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Abstract: A linear matrix inequality based mixed H2-Dissipative type state observer design approach is 
presented for smooth discrete time nonlinear systems with finite energy disturbances. This observer is 
designed to maintain H2 type estimation error performance together with either H∞  or a passivity type 
disturbance reduction performance in case of randomly varying perturbations in its gain. A linear matrix 
inequality is used at each time instant to find the time-varying gain of the observer. Simulation studies are 
included to explore the performance in comparison to the extended Kalman filter. 

 

1. INTRODUCTION 

An observer that diverges or significantly deteriorates in 
performance by a small perturbation in the observer gain is 
referred to as a “fragile” or “non-resilient” observer. The 
resilience problem, after the publication of (Keel and 
Bhattacharyya, 1997), has gained attention, e.g. (Dorato, 
1998; Famularo, et al., 1998; Jadbabaie, et al., 1998; Keel, et 
al., 1998) to name a few. One reason for the importance of 
resilience is that, in applications, the observer gains are 
calculated offline using available software, hence there is a 
need to address the consequences, in practice, of the 
computation error. Also, sometimes during implementation, 
it is necessary to resort to manual tuning to improve 
performance. In some other cases, the gains may slowly drift. 
Due to these reasons, the observer must be able to tolerate 
some perturbations in the observer coefficients.  
 
On the other hand, the research in nonlinear observer design 
has resulted in many new state observation techniques for 
various classes of systems: feedback linearization (Bestle and 
Zeitz, 1983; Isidori, 1985; Krener and Respondek, 1985), 
variable structure techniques (Walcott and Zak, 1987; 
Walcott, et al., 1987; Yaz and Azemi, 1993a; Yaz and 
Azemi, 1993b; Azemi and Yaz, 2000) extended linearization 
(Baumann and Rugh, 1986), high gain observers (Bornard 
and Hammouri, 1991), Lyapunov-based observer design 
(Thau, 1973; Kou, et al., 1980; Vidyasagar, 1980; Yaz and 
Azemi, 1993c), observers as limiting cases stochastic 
estimators (Baras, et al., 1988), set-valued estimation (James, 
and Petersen, 1998), State Dependent Riccati Equation 
(SDRE) estimator design of observers (Jaganath, et al., 2005), 
etc, among others.  
 
In this paper, we introduce a resilient design of mixed H2- 
dissipative type state observer for discrete-time nonlinear 
systems with smooth nonlinearities and finite energy ( 2 ) 
type disturbances. Linear matrix inequalities (LMIs) (Boyd, 

et al., 1994) are used as the main mathematical tool. In this 
work, in contrast to the previous work that uses a single LMI 
and a constant gain, the time-varying gain of the observer is 
found by solving a difference LMI at each point in time. This 
result is a natural extension of the constant gain LMI-based 
resilient linear observers in (Yaz, et al., 2005) and (Yaz, et al., 
2006), an extension to resilient nonlinear observer case of 
mixed performance criteria results (Yaz, et al., 1992; Haddad, 
et al., 1994; Xiang and Zhou,  2001) and can also be viewed 
as a stochastically resilient dissipative version of the 
Extended Kalman filter (EKF) because of its form, the time-
varying nature of its gain, and locally H2 performance 
criterion it satisfies. Therefore, some simulation examples are 
also included to compare the performance of the new 
nonlinear observer to the EKF. 

2. MAIN RESULTS 

Consider the state space representation of the following 
nonlinear system with a nonlinear measurement equation: 
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where n
k Rx ∈  is the state, ky pR∈  is the measured 

output, kw  is an 2  type disturbance and the nonlinearities 

f  and h  are smooth.  

Expanding the nonlinearities around the current state estimate 

kx̂  into Taylor series, we have  
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where kkk xxe ˆ−=  denotes the estimation error.  Then 
equation (1) can be approximately rewritten as 
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Let kx̂  obey the following nonlinear Luenberger observer (or 
EKF form) equation : 

    ))ˆ()(()ˆ(ˆ 1 kkkkkk xhyKxfx −Δ++=+             (3) 

where kΔ  represents the time-varying error made in 
implementing  the observer gain. As explained before, this 
can be due either to computational / modeling errors or 
random changes during operation. In this work, a general 
stochastic description of the error in the filter gain is given as 
follows:  

  ∑
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where i
kγ  are mutually uncorrelated, scalar, standard (zero 

mean and unit variance) white noise sequences and iK are 
known perturbation matrices. The zero mean property chosen 
for the multiplicative noise means perturbations can take on 
positive or negative values in an equally likely manner.  The 
general time varying property of the gain perturbations i

kγ  
as random sequences rather than random constants is useful 
in allowing different amounts of perturbations that may occur 
at different times during operation. If only an a priori 
computational error in the gain is to be considered, then 

iγ can be modelled as random constants and not as random 
sequences.  

