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Abstract: The phenomenon of aggregation and dilation(A&D) widely exists in nature. The
mechanism behind it is regarded as the effect of some kind of attraction and repulsion(A&R).
A&R control becomes a popular and promising way of controlling the structure and distribution
of a group composed of several and even numerous individuals. This paper presents the concepts
of aggregation, dilation and group evolution criticality based on group variance. We investigate
the relationship between different levels of A&D as a foundation for the introduction of A&D
analysis. The applications of A&D analysis and A&R control in several researches, including
population-based optimization and group behavior control about multi-agent, are given in the
form of simulation experiments.

1. INTRODUCTION

The phenomenon of aggregation and dilation is ubiquitous
in nature and human society. In group systems constituted
by several or even a mass of matters or individuals, A&D
is used to characterize their systemic evolution tendency.
In the opinion of physical scientists who affirm Big Bang
theory, the formation and evolution of the universe is
a process during which aggregation and dilation coexist
and contribute to the diversity of matters. In the biologic
world, individuals in some feeblish species spontaneously
congregate together in order to improve their fitness to
environment and resist the attack from enemies; however,
as a result of competition, the dilation of the colony
occurs in the form of mutual repulsion and sometimes a
war follows. In the physical or vital world, certain laws
such as Newton’s Law dominate the interaction among
individuals so that the evolution of group systems exhibits
the phenomenon of aggregation or dilation. Generally,
we call such interactions attraction and repulsion which
contribute to aggregation and dilation respectively.

In general, the evolution process which only exhibits ag-
gregation or dilation is ordinary and dull since it lacks
abundant dynamic traits, though monotone aggregation
or dilation is important to further research on complex
A&D processes. As it is in practice, aggregation and di-
lation often coexist and show relative differences in in-
tensity through the temporal accumulation of the con-
test between attraction and repulsion(A&R). During the
process in which attraction dominates, aggregation will
finally stand out. In contrast, repulsion dominance will
result in dilation. A resultant field with attraction and
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repulsion distributed in space and time leads to abundant
and complicated dynamic behaviour of group systems.
This hybrid A&R strategy was introduced by scholars in
different fields into their researches, which accelerated the
development of correlative disciplines. For example, in the
research of global optimization, repulsion is introduced
into optimization algorithms to increase the probability
of breaking away from local optima and finding global op-
tima.(Barhen et al.,1997;Riget et al., 2002). The TRUST
algorithm proposed by Barhen et al.(1997) is particular in
a sense as it is not a population-based optimizer. However,
with local optima considered as fixed part of a population,
this algorithm can also be analyzed based on A&D. In
contrast, ARPSO(Riget et al., 2002) is a population-based
optimizer which controls A&D by alternatively changing
the sign of its two acceleration factors. In these algo-
rithms, the space between individuals is controlled to
keep a balance between exploration and exploitation in
search and optimization. Another prominent application
of A&R is the artificial potential field method(Reif et al.,
1999;Gazi et al., 2004;Liu et al., 2004) in the formation
control of overland or underwater robots, uninhabited
autonomous(air) vehicles and other multi-agent systems.
The introduction of A&R benefits the control of the space
between individual agents so that more challenging tasks,
such as encircling an object, rounding or getting over an
obstacle and cooperating with each other to move a bulky
object, can be accomplished. This is of great importance
for achieving high-level goals such as working in a danger-
ous or uninhabitable environment and exploring in outer
space.

As shown later, A&D analysis can help to predict the evo-
lution tendency of group systems and construct effective
control methods to achieve a desirable group structure and
distribution. As a basis for such analysis, a quantitative
characterization of A&D is required. Besides, A&R con-
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trol is a promising way of controlling the structure and
distribution of group systems.

