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Abstract: In this paper, a class of single output nonlinear systems with an uncertain parameter
is considered. A diffeomorphism is first introduced to simplify the system structure, then, by
employing an adaptive approach to identify the unknown parameter, a sliding mode observer
is developed to estimate the system state variables. Based on the observer, a fault estimation
scheme is proposed based on the minimisation of a weighted L2 norm of the fault estimation
error. A simulation example is given to demonstrate the proposed scheme.

1. INTRODUCTION

In recent decades, some control inspired approaches — for
instance sliding mode techniques (Edwards, Spurgeon &
Patton 2000), modern differential geometric approaches
(Persis & Isidori 2001) and adaptive schemes (Zhang,
Polycarpou & Parisini 2004) have been successfully incor-
porated with the observer-based FDI approach. In partic-
ular, modern geometric approaches have been shown to be
effective in the investigation of a class of nonlinear systems
(Isidori 1995, Marino & Tomei 1995).

Single output systems have received much attention be-
cuase the structure of such a class of systems is simple
(see e.g. (Marino & Tomei 2000, Jo & Seo 2002, Zhang
et al. 2004, Chen & Saif 2007)). When a system has
unknown parameters, adaptive control techniques can be
employed to estimate the unknown parameters (Xu &
Zhang 2004, Zhang et al. 2004). In Shafai, Pi, Bas &
Linder (2001), a PI adaptive observer was proposed for
the purpose of FDI for SISO linear systems. An adap-
tive FDI scheme was given in Wang & Daley (1996) for
linear systems which requires that the observation error
dynamics are strictly positive real. More recently, Chen
and Saif (Chen & Saif 2007) considered a FDI problem for
a class of SISO linear systems and an adaptive technique
was used to identify the unknown parameters. However, in
reality, most systems exhibit varieties of nonlinearities and
therefore it is necessary to deal with nonlinear systems.

Recently, sliding mode techniques have been successfully
used in fault detection and isolation (Floquet, Barbot,
Perruquetti & Djemai 2004, Edwards et al. 2000, Tan &
Edwards 2002, Yan & Edwards 2007) and it has been
proved to be an effective way to estimate/reconstruct
system faults. A ‘precise’ fault reconstruction approach is
proposed in Edwards et al. (2000) based on an equivalent
output error injection. Based on the work in Edwards et al.
(2000), a sensor fault reconstruction scheme is given in Tan
& Edwards (2002). It should be noted that in (Edwards
et al. 2000, Tan & Edwards 2002), only linear systems
are considered and uncertainty is not involved. A fault
estimation approach for linear systems with uncertainty

was proposed by Tan & Edwards (2003). Later, a robust
actuator fault reconstruction scheme was presented in
Yan & Edwards (2007) using the characteristics of the
uncertainty structure and the fault distribution. Jiang,
Staroswiecki & Cocquempot (2004) proposed a fault es-
timation scheme for a class of systems with uncertainty,
and a robust fault detection method for nonlinear systems
with disturbances was also considered in Floquet et al.
(2004). However, in these papers involving uncertainty, the
reconstruction/estimation signal is explicitly dependent on
the bounds on uncertainties, and they all require that the
uncertainties are bounded with known upper bounds.

It should be noted that in contrast to multi-output sys-
tems, a single output system only has one output which
can be employed to estimate a fault and identify a para-
meter. Therefore in order to make estimation and identi-
fication possible simultaneously, both the fault and the
uncertain parameter must appear in the output chan-
nel of the dynamics. Since the uncertain parameter and
the fault both exist in the same channel and can not
be separated, ‘precise’ fault reconstruction as given in
(Edwards et al. 2000, Yan & Edwards 2007) is, generally
speaking, not possible. However, it is possible to estimate
the fault affecting the system and then to detect the fault
by establishing an appropriate threshold. In this paper,
fault estimation is considered for a class of single output
nonlinear systems with an uncertain parameter. Both the
fault distribution vector and the distribution vector for
the uncertain parameter are allowed to be functions of the
system output and input. It is not required that the un-
certainty/fault is matched. Under the assumption that the
time derivative of the system output is measurable, a novel
adaptive update law is proposed to identify the unknown
parameter and then an observer is established using sliding
mode techniques. It is shown that the trajectories of the
error system dynamics enter a domain around the operat-
ing point in finite time and remain inside thereafter. Based
on the sliding mode observer, a fault estimation scheme is
proposed to estimate the fault signal. Bounds for the fault
estimation error are also given, which are independent of
the uncertain parameter. Moreover, the uncertain parame-
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ter is allowed to be arbitrarily large, and a bound on the
parameter is not required. This is different in comparison
with the existing related work in (Jiang et al. 2004, Floquet
et al. 2004, Tan & Edwards 2003, Yan & Edwards 2007)
where the uncertain bounds must be used in the observer
design and fault estimation/reconstruction.

Notation: The symbol ‖ · ‖ denotes the Euclidean norm
or its induced norm, and in particular, ‖ · ‖2 is used to
represent the L2 norm. The symbols used in Section 2 are
the same as those in (Marino & Tomei 1995).

2. SYSTEM DESCRIPTION AND ANALYSIS

Consider a nonlinear system described by

ẋ= F (x) +G(x, u) + Φ(x, u)θ + Ψ(x, u)f(t) (1)

y = h(x), x0 := x(0) (2)

where x ∈ Ω ⊂ Rn (Ω is a neighbourhood of the origin),
u ∈ U ⊂ Rm (U is an admissible control set) and
y ∈ Y ⊂ R (Y is output space) are the state variables,
the inputs and the output respectively. The vector fields
F (x) ∈ Rn, G(x, u) ∈ Rn, Φ(x, u) ∈ Rn and Ψ(x, u) ∈ Rn

are assumed to be smooth. The scalar θ ∈ R represents
an unknown constant parameter. The unknown function
f(t) ∈ R is a fault affecting the system which satisfies

|f(t)| ≤ ρ(t) (3)

where ρ(·) is assumed to be known.

In this paper, all the assumptions are only assumed to
hold in a domain of the operating point instead of the
whole state-space. Without loss of generality, the domain
is assumed to be a compact neighbourhood of the origin.

Assumption 1 The pair (F (x), h(x)) satisfies

i) rank
[
dh, d(LFh), · · · , d(Ln−1

F h)
]

= n;

ii) [adiF ξ, ad
j
F ξ] = 0, i, j = 0, 1, 2, . . . , n− 1;

where ξ(x) is a vector field solution of the equation



〈dh, ξ〉
〈d(LFh), ξ)〉

...
〈d(Ln−1

F h), ξ〉


 =




0
...
0
1


 (4)

For convenience, the notation O(F,h) is used throughout
the paper and denotes a set of n-dimensional vector fields
defined by

O(F,h) :=

{
ζ(x, u)

∣∣∣∣
[ζ, adjF ξ(x)] = 0
u ∈ U , j = 0, 1, 2, . . . , n− 2

}

where ξ(·) is determined by (4).

Assumption 2. The vector fields G(x, u), Φ(x, u) and
Ψ(x, u) satisfy

G(x, u),Φ(x, u),Ψ(x, u) ∈ O(F,h)

in the domain (x, u) ∈ Ω × U

Under Assumptions 1 and 2, it follows from Chapter 5 in
(Marino & Tomei 1995) that there exists a diffeomorphism
w = T1(x) such that in the new coordinates w, system (1)–
(2) can be described by

ẇ=Aw + G̃(y, u) + Φ̃(y, u)θ + Ψ̃(y, u)f(t) (5)

y =Cw, (6)

where

A=




0 0 · · · 0 0 0
1 0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0




:=

[
A1 0
A2 0

]
∈ Rn×n (7)

C = [ 0 · · · 0 1 ] ∈ R1×n (8)

Clearly, the matrix pair (A1, A2) is observable and thus
there exists a matrix L ∈ R(n−1)×1 such that A1 −LA2 is
stable.

For system (5)–(6), introduce a further linear coordinate
transformation z = T2w with

T2 :=

[
In−1 −L

0 1

]
(9)

Let T = T2 ◦ T1. It is obvious that T : x 7→ z is a
diffeomorphism defined in a domain of the origin. It follows
that in the new coordinate system z defined by z = T (x),
system (1)–(2) has the following form

ż = T2

[
A1 0
A2 0

]
T−1

2 z + T2G̃(y, u) + T2Φ̃(y, u)θ

+T2Ψ̃(y, u)f(t) (10)

y =Cz (11)

since CT−1
2 = C. The system above can be further

decomposed as

ż1 = (A1 − LA2)z1 +
(
A1 − LA2

)
Lz2 + g1(y, u)

+φ1(y, u)θ + ψ1(y, u)f(t) (12)

ż2 =A2z1 +A2Lz2 + g2(y, u) + φ2(y, u)θ

+ψ2(y, u)f(t) (13)

y = z2 (14)

where z = col(z1, z2) with z1 ∈ Rn−1 and z2 ∈ R and

[
g1(y, u)
g2(y, u)

]
:= T2G̃(y, u) =

[
∂T (x)

∂x
G(x, u)

]

x=T−1(z)

(15)

[
φ1(y, u)
φ2(y, u)

]
:= T2Φ̃(y, u) =

[
∂T (x)

∂x
Φ(x, u)

]

x=T−1(z)

(16)

[
ψ1(y, u)
ψ2(y, u)

]
:= T2Ψ̃(y, u) =

[
∂T (x)

∂x
Ψ(x, u)

]

x=T−1(z)

(17)

with g1(·), φ1(·), ψ1(·) ∈ Rn−1 and g2(·), φ2(·), ψ2(·) ∈ R.

Remark 1. Since T1 is available in (Marino & Tomei
1995) and the matrix T2 has been given in (9), the
transformation T is available. Therefore, the vectors gi(·),
φi(·) and ψi(·) for i = 1, 2 can be obtained directly using
the coordinate transformation z = T (x) and thus system
(12)–(14) is well defined and can be obtained from (1)–(2).

Assumption 3 The functions φ2 and ψ2 satisfy φ2(·) 6= 0
and ψ2(·) 6= 0 in the domain Y × U . Furthermore 1

ψ2(·)
is

assumed to be bounded in Y × U .
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Remark 2. Assumption 3 is a limitation on the fault and
uncertain parameter distributions. It should be noted that
φ2 6= 0 and ψ2 6= 0 are necessary for the parameter θ to be
identified and the fault f to be estimated, since in system
(12)–(13), only z2 is measurable and z1 is not available.

3. ADAPTIVE SLIDING MODE OBSERVER DESIGN

In this section, as in (Fu & Liao 1990), it is assumed that
ẏ is measurable 1 . A sliding mode observer will now be
proposed employing an adaptive law. For system (12)–
(14), consider the dynamical observer system

˙̂z1 = (A1 − LA2)ẑ1 +
(
A1 − LA2

)
Ly + g1(y, u)

+φ1(y, u)θ̂ (18)

˙̂z2 =A2ẑ1 +A2Ly − Λ (ẑ2 − y) + g2(y, u)

+φ2(y, u)θ̂ + ν (19)

ŷ = ẑ2 (20)

where ŷ ∈ R is the observer output, Λ > 0 is a design

scalar, and the estimate of θ denoted by θ̂ is given by the
following adaptive law
˙̂
θ = −φ2(·)

(
φ2(y, u)θ̂ +A2ẑ1 +A2Ly + g2(y, u) − ẏ

)
(21)

The output error injection term ν is defined by

ν = k (t, y, u) sgn(y − ŷ) (22)

where sgn denotes the usual signum function. The gain
k(·) is to be determined later and only depends on known
information.

Let ez = z1− ẑ1, ey = y− ŷ and eθ = θ− θ̂. It follows from
(12)–(14) and (18)–(20) that the dynamical error system
is described by

ėz = (A1 − LA2)ez + φ1(y, u)eθ + ψ1(y, u)f(t) (23)

ėθ =−φ2(y, u)A2ez − φ2
2(y, u)eθ

−φ2(y, u)ψ2(y, u)f(t) (24)

ėy =A2ez − Λey + φ2(y, u)eθ + ψ2(y, u)f(t) − ν (25)

The following conclusion is now ready to be presented:

Theorem 1. Assume that there exists a positive definite
matrix P and a positive constant ε such that the matrix

W :=

[
W11 W12

WT
12 W22

]

is positive definite for (y, u) ∈ Y × U where

W11 :=−
(
(A1 − LA2)

TP + P (A1 − LA2) +
‖ψ1(·)‖

2

εψ2
2(·)

P 2
)

W12 :=−P
φ1(y, u)

φ2(y, u)
+ P

ψ1(y, u)

εψ2(y, u)
+AT2

W22 := 2 −
1

ε
Then, under Assumptions 2 and 3, the trajectories of
(23)–(24) will enter a bounded domain of the origin in
finite time if ψ2(y, u)ρ(t) is bounded in Y × U × R+ and
γ := inf(y,u)∈Y×U{λmin(W (y, u))} > 0.

1 Otherwise the approach proposed in (Levant 1998) can be em-
ployed to compute the time derivative of the system output.

Proof: Consider a candidate Lyapunov function V for the
error dynamics (23)–(24) as follows

V (ez, eθ) = eTz Pez + e2θ (26)

Then the time derivative of V along the trajectories of
system (23)–(24) are given by

V̇ |(23)−(24)

= eTz
(
(A1 − LA2)

TP + P (A1 − LA2)
T
)
ez + 2eTz Pφ1(·)eθ

+2eTz Pψ1(y, u)f(t) − 2φ2(y, u)eθA2ez

−2φ2
2(y, u)e

2
θ − 2φ2(y, u)ψ2(y, u)eθf(t) (27)

From Young’s inequality and ψ2 6= 0, it follows that for
any positive constant ε

2eTz Pψ1(y, u)f(t) − 2φ2(y, u)ψ2(y, u)eθf(t)

≤
1

ε

∥∥∥∥e
T
z P

ψ1(y, u)

ψ2(y, u)
− φ2(y, u)eθ

∥∥∥∥
2

+ ε ‖ψ2(y, u)f(t)‖
2

=
1

ε
eTz

(‖ψ1(y, u)‖
2

ψ2
2(y, u)

P 2
)
ez +

1

ε
φ2

2(y, u)e
2
θ

−2
φ2(y, u)

εψ2(y, u)
eTz Pψ1(y, u)eθ + ε ‖ψ2(y, u)f(t)‖

2
(28)

Substituting (28) into (27), it follows that

V̇ |(23)−(24)

= eTz

(
(A1 − LA2)

TP + P (A1 − LA2) +
‖ψ1(·)‖

2

εψ2
2(·)

P 2
)
ez

−2eTz

(
−P

φ1(y, u)

φ2(y, u)
+ P

ψ1(y, u)

εψ2(y, u)
+AT2

)
φ2(y, u)eθ

−
(
2 −

1

ε

)
φ2

2(y, u)e
2
θ + ε ‖ψ2(y, u)f(t)‖

2

= − [ eTz φ2(·)eθ ]W

[
ez

φ2(·)eθ

]
+ ε ‖ψ2(·)f(t)‖

2
(29)

Since by assumption ψ2(y, u)ρ(t) is bounded in Y × U ×
R+, suppose that |ψ2(y, u)ρ(t)|

2 ≤ M . Then, it follows
from (29) that when ‖ez‖

2 + φ2
2(y, u)e

2
θ > εM

γ(1−γ0)
with

0 < γ0 < 1,

V̇ ≤ −γ
(
‖ez‖

2 + φ2
2(y, u)e

2
θ

)
+ ε ‖ψ2(y, u)f(t)‖

2

≤ −γ
(
‖ez‖

2 + φ2
2(y, u)e

2
θ

)
+ εM

< −γ
(
‖ez‖

2 + φ2
2(·)e

2
θ

)
+ γ(1 − γ0)

(
‖ez‖

2 + φ2
2(·)e

2
θ

)

= −γγ0

(
eTz ez + φ2

2(y, u)e
2
θ

)
≤ 0

Since φ2
2(·) 6= 0 in the considered domain, it follows that

the trajectories of system (23)–(24) will enter a bounded
domain in finite time ((Khalil 2002)). Hence the conclusion
follows. #

Remark 3. Theorem 1 shows that under certain condi-
tions both ez and eθ are bounded. Throughout the paper,
it is assumed that for any (t, y, u) ∈ R+ × Y × U there
exist χ1 and χ2 such that

‖ez(t)‖ ≤ χ1, |eθ| ≤ χ2 (30)

Now, for the error dynamical equation (23)–(25), consider
the following sliding surface

S = {(ez, eθ, ey) | ey = 0} (31)
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The reduced-order sliding mode associated with the sur-
face in (31) can be described by (23)–(24). Theorem 1
has shown that under certain conditions, when the sliding
motion takes place, the trajectories of the sliding mode
dynamics will enter a bounded domain in finite time.
A reachability condition will be developed so that the
error dynamical system (23)–(25) is driven to the sliding
surface (31) in finite time and a sliding motion maintained
thereafter.

Theorem 2. Assume that (30) holds. Then the trajectories
of the dynamical system (23)–(25) can be driven to the
sliding surface (31) in finite time if the gain k(t, y, u) in
(22) satisfies

k(·) ≥ χ1 + Λ |ey| + |φ2(y, u)|χ2 + |ψ2(y, u)|ρ(t) + η (32)

for some η > 0.

Proof: Substituting (22) into (25), it follows that

ey ėy = eyA2ez − eyΛey + eyφ2(y, u)eθ + eyψ2(y, u)f(t)

−eyk(·)sgn(ey)

From (3), (30) and the fact that “eysgn(ey) = |ey|”,

ey ėy ≤ |ey| ‖A2‖χ1 + Λ e2y + |φ2(y, u)| |ey|χ2 +

|ey| |ψ2(y, u)|ρ(t) − k(·)|ey|

=
(
χ1 +Λ |ey| + |φ2(·)|χ2 + |ψ2(·)|ρ(·)−k(·)

)
|ey|(33)

(In establishing (33) the fact that ‖A2‖ = 1 has been
used). Then, using (32), it is easy to see that (33) becomes

ey ėy ≤ −η|ey|

This shows that the traditional reachability condition
(Utkin 1992) is satisfied and thus ey → 0 in finite time.
Hence the conclusion follows. #

Remark 4 From sliding mode theory, Theorems 1 and
2 show that system (18)–(20) is an observer for the sys-
tem (12)–(14) and the estimation error enters a bounded
domain in finite time.

4. FAULT ESTIMATION

In this section, it is assumed that an adaptive sliding mode
observer (18)–(20) has been properly designed and that
the conditions in Theorems 1 and 2 are satisfied. When a
sliding motion takes place,

ey(t) = 0, and ėy(t) = 0 (34)

and in this case the output error injection signal ν in (25)
can be replaced by an equivalent output error injection
signal νeq (Utkin 1992). By applying (34) to (25), it follows
that when the sliding motion takes place

A2ez + φ2(y, u)eθ + ψ2(y, u)f(t) − νeq = 0 (35)

From Assumption 3, ψ2(y, u) 6= 0. Then, from (35) the
fault signal satisfies

f(t) =
1

ψ2(y, u)
(−A2ez − φ2(y, u)eθ + νeq) (36)

In order to estimate the fault f(t), it is necessary to recover
the equivalent output error injection signal νeq. In the work

described in (Utkin 1992), it was obtained using a low-
pass filter. Here a modification to the approach given in
(Edwards et al. 2000) will be employed. From (22), the
equivalent output error injection signal νeq in (36) can be
approximated to any accuracy by

νσ := k (t, y, u) ζ(ey) (37)

where k(·) satisfies (32) and

ζ(ey) =
ey

‖ey‖ + δ1 exp{−δ2t}
(38)

where δ1 and δ2 are positive design constants.

Construct a signal

f̂(t) =
1

ψ2(y, u)
νσ (39)

where the function νσ is defined by (37). It will be shown

that f̂(t) is a reasonable estimate for the fault f(t). Define

Z := A2ez + φ2(y, u)eθ (40)

Then, the following conclusion is ready to be presented:

Theorem 3. Consider the system described in (1)–(2).
Assume that the conditions of Theorem 1 are satisfied and
that the matrix

W̃ :=

[
W̃11 W̃12

W̃T
12 W̃22

]

defined by

W̃11 :=−
(
(A1 − LA2)

TP + P (A1 − LA2) +

‖ψ1(y, u)‖
2

εψ2
2(y, u)

P 2 +AT2 A2

)

W̃12 :=−P
φ1(y, u)

φ2(y, u)
+ P

ψ1(y, u)

εψ2(y, u)

W̃22 := 1 −
1

ε
is semi-positive definite where ε is a positive scalar. Then,

i) ‖Z‖2 ≤ V (0)+ε‖ψ2(y, u)f(t)‖2 with V and Z defined
by (26) and (40) respectively;

ii) the L2 norm of the estimation error f(t)− f̂(t) where

f̂(t) is defined by (39), satisfies

‖ψ2(f(t) − f̂(t))‖2 ≤ V (0) + ε‖ψ2f(t)‖2 + ε1 (41)

where ε1 is an arbitrary small positive constant.

Proof: From the definition of Z in (40), it follows that

‖Z‖2 = eTz A
T
2 A2ez + 2eTz A

T
2 φ2(y, u)eθ + φ2

2(y, u)e
2
θ (42)

Then, from the proof of Theorem 1 and (29),

V̇ |(23)−(24) ≤− [ eTz φ2(y, u)eθ ] W̃

[
ez

φ2(y, u)eθ

]

−‖Z‖2 + ε ‖ψ2(y, u)f(t)‖
2

(43)

Since W̃ is semi-positive, it follows from (43) that for
t ∈ R+

V (t) − V (0) ≤ −

t∫

0

‖Z‖2dt+ ε

t∫

0

‖ψ2(y, u)f(t)‖
2
dt
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Because V (t) > 0,
t∫

0

‖Z‖2dt ≤ V (0) + ε

t∫

0

‖ψ2(y, u)f(t)‖
2
dt

Hence conclusion i) follows.

Since νσ can approximate νeq to any accuracy, and from
Assumption 3 1

ψ2(·)
is bounded in Y × U , it follows that

for any ε1 > 0 there exist σ1 and σ2 such that

‖νeq − νσ‖2 < ε1

Consequently, from (36), (39) and conclusion i),

‖ψ2(f(t) − f̂(t))‖2 ≤ V (0) + ‖ − Z + νeq − νσ‖2

≤ V (0) + ε‖ψ2f(t)‖2 + ε1 (44)

Hence, conclusion ii) follows. #

Remark 5. Theorem 3 shows that f̂ is an estimate for the
fault f and the estimation error is given by (41). Clearly,

the conservatism of the estimation error ‖ψ2(f − f̂)‖2 can
be reduced by optimizing ε.

Remark 6. From the proof of Theorems 2 and 3, it is easy

to see that if W̃ is positive definite then this implies that

W is positive definite. However, the fact that W̃ is semi-
positive definite does not imply W is positive definite.

In the generic case it is hard to give a general approach
for optimising the parameter ε. However, it is possible to
do this for some special cases. An interesting case is when

φ1(y, u) = d1φ2(y, u), ψ1(y, u) = d2ψ2(y, u) (45)

where d1, d2 ∈ Rn−1 are constant vectors. In this case the

matrices W and W̃ have the following forms respectively

W =

[
−Γ −Ξ +AT2

−ΞT +A2 2 − 1
ε

]

W̃ =

[
−Γ −AT2 A2 −Ξ

−ΞT 1 − 1
ε

]

where

Γ := (A1 − LA2)
TP + P (A1 − LA2) +

‖d2‖
2

ε
P 2

Ξ := P

(
d1 −

d2

ε

)

In order to get the least conservative bound for the fault

estimation error f − f̂ , one approach is to minimize ε such

that W is positive definite and W̃ is semi-positive definite.

5. SIMULATION EXAMPLE

Consider a DC-to-DC boost power converter ((Ortega,
Schaft, Maschke & G. 2002)). The dynamical equation
describing this system is given by

[
ẋ1

ẋ2

]
=

[
0 −D
D − 1

RL

] [
1
L
x1

1
C
x2

]
+

[
E
0

]
Vin (46)

where x1 is the induction flux, x2 is the charge in the
capacitor and Vin represents the input voltage. The scalar
C is the capacitance, L is the inductance and the constant
D (0 < D < 1) is the duty ratio. RL is the output load

resistance and E is the DC voltage. The system in (46)
can be expressed in the form of (1)–(2) as follows

[
ẋ1

ẋ2

]
=

[
−D

C
x2

D

L
x1 −

1
RLC

x2

]

︸ ︷︷ ︸
F (x)

+

[
Eu
0

]

︸ ︷︷ ︸
G(x,u)

+

[
k1

k2

]

︸ ︷︷ ︸
Φ(x,u)

θ +

[
E
0

]
kf

︸ ︷︷ ︸
Ψ(x,u)

f

y =−
C

D
x1

where u := Vin is the input and y = − C

D
x1 is the output.

The parameter θ is assumed to be a constant disturbance
affecting the system and f(t) is an ‘actuator fault’ added
to illustrate the results obtained in this paper (and is not a
feature of Ortega et al. (2002)). By direct computation, it
follows that Assumptions 1 and 2 are both satisfied. Then
introduce the coordinate transformations

w1 = x2 −
1

RLD
x1

w2 = −
C

D
x1

and z =

[
1 −l
0 1

]
w

where z := col(z1, z2). Then the system can be described
in the coordinates z in the canonical form (12)–(14) as

ż1 =−lz1 − l2z2 + (
l

RL

−
D2

L
)
y

C
+ (lC −

1

RL

)
E

D
u

︸ ︷︷ ︸
g1

+(k2 −
k1

RLD
+

Cl

D
k1)

︸ ︷︷ ︸
φ1

θ + (lC −
1

RL

)
E

D
kf

︸ ︷︷ ︸
ψ1

f(t) (47)

ż2 = z1 + lz2 + (−
1

RLC
y −

CE

D
u)

︸ ︷︷ ︸
g2

+(−
C

D
k1)

︸ ︷︷ ︸
φ2

θ

+(−
C

D
E)kf

︸ ︷︷ ︸
ψ2

f(t) (48)

y = z2 (49)

From (18)–(19), the corresponding candidate observer for
system (47)–(49) is given by

˙̂z1 =−lẑ1 − l2y + (
l

RL

−
D2

L
)
y

C
+ (lC −

1

RL

)
E

D
u

+(k2 −
k1

RLD
+

Cl

D
k1)θ̂ (50)

˙̂z2 = ẑ1 + ly − Λ(ẑ2 − y) + (−
1

RLC
y −

CE

D
u)

+(−
C

D
k1)θ̂ + ν (51)

ŷ = ẑ2 (52)

where ν is defined by (22) and θ̂ is given by

˙̂
θ =

C

D
k1

(
−

C

D
k1θ̂ + ẑ1 + ly −

1

RLC
y −

CE

D
u− ẏ

)
(53)

As in (Sira-Ramirez, Perez-Moreno, Ortega & Garcia-
Esteban 1997), the parameters are chosen as: C = 20µF ,
L = 20mH, RL = 0.05Ω, D = 0.5 and E = 15V. If
k1 = 0.2, k2 = 0, kf = 0.02 and the design parameters
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are chosen as l = 1, P = 10, Λ = 1.8, η = 2.5 and ε = 1.1,
by direct computation, it follows that

W =

[
20 1.0000
1 1.0909

]
and W̃ =

[
19 0
0 0.0909

]

Clearly, both matrices are positive definite and thus (50)–
(53) is a sliding mode observer of the system in (47)–(49).
The corresponding estimates for x1 and x2 are given by
x̂1 = −D

C
ẑ2 and x̂2 = ẑ1 + (L− 1

RLC
)ẑ2 respectively.

For simulation purposes, choose θ = −1.5, x10(0) = 8,

x20(0) = 14, x̂10(0) = −5, x̂20(0) = −12 and θ̂0(0) =
15. A simple feedback controller u = [0.0133 0.0077]x
has been introduced to stabilise the nominal system for
demonstration purposes. The simulation results in Figures
1 and 2 show that the proposed approach is effective.
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Fig. 1. The responses of the system and the corresponding
observer with the adaptive estimation
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Fig. 2. The fault signal and its estimation

6. CONCLUSION

A class of single output nonlinear systems has been con-
sidered in this paper. By using a geometric approach and
sliding mode techniques, a sliding mode observer has been
established in the presence of a fault and an uncertain
parameter. Using the observer, a fault estimation signal
has been proposed using the output estimation error in-
jection signal. An approach based on the L2 norm has been
suggested as a measure of the fault estimation error.
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