Substituting from equations (2) and (3), we find that the error 
dynamics locally obey           

kkkkkkkkkkk wDKBeCKAe ))(())((1 Δ+−+Δ+−≅+      (4) 

Let kz  denote the performance output where 

                            kzkzk wDeCz +=                         (5) 

and consider the conditional expectation 
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for an energy function kk
T

kk ePeV =  where 0>kP . 

0Q > is a weight matrix which determines the relative 
weighting of the H2  vs. the other criteria. In this formulation, 
it is also possible to minimize H2 norm (by maximizing the 
minimum eigenvalue of Q) while satisfying the other criteria 
at the same time. Note that upon summation over k ,  taking 

expectation and using the expectation property 
}{}}/{{ xEyxEE = ,  (6) yields the performance criterion  
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that allows several mixed criteria formulations possible in a 
unified eigenvalue problem (Boyd, et al., 1994) framework. 
The suggested performance criteria with different design 
parameters ∈ , β, and δ are given in Table 1. 

∈  β δ  Performance criteria 
1 0 <0 Suboptimal H2 -H∞ design 
0 1 0 H2 –Passivity 
0 1 >0 H2 -Input Strict passivity 

>0 1 0 H2 –Output strict passivity 
>0 1 >0 H2 –Very strict passivity 

Table 1. Various dissipative performance criteria in a 
common framework. 

The following is the main result of this paper: 

Theorem 1. Given model (1) and the nonlinear observer (3) 
for the performance output (5) and objective (7). For 00 >P , 
let the following LMI 
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hold for 0>kP , kY ,  0≥k , and 
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criteria (7) is satisfied and the gain of the resilient observer 
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which satisfies the performance objective (7) is found from 
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Proof: 

We substitute for the terms in (6) to obtain the following 
inequality 
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Taking the expectation and considering the matrix in the 
middle in (10) and rearranging yields 
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Using the Schur complement (Boyd, et al., 1994)  in (11), we 
obtain the LMI (8), where kkk KPY 11 ++ =  and the necessary 

estimator gain is found from 1
1

1 +
−

+
= kk YPK

k
. Therefore, 

for the performance index (7) to hold for the linearized error 
equation in (4) and the disturbance input 2∈w , (8) must 

be feasible for 0>kP , kY  for all 0≥k .  

Remark 1. Note that an LMI needs to be solved in each step 
instead of a Riccati equation for EKF to find the necessary 
gain. The performance of this observer is compared to that of 
the EKF in the next section. 

Remark 2. The resilience comparison of the new observer 
with that of the EKF is also provided in simulation studies. 
Since this observer is made more resilient by design, it is 
expected to perform better in this sense than EKF.  

Remark 3. Note that Q, ∈ , β, and δ are design parameters 
which can be used to obtain better performance. By varying 

Q, it is also possible to attach more or less importance to H2- 
vs. H∞   or various passivity criteria. 

Remark 4. Since a time-varying LMI with different 
parameter values is used at different times, a change in the 
feasibility conditions can be expected in time.  Note however 
that the same problem may also be faced in EKF 
implementation which may lead to premature convergence or 
divergence. 

3. SIMULATION RESULTS 

Example 1. Since both the new approach and the EKF are 
based on linearization approximation, it is fair to compare 
this approach to EKF. Because EKF convergence was 
considered before in (Zhai, et al., 2003)   for various types of 
scalar discrete nonlinear systems, we compare our results 
with the ones in (Zhai, et al., 2003), which uses an EKF in 
one-step form for the scalar model 

1 ( )k k

k k k

x f x
y x w

+ =
= +

 

Also, the same categorization of systems introduced in (Zhai, 
et al., 2003)   is used here. All simulation results are averages 
of 30 runs of the same experiment. 

a) Type I system ( 1sup <k
k

A  (Zhai, et al., 2003)) 

Consider the following system model 

( ) 0.5sin( )k kf x x=  

where kw  is e-k.  Figure 1. shows the simulation results of 

both the sample squared error and kP  in (8) with respect to 

the iteration time k .  

