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Abstract: In this paper, we consider the coordinated attitude control problem without velocity
measurements. Based on the recently introduced unit quaternion output feedback for the
attitude tracking of a rigid body, we present a class of decentralized coordinated control laws
to solve the alignment problem for a group of spacecraft within a formation without velocity
measurements. The approach consists of introducing an auxiliary system for each spacecraft and
for each pair of spacecraft with a communication link. The vector parts of the unit quaternion,
representing the discrepancies between the output of the auxiliary systems and the attitude
tracking error as well as the relative attitude errors between spacecraft, are used in the control
law instead of the angular velocity and the relative angular velocity vectors. The spacecraft
attitudes are guaranteed to converge to a desired attitude (possibly time-varying), while keeping
the flight formation during the transient. Simulation results of a scenario of four spacecraft are
provided to show the effectiveness of the proposed control scheme.

1. INTRODUCTION

The coordination and control of formation of multiple ve-
hicles has received significant attention in recent years and
various strategies have been proposed. These approaches
can be categorized according to their control architecture
as Multiple-Input Multiple-output, leader-follower, virtual
structure and behavioral architectures. The latter provid-
ing the most useful tool in the coordinated attitude control
problem, Scharf et al. (2004), Ren and Beard (2004),
Vandyke et al. (2006).

One advantage of the behavioral approach is that explicit
formation feedback is included through the communication
between neighbors in the formation. Another important
feature of the behavioral approach is that it is a decentral-
ized implementation that can achieve more flexibility, re-
liability and robustness than centralized approaches. This
can be seen from the works of Balch and Arkins (1998),
Lawton et al. (2000a), Lawton et al. (2000b), Lawton and
Beard (2002), Ren and Beard (2004) and Ren (2007).
In Lawton et al. (2000a), the authors present the so-
called coupled dynamics controller to solve the coordinated
attitude control problem, where behavior-based forma-
tion control strategies needed to maintain relative atti-
tude during elementary formation maneuvers are derived.
The coupled dynamics controller consists of an attitude
alignment part and a formation keeping part, and uses a
bidirectional ring communication topology. This work has
been extended in Lawton et al. (2000b) and Lawton and
Beard (2002).

⋆ This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

More recently, In Ren (2007), the author extends the
decentralized virtual structure proposed by Ren and Beard
(2004) and the work of Lawton and Beard (2002) to a more
general formation scenario, where a distributed attitude
alignment is proposed for a team of deep space formation
flying spacecraft through local information exchange, and
three scenarios were considered. In Vandyke et al. (2006),
globally significant kinematic error variables are defined
and used in the development of a class of decentralized
attitude alignment laws that guarantee global asymptotic
stability of the attitude of spacecraft within a formation.

In the above mentioned approaches, in order to ensure the
asymptotic stability of the formation, it is required that
each spacecraft knows its own angular velocity and the
angular velocity of its neighbors. In Lawton and Beard
(2002), this requirement is removed by the introduction
of a passivity based stabilizing control law which is an
extension of the passivity based velocity-free attitude
regulation scheme proposed in Lizarralde et al. (1996).
Several global velocity-free attitude regulation schemes are
available in the literature. The extension of those schemes
to the tracking problem without velocity measurement is
not an obvious task and, to the best of our knowledge,
the existing results are only local or semi-global (see, for
instance, Caccavale et al. (1999), Costic et al. (2000)).
The approach presented in Tayebi (2007) provides a
new quaternion based solution to the attitude tracking
problem without velocity measurements and guarantees
almost global asymptotic stability.

Based on the work of Tayebi (2007), the main contribution
of this paper is to modify the work of Vandyke et al. (2006)
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and Ren (2007), and design a velocity-free decentralized
coordinated attitude control scheme such that a group of
spacecraft converge to their desired time varying attitude
while maintaining the same relative attitude during forma-
tion maneuvers with a non zero desired angular velocity.
We introduce an auxiliary system for each spacecraft and
for each pair of spacecraft with a communication link.
The vector parts of the unit quaternion describing the
discrepancy between the output of these auxiliary systems
and the attitude tracking error as well as the relative
attitude errors between spacecraft, are used in the control
law to generate the necessary damping that would have
been generated by the angular velocities and the relative
angular velocities of the spacecraft. Almost global asymp-
totic stability results are obtained.

2. SPACECRAFT DYNAMICS

The individual spacecraft in the formation are modeled as
rigid bodies. The equations of motion of the jth spacecraft
are

Ifj
ω̇j = τj − ωj × Ifj

ωj, (1)

˙̄qj =
1

2
q̄j ⊙ ω̄j (2)

where ω̄j =
(

ωT
j , 0

)T
, and ωj denotes the angular

velocity of the jth spacecraft expressed in the body-fixed
frame Fj . Ifj

∈ R
3×3 is a symmetric positive definite

constant inertia matrix of the jth spacecraft with respect
to Fj . The vector τj is the external torque applied to

the jth spacecraft expressed in Fj . The unit quaternion

q̄j =
(

qT
j , qj,4

)T
, composed of a vector component qj ∈ R

3

and a scalar component qj,4 ∈ R, represents the orientation

of the jth spacecraft frame, Fj , with respect to the inertial
frame, Fi, which are subject to the constraint

qT
j qj + q2

j,4 = 1 (3)

The rotation matrix that brings Fi onto Fj , denoted by
R(q̄j) ∈ R

3×3, is defined as follows

R(q̄j) = (q2
j,4 − qT

j qj)I3 + 2qjq
T
j − 2qj,4qj× (4)

where × is the vector cross product and I3 is the 3 × 3
identity matrix. The quaternion multiplication between
two unit quaternion, q̄j and q̄k, is defined by the following
non-commutative operation

q̄j ⊙ q̄k =
(

qj,4qk + qk,4qj + qj × qk , qj,4qk,4 − qT
j qk

)

(5)

The inverse or conjugate of a unit quaternion is defined by,
q̄ −1
j = (−qT

j , qj,4)
T , with the quaternion identity given by

(0, 0, 0, 1)T , Shuster (1993).

Our objective is to design a control scheme for each
spacecraft such that all the spacecraft converge to the
desired attitude, q̄d(t) = (qd(t), qd

4 (t)), with a desired
angular velocity ωd(t), while maintaining the same relative
attitude during formation maneuvers. We assume that
ωd(t) as well as its first and second time-derivatives are
bounded.

We first define the attitude tracking error for spacecraft j
as follows:

δ̄qj = (q̄d)−1 ⊙ q̄j (6)

which is governed by the dynamics

˙̄δqj =

(

δ̇qj

δ̇qj,4

)

=
1

2

(

δqj,4 I3 + δqj×
− δqT

j

)

δωj, (7)

δωj = ωj − R( ¯δqj) ωd (8)

The attitude error between the jth and the kth spacecraft,
namely q̄jk, is defined as:

q̄jk = (q̄k)−1 ⊙ q̄j , (9)

˙̄qjk =

(

q̇jk

q̇jk,4

)

=
1

2

(

qjk,4 I3 + qjk×
− qT

jk

)

ωjk (10)

with ωjk = ωj − R(q̄jk)ωk. The vector ωjk is the relative
angular velocity of Fj with respect to Fk expressed in Fj,
q̄jk represents the rotation from Fk to Fj and R(q̄jk) is
the rotation matrix related to q̄jk.

The following equations relating the relative states of the
jth and kth spacecraft are derived easily

q̄jk = ¯(δqk)−1 ⊙ δ̄qj (11)

ωjk = δωj − R(q̄jk)δωk (12)

R(q̄kj)
T = R(q̄jk) (13)

qkj = −qjk = −R(q̄kj) qjk (14)

With the above definitions, our objective will be to design
a control scheme such that the vectors δqj , qjk, δωj and
ωjk tend to zero asymptotically as time tends to infinity.
Actually, in Ren (2007) and Vandyke et al. (2006) this
problem was successfully solved in the full information
case, when both the attitude and angular velocity of
each spacecraft are available for feedback. Our interest is
to provide a solution to this problem when the angular
velocity is not measurable/available for feedback.

3. AUXILIARY SYSTEMS

In this section, we extend the work of Tayebi (2007) to for-
mation control without velocity measurements. Consider
the auxiliary system for each individual spacecraft defined
as

˙̄pj =
1

2
p̄j ⊙ β̄j (15)

with β̄j = (βT
j , 0)T and βj ∈ R

3 to be defined later.
The mismatch between the auxiliary system output and
the attitude tracking error for the jth spacecraft is defined
by the unit quaternion

δ̄pj = (p̄j)
−1 ⊙ δ̄qj , (16)

˙̄δpj =

(

δ̇pj

δ̇pj,4

)

=
1

2

(

δpj,4 I3 + δpj×
− δpT

j

)

Ωj (17)

with
Ωj = δωj − R( ¯δpj)βj (18)

where R(δ̄pj) is the rotation matrix related to δ̄pj .

We also define the following auxiliary system between
spacecraft j and k

˙̄pjk =
1

2
p̄jk ⊙ β̄jk (19)

with β̄jk = (βT
jk , 0)T and βjk ∈ R

3 to be defined later.
We define the unit quaternion describing the discrepancy
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between the auxiliary system output and the relative
attitude error between the jth and kth spacecraft as

δ̄pjk = (p̄jk)−1 ⊙ q̄jk, (20)

˙̄δpjk =

(

δ̇pjk

δ̇pjk,4

)

=
1

2

(

δpjk,4 I3 + δpjk×
− δpT

jk

)

Ωjk (21)

with
Ωjk = ωjk − R(δ̄pjk)βjk (22)

Our main contribution is to use a combination of the
vector parts of (20), for j, k = 1, ...n, in the coordinated
control law instead of the actual relative angular velocities
between spacecraft, leading to almost global asymptotic
stability result.

4. ATTITUDE ALIGNMENT CONTROL

Based on the coupled dynamics control strategy presented
in Lawton et al. (2000a), the proposed decentralized
coordinated attitude control law consists of two terms, in
order to achieve two different objectives/behaviors, and is
given by

τj = τ1
j + τ2

j (23)

where the first term aims to track a desired attitude and
angular velocity, in order to achieve the goal-seeking be-
havior, while the second is used to achieve the formation-
keeping behavior by ensuring the spacecraft alignment
in the formation and maintaining the same angular rate
between spacecraft.

As the first control action for the jth spacecraft, τ1
j , we

consider the velocity-free attitude tracking control law,
developed for a single spacecraft in Tayebi (2007), given
by

τ1
j = Ifj

R( ¯δqj)ω̇
d + R( ¯δqj)ω

d × Ifj
R( ¯δqj)ω

d

− α1jδqj − α2jδpj (24)

where α1j and α2j are the attitude tracking control gains
satisfying

α1j > 0, α2j > 0 (25)

The control action for the formation-keeping behavior for
the jth spacecraft, τ2

j , is defined as

τ2
j = −

n
∑

k=1

kp
jk qjk −

n
∑

k=1

kd
jk (δpjk − R(q̄jk)δpkj) (26)

where n is the number of spacecraft in the formation, and
kp

jk, kd
jk are the formation-keeping behavior gains such that

kp
jj = kd

jj = 0 and

kp
jk = kp

kj > 0, kd
jk = kd

kj > 0 (27)

if spacecraft j and k communicate with one another,
otherwise they are equal to zero, for j, k = 1, ...n.

