) KZ(−(n− 2)) · · · KZ(0)




.





aT
1

aT
2
...

aT
n−1

aT
n





=





−KZ(−1)
−KZ(−2)

...
−KZ(−(n− 1))

−KZ (−n)




. (23)

Let the system matrix in (20) for the signal Z(k) be Φ

Φ =





0 Im(m+1) 0 · · · 0 0
0 0 Im(m+1) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 Im(m+1)

−an −an−1 −an−2 · · · −a2 −a1




. (24)

¿From (23), Φ is calculated in terms of the auto-covariance
data KZ(i), i = −n,−(n− 1), · · · , n− 1.

Henceforth, the observation matrix H , the system matrix
Φ and the variance matrix Kχ(k, k) of the state vec-
tor χ(k) concerned with the augmented signal Z(k) =[
z(k) z[2](k) −E[z[2](k)]

]T
are given by (18), (24) and

(22), respectively. H , Φ and Kχ(k, k) suffice to express the
auto-covariance function of the augmented signal Z(k) in
(21).

5. FIXED-POINT SMOOTHING AND FILTERING
ALGORITHMS FOR AUGMENTED SIGNAL Z(K)

Using the properties of the processes involved in (11), we
derive recursive algorithms for the fixed-point smoothing

estimate Ẑ(k, L), L > k, based on the observations

Y (1), · · · Y (L) , and the filtering estimate Ẑ(k, k) of the
signal Z(k). These estimation equations are presented
in [Theorem 1] and allow us to obtain the required
quadratic RLS Wiener fixed-point smoothing and filtering
estimates of the signal z(k).

[Theorem 1].Let the auto-covariance function of the aug-
mented signal Z(k) be given by (21), then the quadratic
RLS Wiener algorithms for the fixed-point smoothing es-

timate Ẑ(k, L), L > k, and the filtering estimate Ẑ(k, k)
of the augmented signal Z(k) consist of (25)-(33).

Fixed-point smoothing estimate of Z(k): Ẑ(k, L)

Ẑ(k, L) = Hχ̂(k, L) (25)

Fixed-point smoothing estimate of χ(k): χ̂(k, L)

χ̂(k, L) = χ̂(k, L− 1) + h(k, L, L)

× (Y (L) −HΦχ̂(L− 1, L− 1)) (26)

h(k, L, L) = (Kχ(k, k)(ΦT )L−kHTR−1
V (L)

− q(k, L− 1)ΦTHTR−1
V (L))

× (I +HKχ(k, k)HTR−1
V (L)

−HΦS(L− 1)ΦTHTR−1
V (L))−1 (27)

q(k, L) = q(k, L− 1)ΦT + h(k, L, L)H

× (Kχ(L,L)− ΦS(L− 1)ΦT ), (28)

q(k, k) = S(k) (29)

Filtering estimate of Z(k): Ẑ(k, k)

Ẑ(k, k) = Hχ̂(k, k) (30)

Filtering estimate of χ(k): χ̂(k, k)

χ̂(k, k) = Φχ̂(k − 1, k− 1) +G(k)
×(Y (k) −HΦχ̂(k − 1, k− 1)), χ̂(0, 0) = 0

(31)

S(k) = ΦS(k − 1)ΦT +G(k)H(Kχ(k, k) − ΦS(k − 1)ΦT ),
S(0) = 0

(32)

Filter gain G(k)

G(k) = (Kχ(k, k)HT − ΦS(k − 1)ΦTHT )

× (RV (k) +HKχ(k, k)HT −HΦS(k − 1)ΦTHT )−1

(33)

Proof. [Theorem 1] can be proved, for the augmented
observation equation (18) and the auto-covariance func-
tion (21) of the augmented signal Z(k), by referring to
the derivation technique of the RLS Wiener fixed-point
smoothing and filtering equations in Nakamori [1995].

6. A NUMERICAL SIMULATION EXAMPLE

Let a scalar observation equation be given by

y(k) = z(k) + v(k), (34)

and let {v(k); k ≥ 0} be a sequence of independent random
variables with

P [v(k) = −8] =
1

8
, P [v(k) =

8

7
] =

7

8
(35)

hence

E[v(k)] = 0, Rv(k) = 9.1428571,

Rvv2(k) = −62.693878, Rv2(k) = 513.49271. (36)

Let us consider the problem of estimating a vowel signal
spoken by one of the authors. Its phonetic symbol is
written as ”/i:/”. The sampling frequency of the voice
signal z(k) is 11.025(kHz). The auto-covariance data of
the signal are calculated in terms of the N(= 5000)
sampled signal data. Let the order of the AR model in
(19) be n = 10. The AR parameters ai, i = 1, · · · , n, are
calculated by the Yule-Walker equations (23). Here, the
sampled auto-covariance data of the augmented signal are

calculated by K̂Z(k) =
∑

N
i=kZ(i)ZT (i − k)/N. K̂Z(k) is

also evaluated in terms of the augmented observed values
Y (·) for k 6= 0.

Substituting the observation matrix H in (18), the system
matrix Φ in (24) and the variance matrix Kχ(k, k), for
n = 10, into the estimation algorithms of [Theorem
1], the fixed-point smoothing and filtering estimates are
calculated. Fig.1 illustrates the signal z(k), the filtering
estimate ẑ(k, k) and the fixed-point smoothing estimate
ẑ(k, k + 5) calculated by the quadratic estimation algo-
rithm in [Theorem 1] vs. k. Here, the variance of the
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signal process is 1.0873. Fig.2 illustrates the signal z(k),
the filtering estimate ẑ(k, k) and the fixed-point smoothing
estimate ẑ(k, k + 5) calculated by the linear RLS Wiener
algorithm in Nakamori [1995] vs. k. Fig.3 illustrates the
mean-square values (MSVs) of the estimation errors z(k)−
ẑ(k, k + lag), 0 ≤ lag ≤ 10, by the quadratic estimation
algorithms and the linear RLS Wiener algorithms. Here,
the MSVs are calculated by

∑
500
k=1(z(k)− ẑ(k, k))

2/500 for
the filter and

∑
500
k=1

∑
5
j=1(z(k)− ẑ(k, k+ j))2/2500 for the

fixed-point smoother. For lag = 0, the MSV of the filtering
error z(k)− ẑ(k, k) is depicted. The fixed-point smoothing
estimate and the filtering estimate in Fig.1 show the time-
lead property in comparison the estimates in Fig.2. From
Fig1, Fig.2 and Fig.3, the proposed quadratic fixed-point
smoother and filter significantly improve the estimation
accuracy in comparison with the RLS Wiener estimators.

7. CONCLUSION

In this paper, the multivariate filter and fixed-point
smoother using covariance information are applied to the
quadratic estimation problem of a stochastic signal in
linear discrete-time systems.

From the numerical simulation results, the proposed
quadratic estimation technique has shown superior accu-
racy for both the fixed-point smoother and the filter in
comparison with the linear RLS Wiener estimators. In the
filtering algorithm in [Theorem 1], N(N+1)/2+N, N =
m(m + 1)n difference equations should be simultaneously
calculated. Hence, as m becomes large, the computational
manupurations of the estimation algorithms increase. For
the estimation characteristics for m > 1, it might be left
as a future task.

Also, the estimation of the fourth moment of the signal
process from available data might be left as a future task
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Nakamori [1995] vs. lag.
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