 

Fig. 1. The change of sample squared error & kP  vs. iteration 

time k . 
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Figure 2. is on the comparison of sample squared error 
between the results of the new LMI approach and the 
traditional EKF approach. As is shown in Fig. 2, the new 
LMI approach has smaller squared error value both during 
the transient stage and the steady state than that of EKF 
approach. 

 

Fig. 2. Type I system, squared error comparison between the 
LMI method and EKF vs. iteration time   

b) Type II system  ( 1sup >k
k

A  (Zhai, et al., 2003)  ) 

The Skew Tent map with a trajectory that exhibits chaotic 
behaviour is considered. Skew Tent map is defined by  

/ , 0
( )

(1 ) /(1 ), 1
k k

k
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The value 0.6 was chosen for a  for which the trajectory 
exhibits chaotic behaviour. Output equation ky has kw  = 
0.9k. Note that at a single point, the nonlinearity is not 
differentiable; however this did not create any problems in 
the simulation studies. Figure 3. shows the simulation results 
for the sample squared error and kP  with respect to the 

iteration time k . Figure 4. shows the comparison of the 
sample squared error between the results of the new LMI 
approach and the EKF approach. We can see that the LMI 
approach has smaller sample squared error than that of EKF.    

c) Type III system ( sup 1k
k

A =  (Zhai, et al., 2003)  )  

Consider the following nonlinearity: 

( ) sin( )k kf x x=  

where kw  is e-k. Figure 5. shows the simulation results of 

both the  sample squared error and kP  vs. the iteration time 

k . As k  increases, sample squared error decreases quickly.  

 

 

 

Fig. 3. The change of sample squared error & kP  vs. 

iteration time k . 

 

Fig. 4. Type II system, comparison of sample squared error 
between the new LMI method and EKF vs. iteration time  

 

Fig. 5. The change of the sample squared error & kP  vs. 

iteration time k . 
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Fig. 6. Type III system, comparison of the sample squared 
error   between LMI method and EKF vs. iteration time k . 

As is shown in Fig. 6., the new LMI approach shows smaller 
sample squared error value than that of EKF approach.  

Table 2. shows the sum (over k) of the sample squared errors 
for  both the new LMI approach and the traditional EKF 
approach for those three types of systems. As shown in Table 
2., the LMI approach has smaller amount of sample squared 
error than that of the EKF approach. 

 LMI EKF 
Type I 0.6434 3.2523 
Type II 3.5547 19.1467 
Type III 1.1403 3.8067 

Table 2. The Sum of the sample squared error for the new 
LMI and EKF approaches 

The values of design parameters used in the simulations are 
given in Table 3.  

 Cz Dz β ∈  δ Q 

Type I 1 1 0 0.1 1 0.5 
Type II 1 1 0 0.09 0.923 0.001 
Type III 1 1 0 0.1 1 0.1 
Table 3. Design Parameter Values 

Example 2. This example contains a simulation of the error 
responses of observers for stochastic error kΔ  made in 
implementing the observer gain to test the resilience of our 
design. Type II system (Skew Tent map) is chosen for this 
simulation. The known perturbation matrices ( iK ) is 0.25 

for this example with kw  = 0.8k.  This system is simulated 
by running the model and observers 30 times and taking 
ensemble averages. In each simulation, a sequence of 
standard white noise is generated and added to both the new 
observer and the EKF gains for comparison. The actual state 
( kx ) and estimated state ( kx̂ ) are depicted in Fig.7. Figure 8. 
is the comparison of sample mean square error  between the 
results of the LMI method and the traditional EKF method. 

 

Fig. 7. Type II system, actual state and estimated state by 
LMI method. 

  

Fig. 8. Comparison of the MSE between LMI method and 
EKF vs. iteration time k . 

In Fig. 9, the sum of 
1

2

0

N

k
k

z
−

=
∑ where kz  is performance output 

in (5) vs. iteration time k  of both the new LMI method and 
EKF method are depicted. As shown in Fig.s 8 and 9, the 
new LMI method has smaller mean square error and 
performance output energy than that of EKF method.  

 
4. CONCLUSION 

A new stochastically resilient state observer which satisfies 
mixed H2 - dissipativity criteria has been presented for 
smooth discrete-time nonlinear systems. The technique uses 
the solution of an LMI at each stage to compute the time-
varying observer gain. The observer was tested with various 
types of first order nonlinear dynamic systems. Initial 
comparison studies between this new LMI based technique 
and the existing EKF based state estimation are presented. 
Simulation examples show superior performance of the new 
LMI based technique. 
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Fig. 9. Comparison of the 
1
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∑ between LMI method and 

EKF method vs. iteration time k . 
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