This paper focuses on the A&D analysis and A&R control
in group evolution from the viewpoint of statistics. It is
organized as follows. The following section will present the
concept of aggregation, dilation, equilibration, monotone
aggregation, monotone dilation and group evolution crit-
icality based on continuous differentiable process. In Sec-
tion 2.1, the critical evolution modes of groups composed
of different numbers of individuals are analyzed. In Section
2.2, the relationship between the definitions of A&D at
different levels is analyzed. Section 2.3 analyzes the ef-
fects of A&R control on A&D. Section 3 introduces the
applications of A&D analysis in search and optimization.
Group behaviour control about multi-agent based on A&R
is presented in Section 4. Conclusions are made in Section
5.

2. CHARACTERIZATION OF AGGREGATION AND
DILATION

Since A&D is a charaterization of systemic evolution be-
haviour, a systematic measure - group variance is adopted
to define A&D. In a group composed of m individuals, the
group variance can be given by

s(t) =
1
m

m∑
i=1

n∑
j=1

(xij(t)− xc
j (t))

2, xc
j (t) =

1
m

m∑
p=1

xpj(t) (1)

where s(t) is group variance at time t, n is the dimension
of the space in which individuals move, xij(t) is the jth

component of the position of the ith individual at time t,
and xc

j (t) is the jth component of the position of the group
center at time t.

Definition(Aggregation & Dilation): In a group evolution
process, if the initial group variance s(t0) and the final
group variance s(tf ) satisfy s(t0) > s(tf ), then the evolu-
tion mode of this group is aggregation. If s(t0) < s(tf ),
then it is dilation. Particularly, we call the critical case
s(t0) = s(tf ) equilibration.

The above definition emphasizes on the evolution result
but don’t care about the whole process. The following new
concepts present three typical and special evolution modes.

Assume that xij(t) is continuous and differential for arbi-
trary i and j.

Definition(Monotone Aggregation & Monotone Dilation):
If a group evolution satisfies s(1)(t) ≤ 0 where s(1)(t) is the
first-order derivative of s(t), then the evolution mode is
called monotone aggregation. If s(1)(t) ≥ 0, the evolution
mode is called monotone dilation. In the critical case
s(1)(t) ≡ 0, the property of such a process is called group
evolution criticality.

For monotone dilation, if s(∞) → 0, then the process
is called infinite(maximal) monotone aggregation. Other-
wise, it is called finite monotone aggregation.

2.1 Group Evolution Criticality

The concept of group evolution criticality contains par-
ticular but abundant dynamic behaviours. It means a

static or dynamic equilibration. In static equilibration,
all individuals have no velocity. In contrast, individuals
are active and take some special forms of evolution in
dynamic equilibration. For example, if a group composed
of two individuals in one-dimensional Euclidean space is
in equilibration, then we can conclude that these two indi-
viduals have the same velocity. This is because s(1)(t) ≡0
implies x(1)

1 (t) ≡ x(1)
2 (t). In this sense, static equilibration

is just a very special case. If we increase the number
of individuals or the dimension of evolution space, then
critical evolution modes will become diverse since there
are more free variables for the equation s(1)(t) ≡ 0. For
a 4-individual group in one-dimensional Euclidean space,
except the above isovelocity mode, a symmetrical cosine
vibration, denoted by
{(x1, x2, x3, x4)|x1(t) = a · cos(t), x2(t) = −a · cos(t),
x3(t) = b · sin(t), x4(t) = −b · sin(t), a 6= 0, b 6= 0},
satisfies s(1)(t) ≡ 0. It’s easy to verify that group rotation
in high dimensional space also satisfies s(1)(t) ≡ 0. In
essence, neither isovelocity evolution nor group rotation
evolution changes the inner structure of the group. But the
above vibration evolution does have an effect on the inner
structure of a group. Accordingly, the evolution modes
that affect the inner structure of a group are regarded
as internal dynamics while the other modes are external
dynamics. Complicated critical evolution modes can be
the combination of internal and external dynamics. For
those group systems whose structure and distribution we
can’t control directly, the understanding of criticality is a
foundation for A&D analysis in a statistical way.

