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Abstract: The stability and robustness of input-constrained model predictive control can be
analyzed using the theory of integral quadratic constraints. We demonstrate the existence of
improved multipliers when there are only stage constraints. This can significantly reduce the
conservatism of any stability analysis, and we illustrate the improved performance with a simple

numerical example.

1. INTRODUCTION
1.1 Owverview

Model predictive control (MPC) has found widespread use
and success in the process industries (Qin and Badgwell,
2003). Despite this success, it remains hard to guarantee
that a controller is robust without introducing prohibitive
complexity (Mayne et al., 2000). One reason is that stan-
dard approaches address controllers with general nonlinear
models and state constraints (see Magni and Scattolini,
2007, for a useful survey). Many practical problems in-
volve only linear stable models with input constraints.
For this case it is straightforward to find output-feedback
controllers with arbitrary horizon that are robust to struc-
tured and unstructured uncertainty (Heath et al., 2006).

The approach of Heath et al. (2006) uses the framework
of integral quadratic constraints (IQCs) (Megretski and
Rantzer, 1997), and is based on the observation that the
associated quadratic program is sector bounded (Heath
et al., 2005). The conservativeness sometimes associated
with such analysis can be reduced in many ways. One
approach is to interpret the results in terms of the theory
of dissipative systems (Hill and Moylan, 1977); modify-
ing the implicitly associated storage function can lead
to significantly improved results (Lgvaas et al., 2007).
Alternatively, if the constraints are static then results can
be improved by the use of Zames-Falb multipliers (Heath
and Wills, 2007).

In this paper we assume the input constraints are re-
stricted to the class of stage constraints:

u € U fori=0,...,N—1 (1)
where u; is the predicted i-step-ahead control input, N —1
is the control horizon and each U; is some convex polytopic
constraint set which includes the origin, but is independent
ofuj forj =0,..., N—1. The class includes simple bounds
on the actuators, and also constraints where several actu-
ators are constrained to move in a partially coordinated
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manner. In general it excludes rate constraints, which can
only be expressed as stage constraints if additional state
constraints are introduced. A typical example of input
stage constraints occurs in cross-directional control for
web processes where adjacent actuators are constrained
S0 as not to cause excessive bending to the slice lip (Van
Antwerp et al., 2007; Heath, 1996). We show that for such
stage constraints a wider class of multiplier is applicable
than reported by Heath and Wills (2007). A special case
occurs when there are only simple bounds on the actuators,
and was reported by Heath (2006).

The key idea is to represent the quadratic program ¢
associated with the model predictive control itself as an
equivalent feedback structure. The structure has a modi-
fied quadratic program v in the forward path together with
a linear feedback term. With certain constraint structures
and by construction the modified quadratic program v can
be separated into several smaller quadratic programs 6;
acting in parallel. Multipliers can then be associated
with each quadratic program 6;; furthermore when the
quadratic programs 6; are identical we can exploit the
results of Mancera and Safonov (2005).

The feedback structure has been considered before in
the special case of box constraints (Soroush and Muske,
2000; Syaichu-Rohman et al., 2003; Heath, 2006); here
the nonlinearity in the forward path can be reduced to
several saturation functions in parallel. Note that Soroush
and Muske (2000) and Syaichu-Rohman et al. (2003) are
both primarily concerned with computation and not with
stability analysis. The idea of generalizing the class of
multipliers by use of feedback structures was suggested
by D’Amato et al. (2001) in the context of repeated SISO
nonlinearities; in this paper the nonlinearities §; appear as
(not necessarily repeated) MIMO nonlinearities.

The paper is structured as follows. In Section 2 we demon-
strate the equivalent feedback structures. In Section 3 we
consider the application to model predictive control with
stage input constraints. We illustrate a simple numerical
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application in Section 4 where an improved stability result
is obtained.

1.2 Notation

As in Heath (2006) we follow the notation of D’Amato
et al. (2001) and Heath and Wills (2007) with the following
exceptions:

(1) We use lower and upper case letters to distinguish
scalar (or vector) and matrix valued functions respec-
tively. Thus we use h to denote the Fourier transform
of h and H to denote the Fourier transform of H.

(2) We use T’ to denote the Hessian in a quadratic
program.

Following Megretski and Rantzer (1997) we write

f € 1QC(II) (2)
or more loosely we say f satisfies the IQC defined by II to

denote
<{f€cx)}7H[fécx)}>20forallx 3)

On occasion we will find it useful to determine II in terms
of its four block entries:

Iy 1Ty
IT = 4
[Hm H22] (4)
Following Jonsson S\?OOO) we define the diagonal augmen-
tation of IT', ... IIVV as
11}, T, ]
I I,
1 Ny _ 11 12
daug(IT*, ..., IIV) = 1L, T, (5)
[ Iy 1135 |

For any M € R™" with rank r define M°¢ ¢ R"™""
such that M°MT = 0, M°MT = I and [MT, M<"|T ¢
R™+7="" has rank n. Also define M € R™" as
- M whenr <n
M{Iwhenr:n 6)

so that MM7T = I and the rows of M form an orthonormal
basis of the space spanned by the rows of M.

We use < to denote row-wise non-strict inequality.
2. BLOCK STRUCTURE RESULTS
Let ¢(y) be the quadratic program
o(y) = arg Irgn %uTI’u +u'y subject to Lu <b  (7)
with I" > 0 fixed and b > 0.
2.1 Awvailable IQCs

We begin by recalling the various IQCs satisfied by ¢:

Lemma 1:

(1) Suppose ¢ takes the form (7). Then ¢ € IQC(II,)

with
0 I
Iy = [I 2r] (8)

(2) Suppose further that L and b are fixed. Let h € L
(or h € Iy) satisfy [[h|[1 < 1 and either let ¢ be odd

or let h(t) > 0 for all t. Let h be the continuous (or
discrete) Fourier transform of h.
(a) ¢ € IQC(Ily) with
0 (h*-1I
H = ~
¢ [(hl)[ 0 } ©)
(b) ¢ € IQC(IL,) with
L = 0 (1+e)(h* = 1)I
"+ (h—1I (h+h*—2)T
for any € > 0.

| o

Proof:
For 1) see Heath et al. (2005); for 2) see Heath and Wills
(2007). O

2.2 Equivalent feedback structure

We now show that the quadratic program ¢ is equivalent to
a feedback circuit with a related quadratic program in the
feedback loop. The following lemma is a generalization of
results of Soroush and Muske (2000) and Syaichu-Rohman
et al. (2003) where the constraints are box constraints and
it can be shown that ¢ is equivalent to a number of parallel
saturation functions together with a linear feedback. Here
we require a more general nonlinearity in the forward path.
Let ¥ (y) be the quadratic program

1
Y(y) = argmin §uTqu + u''y subject to Lu < b (11)

Lemma 2:
Setting u = ¢(y) in (7) is equivalent to the feedback
structure u = t(x) given by (11) with x =y — (I'y, — I')u.

Proof:
See Appendix. O

=L

the following Corollary follows immediately:

Since

Corollary:
If ¢ € IQC(ILy) for some Iy, then ¢ € IQC(ILy) with

S P P

The equivalent Corollary was exploited by Heath (2006)
to generalize the class of available multipliers for the case
where there are only box constraints. In this paper we
will endeavor to find forms which allow us to increase the
available set of multipliers when the constraints are more
general.

2.8 Constraint analysis

Our results require L to be structured in a certain manner.
Suppose we can partition L and b as
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Fig. 1. The nonlinearity ¢.
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Fig. 2. The nonlinearity ¢ expressed as the nonlinearity ¢
with linear feedback.

Lo bo
L= : and b = (14)
Ly, 1 bn.—1
with
L;L] =0 fori#j (15)
Set
ry=1 (16)

We can exploit the orthogonality of the terms L; to break
the quadratic program 1) into several smaller quadratic
programs.

Lemma 3:
Suppose 9 takes the form (11). Then we may write u =

P(x) as

N
u= Zu,- (17)
i=0
with
u; = arg min lