
Fast Iterative Learning Control for Delay Systems:

A Predictive Approach ⋆

Deyuan Meng, Yingmin Jia ∗, Junping Du ∗∗, Shiying Yuan ∗∗∗

∗ The Seventh Research Division, Beihang University, Beijing 100083, China
(e-mail: dymeng23@126.com, ymjia@buaa.edu.cn)

∗∗ Beijing Key Laboratory of Intelligent Telecommunications Software and
Multimedia, School of Computer Science and Technology, Beijing University

of Posts and Telecommunications, Beijing 100876, China
(e-mail: junpingdu@126.com)

∗∗∗ School of Electrical Engineering and Automation, Henan Polytechnic
University, Jiaozuo 454000, Henan, China (e-mail: yuansy@hpu.edu.cn)

Abstract: In a previous paper (Li et al. (2005)), an iterative learning control (ILC) law, proposed for
linear continuous systems with a single time delay, has the ability to drive the output tracking error to
zero only after one learning iteration. The convergence result is quite attractive; however, it requires
unavailable system state. The aim of this paper is to provide a predictive approach to not only reach
this result, but also extend it to linear continuous systems with multiple time delays. To this end, that
unavailable system state is predicted and its corresponding equivalent form is obtained, based on which
new ILC laws with fully available information are determined, ensuring the zero output tracking only
after one learning iteration. The numerical simulation shows that this kind of ILC design is available,
and furthermore the extension of the results from systems with a single time delay to those with multiple
time delays is feasible.

1. INTRODUCTION

Consider the linear system with a single time delay

∂x(t,k)

∂ t
= Ax(t,k)+A0x(t − t0,k)+Bu(t,k)

y(t,k) = Cx(t,k)
(1)

where t ∈ [0,T ] is the continuous-time index, k ∈ Z+ is the
iteration number, x(·, ·) ∈ R

n is the state, u(·, ·) ∈ R
m is the

input, and y(·, ·) ∈ R
l is the output. The delay parameter t0 is

time-invariant, and the system matrices A, A0, B and C are real
constant matrices of appropriate dimensions. Define a general
ILC law as

u(t,k +1) = u(t,k)+∆u(t,k) (2)

then boundary conditions for the iterative learning control sys-
tem (ILCS) (1) and (2) are given by, i.e., (Li et al., 2005, (3))

x(t,k) = x0(t), for t ∈ [−t0,0] and k ∈ Z+

u(t,0) = u0(t), for t ∈ [0,T ]
(3)

where x0(·) and u0(·) can be arbitrarily chosen. Assume that the
desired output trajectory is denoted by yd(t) for t ∈ [0,T ] which
satisfies yd(0) = Cx0(0). From Li et al. (2005), it follows that
there exists an ILC law, i.e., (Li et al., 2005, (15))

u(t,k +1) =u(t,k)+K1[x(t,k +1)− x(t,k)]

+K2[x(t − t0,k +1)− x(t − t0,k)]

+K3

[

dyd(t)

dt
−

∂y(t,k)

∂ t

] (4)

where

⋆ This work is supported by the NSFC (60374001,60727002,60774003), the

COSTIND (A2120061303), and the National 973 Program (2005CB321902).

K1 = −(CB)T
[

CB(CB)T
]−1

CA

K2 = −(CB)T
[

CB(CB)T
]−1

CA0

K3 = (CB)T
[

CB(CB)T
]−1

driving the output tracking error to zero for the whole desired
trajectory over the interval t ∈ [0,T ] only after one learning iter-
ation if and only if (iff) the matrix CB has full-row rank. Here,
ILC with such fast learning speed is called FILC. However,
the information of x(·,k + 1) is not available in (4) 1 , since it
is yielded by the new control sequence which is required to
be determined. In practice, x(·,k + 1)− x(·,k) may be totally
replaced by x(·,k)− x(·,k − 1), but this estimation is not ac-
ceptable since x(·,k)− x(·,k−1) is an estimate, and thus, even
the convergence of (4) can not be ensured.

The key idea behind FILC is to improve learning efficiency of
the ILCS under consideration. By introducing the information
on system states into a conventional learning law, the fastest
convergence rate is achieved, which is quite attractive. The
type of ILC has been proposed for linear discrete-time systems
in Kurek & Zaremba (1993) and Fang & Chow (1998), and
extended to linear continuous-time systems in Chow & Fang
(1998). Furthermore, a learning law introducing the state feed-
back controller is obtained in Fang & Chow (1998), which not
only exhibits the fastest convergence rate but also uses available
information. In contrast to (4), this type of FILC is called the
available FILC.

1 It has been pointed out that the current system state x(·,k+1) is not available

for ILC laws (Kurek & Zaremba (1993); Fang & Chow (1998); Chow & Fang

(1998); Li et al. (2005)). In fact, the essence of ILC is a type of learned open-

loop control strategy (Bristow et al. (2006)), and in this sense, x(·,k+1) as well

as u(·,k +1) in (4) is required to be determined.
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In this paper, by combining main points of the way used in
Fang & Chow (1998) with an early result of Li et al. (2005),
a new approach is proposed to directly reach available FILC for
system (1). The salient feature of this approach is its predictive
results derived for unavailable system state. Furthermore, these
obtained results for linear continuous systems with a single time
delay are extended to a class of linear continuous systems with
multiple time delays, which widens the application of FILC
and, hence, can be viewed as a significant extension of those
results in Li et al. (2005) to general linear time-delay systems.

2. DESIGN OF AVAILABLE FILC

In this section, we first show how to use a state feedback con-
troller to predict the FILC law (4) by replacing the information
of the (k + 1)th iteration with its equivalent form which is
available for the kth iteration. Based on the predictive results,
an FILC algorithm only using information from the previous
iteration is then proposed for system (1).

Prediction of (4): Note that system (1) is the 2-D description at
the kth iteration of the following system

ẋ(t) = Ax(t)+A0x(t − t0)+Bu(t)

y(t) = Cx(t).
(5)

Introducing a state feedback controller to system (5), we get

˙̂x(t) = (A+BK1)x̂(t)+(A0 +BK2)x̂(t − t0)+Bû(t)

ŷ(t) = Cx̂(t)
(6)

where x̂(t) = x0(t) for t ∈ [−t0,0] holds, and û(·) is defined by

û(t) = (I −K3CB)u(t)+K3
dyd(t)

dt
. (7)

In what follows, let x̂(·,k), û(·,k) and ŷ(·,k) denote the state,
input and ouput of system (6) at the kth iteration, respectively.

According to the previous development, a predictive result is
summarized by the following lemma.

Lemma 1. For systems (5) and (6) under the updating law (4),
the following two results hold iff the matrix CB has full-row
rank.

1) The state of system (5) at the (k+1)th iteration is identical
to that of system (6) at the kth iteration, i.e., x(t,k +
1) = x̂(t,k) for t ∈ [0,T ] and k ∈ Z+.

2) The output of system (6) at each iteration is equal to the
desired output, i.e., ŷ(t) = yd(t) for t ∈ [0,T ].

Proof. Proof of 1): Let x̌(t,k) = x̂(t,k)− x(t,k). After some
algebraic manipulations, it follows from (5), (6), and (7) that

∂ x̌(t,k)

∂ t
=(A+BK1) x̂(t,k)+(A0 +BK2) x̂(t − t0,k)

+Bû(t,k)− [Ax(t,k)+A0x(t − t0,k)+Bu(t,k)]

=(A+BK1) x̌(t,k)+(A0 +BK2) x̌(t − t0,k)

+BK3

[

dyd(t)

dt
−

∂y(t,k)

∂ t

]

.

(8)
Let x̄(t,k) = x(t,k + 1)− x(t,k). Iterating system (5) from k to
k +1, we have

∂ x̄(t,k)

∂ t
=Ax̄(t,k)+A0x̄(t − t0,k)+B∆u(t,k)

=(A+BK1)x̄(t,k)+(A0 +BK2)x̄(t − t0,k)

+BK3

[

dyd(t)

dt
−

∂y(t,k)

∂ t

]

.

(9)

Subtracting (8) from (9), we obtain

∂ [x̄(t,k)− x̌(t,k)]

∂ t
=(A+BK1) [x̄(t,k)− x̌(t,k)]

+(A0 +BK2) [x̄(t − t0,k)− x̌(t − t0,k)] .
(10)

Note that x̄(t, ·)− x̌(t, ·) = 0 for t ∈ [−t0,0] holds. It follows
from (10) that x̄(t, ·) = x̌(t, ·) for any t according to the theory
of functional differential equations (see Hale (1977)). Hence,
x(t,k +1) = x̂(t,k) for t ∈ [0,T ] and k ∈ Z+ is immediate.

Proof of 2): Computing ˙̂y(t) and using (6) and (7), we get

˙̂y(t) = C(A+BK1)x̂(t)+C(A0 +BK2)x̂(t − t0)+CBû(t)

= ẏd(t).
(11)

Since ŷ(0) =Cx0(0) = yd(0) holds, it immediately follows from
(11) that ŷ(t) = yd(t) for t ∈ [0,T ]. This completes the proof.¤

Remark 1. Lemma 1 implies that the state information of (5) at
the (k + 1)th iteration can be predicted by that of (6) at the kth
iteration, and the output of the closed-loop system (6) is always
identical with the desired output trajectory yd(·). This makes it
possible to design FILC with available information as described
in the following.

Remark 2. In particular, it can be noticed from the previous
proof that Lemma 1 does not depend on the control input u(·)
used in û(·), which implies that u(·) has no effect upon the
results shown in Lemma 1. Without loss of generality, the input
u(·) in û(·) is chosen as the input of system (5).

Available FILC: As soon as the previous predictive results are
obtained, an FILC law both with available information and the
fastest convergence rate can be designed for system (5).

Theorem 1. Consider the linear time-delay system (5) that sat-
isfies (3). Let û(·) be given by (7), and x̂(·) be the state of system
(6). Then, there exists an updating law

u(t) ⇐ û(t)+K1x̂(t)+K2x̂(t − t0) (12)

such that the output tracking error is driven to zero for the whole
desired trajectory only after one learning iteration over t ∈ [0,T ]
iff the matrix CB has full-row rank. Moreover, (12) is equivalent
to (4), and therefore can totally replace this FILC law.

Proof. According to the result 2) of Lemma 1, the output of
system (6) is identical to the desired trajectory, i.e., ŷ(t) = yd(t)
for t ∈ [0,T ]. Using this fact, the output tracking error can be
expressed by

e(t) = yd(t)− y(t)

= C [x̂(t)− x(t)] .
(13)

Applying the law (12) to system (5) yields that x(·) satisfies

ẋ(t) = Ax(t)+A0x(t − t0)+B [û(t)+K1x̂(t)+K2x̂(t − t0)]

y(t) = Cx(t).
(14)

Subtracting (14) from (6), we get

˙̂x(t)− ẋ(t) = A [x̂(t)− x(t)]+A0 [x̂(t − t0)− x(t − t0)] . (15)

Since x̂(t) = x(t) = x0(t) for t ∈ [−t0,0], a consequence of (15)
is that x̂(t) = x(t) for t ∈ [0,T ] (see Hale (1977)). Thus, e(t) = 0
for t ∈ [0,T ] holds according to (13). That is, the zero output
tracking is achieved only after one learning iteration.

Furthermore, using the result 1) of Lemma 1 and replacing
x(·,k +1) used in (4) by x̂(·,k), we have
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∆u(t,k) =K1 [x̂(t,k)− x(t,k)]+K2 [x̂(t − t0,k)− x(t − t0,k)]

+K3

[

dyd(t)

dt
−

∂y(t,k)

∂ t

]

.

(16)
Substituting (1) and (7) into (16), we obtain

u(t,k +1) = û(t,k)+K1x̂(t,k)+K2x̂(t − t0,k) (17)

which implies that the learning law (12) is an equivalent form
of (4). Then, the learning law (4) can be replaced by (12). This
completes the proof. ¤

Remark 3. Obviously, the previous theorem provides available
FILC for system (1) in comparison with (Li et al., 2005, The-
orem 2). This results from that the present predictive approach
establishes a connection between systems (5) and (6), and fur-
thermore exactly produces the desired output trajectory yd(t)
for t ∈ [0,T ]. Moreover, by taking advantage of Lemma 1, the
previous proof shows that the learning law (12) not only ex-
hibits the same learning efficiency with (4), but also can totally
replace (4).

Remark 4. In Fang & Chow (1998), a type of available FILC
is derived based on a similar result to the 2) of Lemma 1. In
contrast to this, Theorem 1 not only obtains available FILC (12)
but also points out the equivalence between it and the FILC (4)
by developing the predictive result 1) of Lemma 1. In fact, (4)
is a kind of closed-loop ILC, whereas (12) is an open-loop ILC
in essence. In this sense, a equivalent relationship between the
closed-loop and open-loop ILC have been established by our
proposed predictive lemma. And, to the best of our knowledge,
this point has not been pointed out by any reference in the ILC
literature.

3. EXTENSION OF AVAILABLE FILC

In this section, FILC is developed for a class of linear continu-
ous multivariable systems with multiple time delays as follows

∂x(t,k)

∂ t
= Ax(t,k)+

p

∑
i=0

Aix(t − ti,k)+Bu(t,k)

y(t,k) = Cx(t,k).

(18)

Let t0 = max0≤i≤p ti, then boundary conditions for system (18)
take the form of (3). It is also assumed that the desired output
yd(·) satisfies yd(0) = Cx0(0). Now, define two variables as

e(t,k) = yd(t)− y(t,k)

η(t,k) =
∫ t

0
[x(τ,k +1)− x(τ,k)]dτ.

(19)

Noting that x(t,k + 1)− x(t,k) = 0 for t ∈ [−t0,0] and k ∈ Z+

holds, we have

∂η(t,k)

∂ t
= Aη(t,k)+

p

∑
i=0

Aiη(t− ti,k)+B

∫ t

0
∆u(τ,k)dτ (20)

e(t,k +1)− e(t,k) =−CAη(t,k)−C

p

∑
i=0

Aiη(t − ti,k)

−CB

∫ t

0
∆u(τ,k)dτ.

(21)

Consider the following updating law for system (18)

u(t,k +1) =u(t,k)+R1 ∂η(t,k)

∂ t
+

p

∑
i=0

Ri

∂η(t − ti,k)

∂ t

+R2 ∂e(t,k)

∂ t
.

(22)

Inserting (22) into (20) and (21), we get

∂η(t,k)

∂ t
=(A+BR1)η(t,k)+

p

∑
i=0

(Ai +BRi)η(t − ti,k)

+BR2e(t,k)

(23)

e(t,k +1) =− (CA+CBR1)η(t,k)

−
p

∑
i=0

(CAi +CBRi)η(t − ti,k)+(I −CBR2)e(t,k).

(24)
To deal with delay parameters ti for 0 ≤ i ≤ p, super vectors are
introduced (like Li et al. (2005)), based on which (23) and (24)
can be formulated into a 2-D Roesser model.

Let ωi (0 ≤ i ≤ p) be nonnegative integers. Then, for any t ∈
[0,T ], the number of t−∑

p
i=0 ωiti, which satisfies t−∑

p
i=0 ωiti ≥

0, is finite and denoted by q. Without loss of generality, let t1, t2,
· · · , tq represent all the finite values of t −∑

p
i=0 ωiti from large

to small. Obviously, t1 is obtained iff ωi = 0,∀i ∈ {0,1, · · · , p},

i.e., t1 = t. Now, define a new column vector η̃(t,k) as

η̃(t,k) =
[

ηT (t,k) ηT (t2
,k) · · · ηT (tq

,k)
]T

and let ẽ(t,k) be defined in the same way. Considering η(t,k) =
0 for t ∈ [−t0,0] and k ∈ Z+, and reformulating (23) and (24),
we obtain a 2-D continuous-discrete Roesser’s type model as

[

∂ η̃(t,k)

∂ t
ẽ(t,k +1)

]

=

[

Ã B̃

−C̃Ã I −C̃B̃

][

η̃(t,k)
ẽ(t,k)

]

(25)

with boundary conditions: η̃(0,k) = 0 for k ∈ Z+ and finite
ẽ(t,0) for t ∈ [0,T ], and system matrices:

Ã =













A+BR1 ∗ ∗ · · · ∗
0 A+BR1 ∗ · · · ∗
0 0 A+BR1 · · · ∗
· · · · · · · · · · · · · · ·
0 0 0 0 A+BR1













B̃ =













BR2 0 0 · · · 0

0 BR2 0 · · · 0

0 0 BR2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · BR2













C̃ =











C 0 0 · · · 0
0 C 0 · · · 0
0 0 C · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · C











where ∗ represents either a certain element selected among
matrices Ai +BRi for 0 ≤ i ≤ p, or a zero matrix of appropriate
dimensions.

According to the previous development, one can prove the
following result related to ILC system (18) and (22) by the 2-D
system theory.

Theorem 2. Given system (18), let t0 = max0≤i≤p ti, and bound-
ary conditions in (3) be satisfied. Then, there exists a convergent
updating law (22) for system (18) iff the matrix CB has full-row
rank. Moreover, the updating law (22) can be designed such that

[

η(t,k)
e(t,k)

]

= 0 for t ∈ [0,T ] and k ≥ 1 (26)

iff its gain matrices are defined by
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R1 = −(CB)T
[

CB(CB)T
]−1

CA

R2 = (CB)T
[

CB(CB)T
]−1

Ri = −(CB)T
[

CB(CB)T
]−1

CAi,0 ≤ i ≤ p.

(27)

Proof. The proof is provided in Appendix A. ¤

Remark 5. Following the same steps of the previous proof, one
can show that if R1 = 0 and Ri = 0 for 0 ≤ i ≤ p in the updating
law (22), the convergence condition provided in Theorem 2 still
holds for this law, which can also be verified by the 2-D system
theory since the 2-D model (25) is satisfied. In fact, this is just
the result of (Li et al., 2005, Theorem 3), and hence, Theorem
2 can be viewed as an extension of this result, which moreover
proposes an FILC law (22)−iff its gain matrices are defined in
(27))−such that the zero output tracking of system (18) can be
achieved only after one learning iteration.

An attractive FILC law (22) has been obtained for system (18)
in Theorem 2; however, the shortcomings suffered by (4) also
exist in (22). Similarly, we use a predictive approach to remove
its employed current system state. Let matrices R1, R2 and Ri

for 0 ≤ i ≤ p be defined by (27). Then, for the following system

ẋ(t) = Ax(t)+
p

∑
i=0

Aix(t − ti)+Bu(t)

y(t) = Cx(t)

(28)

a predictive system is given by

˙̆x(t) =
(

A+BR1
)

x̆(t)+
p

∑
i=0

(Ai +BRi)x̆(t − ti)+Bŭ(t)

y̆(t) = Cx̆(t)

(29)

where the control ŭ(·) is defined by

ŭ(t) =
(

I −R2CB
)

u(t)+R2 dyd(t)

dt
. (30)

Similar to Lemma 1, one can see that the state of system (28) at
the (k +1)th iteration is equivalent to that of system (29) at the
kth iteration, and the output of system (29) is always identical
to the desired output trajectory yd(t) for t ∈ [0,T ].

According to the previous development, one can prove the
following result related to available FILC for system (28) in
the same way as in the proof of Theorem 1.

Theorem 3. For system (28), let t0 = max0≤i≤p ti, and boundary
conditions in (3) be satisfied. Then, there exists an updating law

u(t) ⇐ ŭ(t)+R1x̆(t)+
p

∑
i=0

Rix̆(t − ti) (31)

such that the output tracking error is driven to zero for the whole
desired output trajectory only after one learning iteration over
t ∈ [0,T ] iff the matrix CB has full-row rank, where x̆(·) is the

state of system (29), ŭ(·) is given by (30), and gain matrices R1

and Ri for 0 ≤ i ≤ p are defined by (27).

Remark 6. From the above analysis, it is obvious that the FILC
law (22) is obtained by following a similar designing procedure
to (4) which inevitably uses the unavailable current system
state. By exploiting further results of (22), the updating law
(31) is proposed by removing its used unavailable information.
This results from the fact that the present predictive approach
makes it possible to replace x(·,k + 1) with its equivalent but
available form x̆(·,k). Therefore, FILC is not only proposed
to reach the key idea of (Li et al., 2005, Theorem 2) for
linear continuous systems with multiple time delays, but also

improved by combining it with a predictive approach. However,
it should be pointed out that the FILC drives the output tracking
error to zero only after one learning iteration when the accurate
information on the ILCS can be obtained; otherwise, it becomes
a conventional ILC method.

4. SIMULATION RESULTS

Example 1. Consider the system with two sate delays, i.e., (Li
et al., 2005, Example 3):

ẋ(t) =

[

−2 0.7 −1
−1 0 1
0 1 −0.5

]

x(t)+

[

1 −1 0
0 1 −0.5

0.5 0 1.8

]

x(t −0.5)

+

[

0.1 1 0
0 1.2 −0.3
−1 0.2 0.5

]

x(t −0.2)+

[

0 1
−1 0
−0.8 1

]

u(t)

y(t) =

[

1.2 0 −1
1 0 0

]

x(t).

(32)
The desired output for system (32) is given by

yd(t) =

[

yd1(t)
yd2(t)

]

=

[

12t2(1− t)
1.5t

]

, t ∈ [0,1].

It is assumed that boundary conditions for ILC system (32) and

(31) are: x0(t) = [ t t t ]
T

for t ∈ [−0.5,0] and u0(t) = [ 0 0 ]
T

for t ∈ [0,1]. Moreover, the tracking accuracy of the ILCS is
evaluated by the total square error described by

Si(k) =
∫ 1

0
[ydi(τ)− y(τ,k)]2dτ, for i = 1,2 and k ∈ Z+.

Fig. 1 shows the desired output trajectory and the output of
system (32) at the first iteration, while Fig. 2 shows the total
square error for the first 8 iterations. As shown in Figs. 1
and 2, the updating law (31) ensures that the desired output
trajectory is accurately tracked for t ∈ [0,1] only after one
learning iteration. However, the accurate system knowledge can
not be exactly obtained in practice. Here, provided that the
accurate information on system parameters A, A0, A1, B and
C is not available, and only estimation is given by

Â =

[

−2.11 0.61 −0.91
−1.2 −0.2 0.9
0.13 1.12 −0.61

]

, Â0 =

[

0.85 −0.95 0.1
0.12 0.91 −0.65
0.44 0.1 1.65

]

Â1 =

[

0.12 0.88 0.15
0.12 1.16 −0.21
−0.85 0.14 0.54

]

, B̂ =

[

0.08 0.95
−1.1 −0.13
−0.92 0.9

]

Ĉ =

[

1.12 0.02 −0.9
1.15 0.12 −0.15

]

.

Figs. 3 and 4 show the tracking performance of the updating law
(31) when perturbations are encountered by system (32). It can
be seen that the outputs approach the desired output trajectories
accurately within few iterations. Compared (Li et al., 2005,
Fig. 12) with Fig. 4, we can conclude that, even if FILC is
designed according to the estimations of system parameters, it
still exhibits much faster convergence rate than the conventional
ILC method, which is obtained based on the accurate system
information.

5. CONCLUSIONS

In this paper, by summarizing main points of Fang & Chow
(1998) and incorporating them into an early result Li et al.
(2005), predictive results are established, based on which the
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Fig. 1. The tracking performance of the ILCS (32) and (31)
under accurate system knowledge for y1(t) to yd1(t) and
y2(t) to yd2(t), respectively.
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Fig. 2. The trends of the total square error under accurate
system knowledge. The solid line and the dashed-dotted
line represent the total square error curves of y1(t) to yd1(t)
and y2(t) to yd2(t), respectively.

learning law both with the fastest convergence rate and avail-
able information is proposed for linear continuous systems with
a single time delay. Moreover, these results can be extended to
deal with more complex control systems in which multiple time
delays exist. The simulation results show that FILC can still
exhibit fast convergence rate even if it is designed according
to estimated system parameters. Thus, the results of this paper
not only provide a new route to design learning laws both with
available knowledge and the fastest convergence rate, but also
widen the application of this desirable type of ILC approach. It
should be pointed out, however, that FILC needs the accurate
information of the system states, and thus how to remove this
restriction is open to further investigation.
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Fig. 3. The tracking performance of the ILCS (32) and (31)
under estimated system knowledge for y1(t) to yd1(t) and
y2(t) to yd2(t), respectively.
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Appendix A. PROOF OF THEOREM 2

In order to achieve the conclusion in Theorem 2, the following
preliminary is useful. Let us denote

φ(t,k) =

[

η(t,k)
e(t,k)

]

then, by extending the definition of yd(t) to the interval [−t0,0)
such that yd(t) = Cx0(t), it leads to

φ(t,k) = 0 for t ∈ [−t0,0] and k ∈ Z+. (A.1)
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Consequently, let Φ(t,k) =
[

η̃T (t,k) ẽT (t,k)
]T

, then bound-
ary condition (A.1) results in

Φ(0,k) = 0, for k ∈ Z+. (A.2)

On the other hand, it is obvious from (A.1) that φ(t,k) = 0 for
t ∈ [0,T ] and k ∈ Z+ is equivalent to Φ(t,k) = 0 for t ∈ [0,T ]
and k ∈ Z+, and limk→∞ φ(t,k) = 0 for t ∈ [0,T ] is equivalent
to limk→∞ Φ(t,k) = 0 for t ∈ [0,T ].

Proof of Theorem 2. (i) According to (Li et al., 2005, Lemma
1), it follows from the 2-D model (25) that limk→∞ Φ(t,k) = 0

for t ∈ [0,T ] iff I −C̃B̃ is stable. That is, a matrix R2 exists that

stabilizes I −C̃B̃. Considering the diagonal form of B̃ and C̃, it
is easy to show that such a matrix R2 exists iff the matrix CB has
full-row rank. Hence, the anterior part of Theorem 2 is proved.

(ii) According to the 2-D system theory (e.g., refer to (Chow
& Fang, 1998, eqs. (14)-(16))), the solution of the 2-D system
(25) can be expressed by

Φ(t,k) =
∞

∑
i=1

Tik

∫ t

0

(t − τ)i−1

(i−1)!

[

0
ẽ(τ,0)

]

dτ +T0k

[

0
ẽ(t,0)

]

(A.3)
where the state transition matrix Ti j is defined by

Ti j =

{

I (the identity matrix), for i=j=0;
T10Ti−1, j +T01Ti, j−1, for i≥0, j≥0 (i+j6=0);
0 (the zero matrix), for i<0, or/and j<0.

T10 =

[

Ã B̃
0 0

]

, and T01 =

[

0 0

−C̃Ã I −C̃B̃

]

.

(A.4)

Computing the derivative of the both sides of (A.3) with respect
to t, we get

∂Φ(t,k)

∂ t
=

∞

∑
i=2

Tik

∫ t

0

(t − τ)i−2

(i−2)!

[

0
ẽ(τ,0)

]

dτ +T1k

[

0
ẽ(t,0)

]

+T0k

[

0
∂ ẽ(t,0)

∂ t

]

.

(A.5)
Inserting (A.4) into (A.5), we have

T01
∂Φ(t,k−1)

∂ t
+T10Φ(t,k) =

∂Φ(t,k)

∂ t
for t ∈ [0,T ] and k ≥ 1.

(A.6)

Necessity: If φ(t,k) = 0 for t ∈ [0,T ] and k ≥ 1, then

Φ(t,k) = 0, for t ∈ [0,T ] and k ≥ 1. (A.7)

Inserting this into (A.6) and considering (A.2), we obtain

Φ(t,k) = T01Φ(t,k−1), for t ∈ [0,T ] and k ≥ 1.

Combining this with (A.7), we get T01Φ(t,0) = 0 for t ∈ [0,T ]
whatever Φ(t,0) is, which implies T01 = 0. From the denotation
of T01, it follows that gain matrices of the updating law (22)
should be defined in (27).

Sufficiency: If gain matrices of the updating law (22) are defined
in (27), then it follows from the denotations of Ã, B̃ and C̃ that

−C̃Ã = 0 and I −C̃B̃ = 0. (A.8)

That is, T01 = 0, and therefore, (A.6) becomes

∂Φ(t,k)

∂ t
= T10Φ(t,k), for t ∈ [0,T ] and k ≥ 1. (A.9)

Combining (A.2) with (A.9) yields (A.7). Consider the estab-
lished preliminary, then from (A.7), (26) follows. This proof is
completed. ¤

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13479