2.2 Aggregation and Dilation at Different Levels

In a group composed of more than two individuals, A&D
has different levels since the group variance based on (1)
can’t guarantee a systematic aggregation or dilation. For
example, if most individuals gather together and fewer
individuals move far away from the most, then the group
variance may appear large but it usually doesn’t imply
a distinct dilation. Thus, a further definition of A&D is
needed.

Definition(Level-(m-n) Aggregation & Dilation): For a
group composed of m individuals(m≥3), if the variance
of arbitrary subgroup composed of n(n≤m) individuals
satisfies si1,··· ,in(t0) > si1,··· ,in(tf ), where i1,· · · ,in denote
n individuals arbitrarily selected from the whole group,
then the evolution of this group is called level-(m-n)
aggregation. Similarly, level-(m-n) dilation can be defined.

Theorem 1. For any integer denoted by l satisfying 2<l≤m,
level-(m-l )aggregation(dilation) is a necessary condition
for level-(m-l+1 )aggregation(dilation).

Proof : Level-(m-l+1) aggregation means that the inequal-
ity si1,··· ,il−1(t0) > si1,··· ,il−1(tf ) holds for l-1 arbitrary
individuals i1,· · · ,il−1 in an m-individual group.

Denote by Gl = {i1, i2, · · · , il} a group composed of l in-
dividuals arbitrarily selected from the whole m-individual
group and by Gl/{ik} the subgroup which includes each
individual except ik in Gl.

According to the definition of group variance, we can
derive
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si1,··· ,il(t) =
(l− 1)2

(l− 2)l2

l∑
q=1

sG/{iq}(t) (2)

where α = (l − 1)2/[(l − 2)l2], which means level-(m-l)
aggregation. The conclusion for dilation can be proved in
a similar way.

Theorem 1 indicates that higher-level aggregations are
more intense. Level-(m-2) aggregation(dilation) is the
most intense, which means that any two individuals con-
gregate(separate). The relationship between level-0 group
variance and level-(m-2) group variance can be given as
follows.

s(t) =
2

m2

∑
∀ip,iq∈Gm,p 6=q

sip,iq(t) (3)

2.3 A&D and A&R

A&D analysis can only predict group evolution tendency
but has no effect on group evolution. A&R provides a
feasible way of controlling group evolution. Pure repulsion
will cause dilation and finally lead to group disruption
regardless of initial group state. In particular, with pure
repulsion, a group in which all members have zero initial
velocity will follow an evolution mode of infinite monotone
dilation. In contrast, the effect of pure attraction depends
on the initial group state. Usually, in the case of pure
attraction without any outside interference, any individual
which has a high speed and tends to escape from its group
can have a potential to break away, which may bring
some dilation at a certain level. Without sufficient escape
velocity, all group members will be trapped in a bounded
space and vibrations often occur in this case. A dissipative
mechanism, such as a force which is proportional to veloc-
ity but has an opposite direction, is required to stabilize
the inner structure of the group. In nature, attraction and
repulsion often coexist to control group evolution. The dis-
tribution of the relative intensity between attraction and
repulsion on scales of distance contributes to the diversity
of evolution. Such a rule can be borrowed from physics to
wide engineering applications. Constructing various A&Rs
may have various control effects. The following section will
give several illustrations about A&D analysis and A&R
control.

3. SEARCH AND OPTIMIZATION BASED ON A&D
AND A&R

A&D has a great effect on the performance of population-
based optimizers(Chen et al. 2007). A&D analysis helps
to indicate the diversity of the distribution of individuals
which is important for a population-based optimizer to
adjust its balance between exploration and exploitation
so as to find global optima. When premature convergence
occurs, the diversity of population is usually very poor
and A&D analysis can be used to detect such a situa-
tion. Ursem(2002) proposed an efficient diversity-guided
evolutionary algorithm (DGEA) which defines diversity
according to population variance. The ARPSO proposed
by Riget et al.(2002), which is an improved form of particle
swarm optimizer, also benefits from A&D analysis. The
group variance adopted in DGEA and ARPSO is level-0
type, which cannot reflect local aggregations that cause

the deficiency of diversity while level-0 group variance is
rather large. If an optimizer keeps in local aggregations
chronically, its exploration performance will be weakened
and the probability of finding global optima will be greatly
reduced. A new optimizer based on PSO is proposed here
according to a new group variance which is similar to
level-(m-2) group variance but randomly selects only two
individuals from the current population to make A&D
analysis. When global or local aggregation occurs, most
individuals congregate together and the selected two indi-
viduals will reflect such local aggregation in a big proba-
bility while computational complexity can be restrained.
For convenience, we call this A&D-guided optimizer ADG-
PSO. The way of A&R control is the same with ARPSO
which controls diversity by changing the sign of accelera-
tion factors. Without loss of generality, the new algorithm
is used for the minimization of functions. The algorithm
in pseudocode follows.

Initialize population, let dir = 1
While termination criterion is not met, do
For i=1 to PS
if f(xi)<f(pi) then pi=xi

pg=argimin{f(pi)}
For d = 1 to Dim
vid=w · vid + dir · [c1 · r1 · (pid − xid) + c2 · r2 · (pgd − xid)]
vid=sign(vid)·min(abs(vid), vmax)
xid=xid + vid
Next d
Next i
Randomly select two individuals xp,xq from the popula-
tion with p 6= q
Compute diversity: div =

∑Dim
l=1 (xpl − xql)2/(4 · L)

if dir<0 & div>dh then dir=1
if dir>0 & div<dl then dir=-1
End While

The denotation instructions are shown as follows: f(x) –
the objective function; Dim – the number of dimensions;
PS – population size; xi – the position of the ith particle;
vi – the velocity of the ith particle; pi – the best position
found by the ith particle; pg – the best position found by
the whole swarm; xid,vid, pid,pgd – the dth component of
xi,vi, pi and pg respectively; vmax – the maximal value
of velocity in each dimension; w – inertia weight; c1, c2 –
acceleration factors; r1, r2 – random numbers uniformly
distributed in (0,1); div – diversity index; dh – the upper
threshold of diversity; dl – the lower threshold of diversity;
L – the diagonal length of search space.

Note that the A&R control in ARPSO and ADGPSO is
implemented by changing the sign(i. e. the direction) of
acceleration factors, so it is a kind of switching control.

In order to validate the effectiveness of A&D analy-
sis(contained in both ARPSO and ADGPSO) on the im-
provement of PSO, we use the basic PSO(bPSO), ARPSO,
ADGPSO, CLPSO(Liang et al., 2006) and three new vari-
ants of CLPSO(CLPSO-AR, CLPSO-ADG and CLPSO-
b) to minimize several Benchmark functions which in-
clude Rastrigin, Rosenbrock, Griewank and Schwefel func-
tions(Riget et al., 2002; Sutton et al., 2006). Besides,
relatively speaking, Schwefel function is regarded as a
difficult one for many PSOs(Sutton et al., 2006; Liang
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et al., 2006). Note that CLPSO is one of the state-of-
the-art PSOs. CLPSO-AR is a combination of CLPSO
and ARPSO which run independently with the share of
the information about the up-to-date best position of the
whole swarm. Similarly, CLPSO-ADG is a combination
of CLPSO and ADGPSO, and CLPSO-b is composed of
CLSPO and bPSO. For ARPSO, ADGPSO and bPSO,
w is set to 0.729, c1 and c2 are both set to 1.494(The
setting of these parameters was suggested by Clerc et
al.(2002) since PSO performs very well with such a set-
ting). In each dimension, the maximal absolute value of
velocity(vmax) is set to one fifth of the search scope in this
dimension. The population size for any optimizer is set to
20. In CLPSO-AR(CLPSO-ADG, CLPSO-b), the whole
population is halved by CLPSO and ARPSO(ADGPSO,
bPSO). The setting of the other parameters for CLPSO
and the embedded CLPSO in CLPSO-AR, CLPSO-ADG
and CLPSO-b is the same as that in Liang et al.(2006).
For all optimizers, if the total number of function eval-
uations reaches its maximum which is set to 105, then
optimization process will be terminated. The diversity-
control parameter dl is empirically set to two typical
values 5e-6 and 5e-8, as the optimization performances of
correlative optimizers corresponding to these two settings
approach their best. Another diversity-control parameter
dh is fixed at 0.25(Riget et al., 2002). For each test function
and each optimizer, 100 tests are implemented. The mean
and standard deviation of the discovered optimal value
are compared. In each case, the first column corresponds
to the mean and the second to the standard deviation. The
experimental results are shown in Table 1-4.

As shown in the experimental results, ARPSO performs
very well in the optimization of single-funnel functions
including Rastrigin, Rosenbrock, and Griewank functions.
This is mainly due to the level-0 A&D analysis and
A&R control applied in ARPSO, since the only difference
between ARPSO and bPSO is the introduction of A&D-
based diversity control. In particular, ARPSO performs
the best in the optimization of Rosenbrock function.

Table 1. Optimizing Rastrigin Function

Dimension:10, Optimal value:0, x ∈ [−5.12, 5.12]10
Optimizer dl=5e-6 dl=5e-8

bPSO 1.0e+1 3.4e-1 1.0e+1 3.4e-1
ARPSO 9.1e-1 9.0e-2 1.4e+0 7.7e-2

ADGPSO 3.2e+0 5.2e-1 4.0e+0 4.4e-1
CLPSO 2.3e+0 1.3e-1 2.3e+0 1.3e-1

CLPSO-AR 5.8e-6 3.1e-6 6.1e-6 2.5e-6
CLPSO-ADG 1.6e-4 5.1e-5 4.5e-6 1.3e-6

CLPSO-b 2.7e+0 1.7e-1 2.7e+0 1.7e-1

Table 2. Optimizing Rosenbrock Function

Dimension:10, Optimal value:0, x ∈ [−100, 100]10
Optimizer dl=5e-6 dl=5e-8

bPSO 1.1e+0 1.8e-1 1.1e+0 1.8e-1
ARPSO 1.3e-1 9.4e-2 9.0e-2 2.1e-2

ADGPSO 7.4e+0 4.0e+0 10102 10050
CLPSO 2.1e+1 1.7e+0 2.1e+1 1.7e+0

CLPSO-AR 1.1e+0 1.7e-1 1.7e+0 2.0e-1
CLPSO-ADG 2.1e+0 1.8e-1 2.9e+0 3.4e-1

CLPSO-b 4.8e+0 1.0e+0 4.8e+0 1.0e+0

Table 3. Optimizing Griewank Function

Dimension:10, Optimal value:0, x ∈ [−700, 500]10
Optimizer dl=5e-6 dl=5e-8

bPSO 5.9e-2 3.0e-3 5.9e-2 3.0e-3
ARPSO 6.0e-2 2.0e-3 6.0e-2 2.0e-3

ADGPSO 6.4e-2 2.6e-3 7.0e-2 2.5e-3
CLPSO 1.3e-1 4.9e-3 1.3e-1 4.9e-3

CLPSO-AR 2.0e-2 1.4e-3 1.6e-2 1.4e-3
CLPSO-ADG 2.2e-2 1.7e-3 2.8e-2 1.6e-3

CLPSO-b 8.4e-2 4.4e-3 8.4e-2 4.4e-3

Table 4. Optimizing Schwefel Function

Dimension:5, x ∈ [−500, 500]5,
Approximate Optimal Value:-2094.9144

Optimizer dl=5e-6 dl=5e-8
bPSO -1409 1.2e+1 -1409 1.2e+1

ARPSO -1944 8.9e+0 -1910 1.5e+1
ADGPSO -1990 7.0e+0 -2001 1.3e+1
CLPSO -2094 2e-13 -2094 2e-13

CLPSO-AR -2092 1.7e+0 -2094 2e-13
CLPSO-ADG -2094 2e-13 -2094 2e-13

CLPSO-b -2093 1.2e+0 -2093 1.2e+0

On the whole, ADGPSO is unsuccessful since it is even
defeated by bPSO in the optimization of the Rastrigin
function and especially, the Rosenbrock function. However,
ADGPSO performs better in the optimization of Schwefel
function than bPSO and ARPSO. The level-(m-2) A&D
analysis benefits ADGPSO in the aspect of detecting local
aggregation. But local aggregation may contribute to the
discovery of global optima of single-funnel functions, when
partial particles keep away from the majority of the pop-
ulation(Sutton et al., 2006). In this case, repulsion may
slow and even destroy the convergence into global optima,
which results in the poor performance of ADGPSO. In
contrast, the detection of local aggregation in case of
premature convergence takes effect in the optimization of
the multi-funnel Schwefel function. In fact, even the state-
of-the-art CLPSO is, in a way, inferior to bPSO in the
optimization of Griewank and Rosenbrock functions. Note
that Rosenbrock function is unimodal and Griewank func-
tion becomes easier as its dimension increases. However,
CLPSO obviously outperforms the others in the optimiza-
tion of Schwefel function.

Among three hybrid optimizers(CLPSO-b, CLPSO-ADG,
CLPSO-AR), CLPSO-ADG and CLPSO-AR outperform
nonhybrid PSOs in almost all cases. Particularly, CLPSO-
AR performs the best in the optimization of Griewank and
Schwefel functions and CLPSO-ADG is the best in the
optimization of Rastrigin and Schwefel functions. Com-
pared with CLPSO-ADG, it’s a little more sensitive to the
diversity parameter dl when optimizing Schwefel function.
Although CLPSO-b performs better in the optimization
of Rosenbrock function, it is no better than CLPSO since
it is inferior to CLPSO in the optimization of Schwefel
function. Generally speaking, the hybridization of CLPSO
and ARPSO(ADGPSO) which is based on A&D analysis
and A&R control produces a more efficient variant of PSO.

As the experimental results indicate, no optimizer over-
whelms the others over all problems though some of them
have obvious advantages. Such a performance difference
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among these optimizers can be explained by the NFL the-
orem proposed by Wolpert et al.(1997). Different problems
may require different tradeoffs between exploration and
exploitation.

4. GROUP BEHAVIOUR CONTROL ABOUT
MULTI-AGENT

A&R in muti-agent formation control was originally pro-
posed by Reif et al.(1999). Attraction and repulsion
forces can be imposed between individuals or between
any individual and its goals or obstacles. In practice,
the desired group behaviour of multi-agent is complicated
and any group member is required to have certain self-
determination. In other words, the A&D of multi-agent
group is a high-level issue which usually depends on the
mission of the group and detailed assignment of group
members. In many cases, group members act indepen-
dently, which doesn’t need attraction among group mem-
bers. In contrast, repulsion is always necessary in order
to avoid collisions. As mentioned by Gazi et al. (2004),
repulsion only takes effect within a small distance, which
means repulsion is local. In the following experiment, a
virtual group with 4 members, which can be regarded as
some robots, is required to collect some objects distributed
in a square work area. The objective is to collect as
many objects as possible with a predefined time restriction
and avoid collisions. Many interesting phenomena, such
as competition and deadlock, can be observed in this
experiment. All members are supposed to hold sufficient
objects. Repulsion is used to avoid collisions against other
members in the group or obstacles. Attraction is used
to make group members approach scanned objects. Thus,
attraction is active and optional but repulsion is passive
and indispensable. The instructions about this experiment
are made as follows.

• The work area is divided into a 500×500 grid. All objects
and obstacles lie at the centre of a cell and any object or
obstacle occupies only one cell.

• At any point, any member has a scanning radius of 20
units. One unit is the length of one side of a cell. Obstacles
have no effects on the scanning of any member but group
members should round the obstacles on their way.

• All scanned objects will be recorded into the memories
of the members who find them. If an object is collected,
its corresponding record will be cleared.

• Collisions mean that more than one member occupies
the same cell. The number of collisions is recorded.

• The A&R control strategy can be described by the
following expressions.

ga(α) = [H(α)−H(α− 100)] ·min{ 5(1−e−0.223α)
α , 0.6},

gr(α) = −10[H(α)−H(α− 50)]/α2,

vj(k + 1) = ga(‖xj(k)− xs‖)[xs − xj(k)]
+

∑
i gr(‖xj(k)− xobs,i‖)[xobs,i − xj(k)]

+
∑

p( 6=j) gr(‖xj(k)− xp‖)[xp − xj(k)]

xj(k + 1) = xj(k) + [[vj(k + 1)]],

Fig. 1. The distribution of objects, obstacles and multi-
agent group(’∗’:objects;’♦’:obstacles;’◦’:initial posi-
tions of group members)

vj(k) and xj(k) are the velocity vector and the position
vector of the jth member at time k respectively. ga and
gr are the attraction and repulsion functions respectively.
[[·]] rounds the value of velocity in each dimension to an
integer. xs and xobs,i are the position vector of an object
and that of the ith obstacle respectively. ‖ · ‖ denotes the
Euclidean norm. H(·) is the Heaviside function which is
equal to 1 for positive values of the argument and zero
otherwise.

• If a member doesn’t detect any objects within its current
scanning scope, it will take a random walk with its step in
each dimension selected from {−5U,+5U}(U: unit).

• The state of each member is examined to avoid potential
competitions for one object among group members. If a
member discovers it’s hunting for one object with other
members or it continuously doesn’t move twice, it will
discard its current object and turn to another object or
take a random walk.

The distributions of objects, obstacles and multi-agent
group in an experiment are shown in Fig.1. There are 4
members, 100 objects and 30 obstacles on the map. The
instructions about symbols used in the following figures
are the same.

The remaining objects and the distribution of group mem-
bers after 1000 iterations are shown in Fig.2. After 1000
iterations, this group obtained 34 objects without any
collisions. So A&R control is effective in the control of
group behaviour.

For any member, when its attraction from an object and
its repulsions from obstacles or other members get into
equilibrium, it will not move unless some countermeasures
are taken. If the last rule for A&R control is off, some
interesting phenomena such as competition and deadlock
can be observed. Competition occurs when several mem-
bers try to take the same object and it’s due to A&R
equilibrium. In the case of competition, the members
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Fig. 2. The distribution of the remaining objects and group
members after 1000 iterations(’2’:final positions of
group members;dashed lines denote the tracks of
group members)

Fig. 3. Deadlock formed by three members aiming at
different objects

trapped in it will be stagnated and the object they hunt for
can’t be acquired. As a more complicated case, deadlock
occurs when group members have different aims which
are adjacent to each other. A deadlock formed by three
members during an experiment without state examination
is shown in Fig.3 and the embedded figure in it is the
magnification of the location where deadlock occurs. When
the leftmost member has covered a long distance to find
many objects, the other three members are trapped in
a triangular deadlock. Another special case is obstacle
umbrella. An object adjacent to an obstacle is under the
umbrella of the repulsion of this obstacle which prevents a
member from getting the object. Particularly, a cluster of
obstacles forms a strong repulsion field to resist members
who want to approach the objects around these obstacles.
For fear of these troubles, reasonable rules are expected to
be introduced into A&R control.

5. CONCLUSION

A&D analysis helps to evaluate the present state of a
group, predict its future states and provide information
for the A&D control of the group. For a group composed
of many members whose states can be observed but cannot
be controlled, A&D analysis at different levels can be used
to estimate the inner structure of the group. A&R control
is a promising way of implementing A&D control. A&D
analysis and A&R control can be combined to achieve
improved performances in search and optimization. It has
been verified that A&D analysis and A&R control are
promising to further improve the performance of state-
of-the-art PSOs. The experiment in Section 4 can be
used to test the effect of A&R control. More complicated
behaviours, such as cooperation and organization, can be
investigated through A&R control in this experiment.
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