Note that this control action is a modification of the one
used in Vandyke et al. (2006) and Ren (2007) in the
full information case, where we consider the vector part of
(20) to generate the necessary damping that would have
been generated when using the relative angular velocity
between the jth and the kth spacecraft.

Remark 1. Note that the choice of the gains kp
jk and kd

jk

determines the coordination architecture considered. The
magnitude of a nonzero kp

jk and/or kd
jk determines the

strength of the connection between spacecraft. Therefore,

various coordination architectures can be used by different
choices of these gains, Vandyke et al. (2006). It is also
important to note that it is not interesting to take them all
zero, since each spacecraft will be controlled individually.

To this point, we can state the following theorem.

Theorem 2. Consider the formation given in (1)-(2) under
the control law (23) with (24) and (26), with restrictions
(25) and (27), and let the inputs of the auxiliary systems
(15) and (19) be respectively

βj = Γjδpj , βjk = Γjkδpjk (28)

with Γj = ΓT
j > 0 and Γjk = ΓT

jk > 0. If the control gains
satisfy

α1j > 2

n
∑

k=1

kp
jk (29)

for j = 1, ...n, then all the signals are globally bounded
and qj(t) → qk(t) → qd(t) and ωj(t) → ωk(t) → ωd(t)
asymptotically.

Proof. The dynamics of the jth spacecraft angular veloc-
ity tracking error is given by

Ifj
˙δωj = τj −

(

δωj + R(δ̄qj)ω
d
)

× Ifj

(

δωj + R(δ̄qj)ω
d
)

+ Ifj

(

δωj × R(δ̄qj)ω
d − R(δ̄qj)ω̇

d
)

(30)

after few algebraic manipulations, and using the cross
product properties, one can show that

δωT
j Ifj

˙δωj = δωT
j (τj−Ifj

R( ¯δqj)ω̇
d

−R( ¯δqj)ω
d × Ifj

R( ¯δqj)ω
d) (31)

Consider the following Lyapunov function candidate

V =
n

∑

j=1

Vj (32)

where Vj is defined as follows

Vj =
1

2
δωT

j Ifj
δωj + 2α1j(1 − δqj,4) + 2α2j(1 − δpj,4)

+

n
∑

k=1

(

kp
jk(1 − qjk,4) + 2kd

jk(1 − δpjk,4)
)

(33)

The time derivative of Vj evaluated along the closed loop

dynamics of the jth spacecraft is

V̇j =δωT
j (τj − Ifj

R( ¯δqj)ω̇
d − R( ¯δqj)ω

d × Ifj
R( ¯δqj)ω

d)

+ α1jδω
T
j δqj + α2jΩ

T
j δpj

+
1

2

n
∑

k=1

kp
jkωT

jkqjk +

n
∑

k=1

kd
jkΩT

jkδpjk (34)

Using equations (18) and (23) with (24) and (26) in (34),
we will obtain

V̇j = − α2jδp
T
j R(δ̄pj)βj +

n
∑

k=1

(
1

2
kp

jkqT
jkωjk + kd

jkΩT
jkδpjk)

− δωT
j

n
∑

k=1

(

kp
jk qjk + kd

jk (δpjk − R(q̄jk)δpkj)
)

(35)

Then, the time derivative of V is

V̇ =

n
∑

j=1

V̇j (36)

Motivated by Ren (2007), and using the expression of ωjk

given in (12), we have;
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1

2

n
∑

j=1

n
∑

k=1

kp
jkqT

jkωjk =
1

2

n
∑

j=1

δωT
j

n
∑

k=1

kp
jkqjk

−
1

2

n
∑

k=1

δωT
k

n
∑

j=1

kp
jkR(q̄jk)T qjk

=

n
∑

j=1

n
∑

k=1

kp
jkδωT

j qjk (37)

where we have used equations (13), (14) and (27) to obtain
the above result. Using the expression of Ωjk, given in (22),
and (12), (13) and (27), we can write

n
∑

j=1

n
∑

k=1

kd
jkΩT

jkδpjk = −
n

∑

k=1

δωT
k

n
∑

j=1

kd
jkR(q̄jk)T δpjk

+

n
∑

j=1

δωT
j

n
∑

k=1

kd
jkδpjk −

n
∑

j=1

n
∑

k=1

kd
jkβT

jkR(δ̄pjk)T δpjk

=
n

∑

j=1

n
∑

k=1

kd
jkδωT

j (δpjk − R(q̄jk)δpkj)

−
n

∑

j=1

n
∑

k=1

kd
jkβT

jkR(δ̄pjk)T δpjk (38)

Then, from equations (28), (35)-(38) and using the fact
that qT R(q̄) = qT for any quaternion q̄, the time derivative
of V is given by

V̇ = −
n

∑

j=1

α2jδp
T
j Γjδpj −

n
∑

j=1

n
∑

k=1

kd
jkδpT

jkΓjkδpjk (39)

which implies that V (t) ≤ V (0), and ¯δqj , ¯δpj , ¯δωj , q̄jk and
δ̄pjk are globally bounded. In addition, we can verify that

δ̇pj and δ̇pjk are bounded, and so is V̈ . Using Barbalat’s
lemma we conclude that δpj → 0 and δpjk → 0, as t → ∞,
which implies that δpj,4 → ±1, δpjk,4 → ±1, βj → 0,
βjk → 0, R(δ̄pj) → I3 and R(δ̄pjk) → I3.

Now, since ω̇d is bounded, one can show that ¨̄δpj and ¨̄δpjk

are bounded, and hence ˙̄δpj → 0 and ˙̄δpjk → 0, and from
equations (17), (18), (21) and (22) we can conclude that
Ωj → 0 and Ωjk → 0, and consequently, δωj → 0 and

ωjk → 0. Furthermore, one can easily verify that δ̈ωj is
bounded since ω̈d is bounded, and so we conclude that
˙δωj → 0.

Using the above results, the closed loop dynamics (30)
with (23), (24) and (26) reduces to;

α1jδqj +
n

∑

k=1

kp
jk qjk = 0, j = 1, ...n (40)

from (5) and (11), we can write

α1jδqj +
n

∑

k=1

kp
jk(δqk,4δqj − δqj,4δqk − δqk × δqj) = 0 (41)

which is equivalent to
(

α1j +

n
∑

k=1

kp
jkδqk,4

)

δqj − δqj,4

n
∑

k=1

kp
jkδqk =

− δqj ×
n

∑

k=1

kp
jkδqk (42)

Motivated by Lawton and Beard (2002) and Ren (2007),

multiply both sides by
(

δqj ×
∑n

k=1 kp
jkδqk

)

, leads to

‖δqj ×
n

∑

k=1

kp
jkδqk‖

2 = 0 (43)

from which equation (42) can be rewritten as
(

α1j +

n
∑

k=1

kp
jkδqk,4

)

δqj − δqj,4

n
∑

k=1

kp
jkδqk = 0 (44)

for j = 1, ..., n.
Following Ren (2007), the above set of equations can be
rewritten in matrix form, using the Kronecker product ⊗,
as

(M(t) ⊗ I3) δQ = 0 (45)

where δQ ∈ R
3n is the column vector composed of δqj , for

j = 1, ..., n and M(t) = [mjk(t)] ∈ R
n×n is given by

mjk = −δqj,4k
p
jk, mjj = α1j +

n
∑

k=1

kp
jkδqk,4 (46)

We can see that the formation has converged only if
δQ = 0. A necessary and sufficient condition for this is
that matrix M has full rank. From equations (46), matrix
M is strictly diagonally dominant if

|mjj | >

n
∑

k=1,k �=j

|mjk| (47)

therefore,

|α1j +
n

∑

k=1

kp
jkδqk,4| >

n
∑

k=1,k �=j

|δqj,4k
p
jk| (48)

which yields

|α1j +
n

∑

k=1

kp
jkδqk,4| > |δqj,4|

n
∑

k=1,k �=j

kp
jk (49)

taking δqj,4 = 1 and δqk,4 = −1, we have

|α1j −
n

∑

k=1

kp
jk| >

n
∑

k=1,k �=j

kp
jk (50)

Hence, if condition (29) is satisfied, matrix M is strictly
diagonally dominant, which implies that the only solution
of (45) is δQ = 0, or δqj = 0 for j = 1..., n.
Finally, we can conclude that δqj → 0 and δqj,4 → ±1,
or equivalently qj → qk → qd. Moreover, since δωj → 0,
ωjk → 0, R(δ̄qj) → I3 and R(q̄jk) → I3, we conclude that

ωj → ωk → ωd(t), ∀j, k = 1, ...n.

Remark 3. From the above analysis, we can see that
condition (29) is restrictive in the sense that priority is
given to the goal-seeking behavior over the formation-
keeping behavior. In the case where one spacecraft is
affected by external disturbances or torque saturation, the
above control law does not guarantee perfect alignment
during formation maneuvers, since the primary objective
for spacecraft is to attain their desired attitude/angular
velocity.

Remark 4. We can see from (46) that if we can satisfy
that δqj,4 is positive for all t ≥ 0, for j = 1, ...n, then
matrix M will always be strictly diagonally dominant,
and the proposed coordinated attitude control scheme
will enable the designer to prioritize goal-seeking and
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formation-keeping behaviors. In fact, in Lawton and Beard
(2002), it was shown that this assumption is satisfied for
all t ≥ 0 under some conditions on the initial states.

Remark 5. It is intuitive that increasing the number of
connections for each spacecraft will improve the perfor-
mance of the proposed control scheme. In fact, in Vandyke
et al. (2006), a simulation study, in the full information
case, showed that improvement in the steady state attitude
error can be achieved by increasing the strength of the
connections or the number of connections per spacecraft.

5. THE CONSENSUS SEEKING CASE

In this section, we consider the consensus seeking problem
without velocity measurement. We consider the case where
α1j = 0, for j = 1, ..., n, in (24), and show that the
resulting control strategy allows to achieve a consensus
among all spacecraft, i.e., qj → qk, ∀j, k ∈ {1, ..., n}, and
ωj → ωd(t), ∀j ∈ {1, ..., n}, under some conditions on the
communication flow topology. The control gains kp

jk = kp
kj

and kd
jk = kd

kj are strictly positive if spacecraft j and k
are connected by a communication link, otherwise they
are equal to zero.

Following the steps of the proof of our theorem, equation
(40), in this case, becomes

n
∑

k=1

kp
jk qjk = 0, j = 1, ...n (51)

For further analysis of (51), it is appropriate to describe
the information flow between spacecraft by the weighted
undirected graphs G1 = (N , E ,Kp) and G2 = (N , E ,Kd),
with N being the set of nodes or vertices, describing the set
of spacecraft in the formation, E the set of unordered pairs
of nodes, called edges, describing the set of links between
spacecraft, and Kp,d are the set of weights associated to
every link of each graph respectively, containing the values

kp,d
jk . Note that G1 and G2 differ only on the set of weights

and they characterize, respectively, the interaction graphs
of qjk and δpjk.

We assign a direction to the graph G1, by considering one
of the nodes to be the positive end of the link, and obtain
the directed graph G̃1 = (N , Ẽ ,Kp), with Ẽ being the set
of ordered edges of the graph. The positive end of a link
can be chosen arbitrarily. Let m = |Ẽ | be the total number

of edges in the graph G̃1, which is also equal to the total
number of undirected links in G1. The weighted incidence
matrix of G̃1 is D ∈ R

n×m defined as

djl(u,v) =

{

+k
p

uv if node j is the positive end of link (u, v)
−k

p

uv if node j is the negative end of link (u, v)
0 otherwise

(52)

where l(u,v) : Ẽ → {1, ..m} is a function that associates a

number from the set {1, ...m} to each link (u, v) ∈ Ẽ .

The rank of D is n − 1 if the graph G̃1 is connected (i.e.,
there is a path between any two spacecraft), and it is full
column rank if this graph does not contain cycles (i.e.,
does not contain closed paths). Let Qu be the column

vector stack of all qjk, ∀(j, k) ∈ Ẽ . Using the fact that
qjk = −qkj , equation (51) is equivalent to

(D ⊗ I3)Qu = 0 (53)

Under the assumption that the communication graph is
connected and contains no cycles, or |Ẽ | = n− 1, the only

solution of (53) is Qu = 0, that is qjk = 0, ∀(j, k) ∈ Ẽ .

Since the graph is connected, each spacecraft is communi-
cating with at least one other spacecraft, which allows to
conclude that qjk → 0, or R(q̄jk) → I3, for j, k = 1, ...n.
Finally, since δωj → 0 and ωjk → 0, we conclude that
qj → qk, and ωj → ωk → ωd(t), ∀j, k ∈ {1, ..., n}.

6. SIMULATION RESULTS

Using SIMULINK, we consider a scenario where four
spacecraft are required to align their attitudes while track-
ing the desired reference trajectory defined by ωd(t) =
0.1sin(0.1πt)(1, 1, 1)T and q̄d(0) = (0, 0, 0, 1)T . In addi-
tion, we consider that each spacecraft communicates only
with its two neighbors; that is two connections for each
spacecraft. The spacecraft are modeled as rigid bodies
whose inertia matrices are taken as Ifj

= diag(20, 20, 30).
The initial conditions for the four spacecraft are selected
to be: q̄1(0) = (0, 0, 1, 0), q̄2(0) = (1, 0, 0, 0), q̄3(0) =
(0, 1, 0, 0), q̄4(0) = (0, 0, sin(−π/4), cos(−π/4)), p̄j =
(1, 0, 0, 0) and p̄jk = (1, 0, 0, 0), for j, k = 1, .., 4. The
controller gains used in our simulations are

Γj = diag(5, 5, 5), α1j = 70, α2j = 90

Γjk = diag(5, 5, 5), kp
jk = 15, kd

jk = 25

for j, k = 1, .., 4.
The obtained results are illustrated in figures (1)-(2). Fig-
ure (1) shows the components of the unit quaternion, q̄i

j ,
i = 1, ...4, representing the attitude of the four spacecraft
in the formation (we use the superscript (i) to denote
the ith component of a vector). Note that each space-
craft converges to the same desired attitude. Figure (2)
illustrates the components of the angular velocity error
vectors δωj for the four spacecraft. It is clear that the
angular velocity of the four spacecraft converge to the same
specified desired angular velocity.

7. CONCLUSION

We have considered the decentralized attitude alignment
problem among a team of spacecraft within a formation
without velocity measurements. The main contribution
of this paper is the extension of the work proposed in
Tayebi (2007) to formation flying control without velocity
measurement. The presented approach is based on the
introduction of an auxiliary system for each spacecraft
and for each pair of spacecraft with a communication link.
The vector parts of the unit quaternion describing the
discrepancy between the output of these auxiliary systems
and the attitude tracking error as well as the relative
attitude errors between spacecraft, are used in the control
law to generate the necessary damping that would have
been directly generated by the angular velocities and the
relative angular velocities of the spacecraft. Almost global
asymptotic stability results are obtained in the sense that
the closed-loop system has several equilibria that represent
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Fig. 1. Spacecraft attitudes
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Fig. 2. The three components of the angular velocity error
vectors for the four spacecraft

the same physical configuration, but only one of them is
an attractor. Simulation results have shown a scenario of
four spacecraft align and track a desired trajectory.
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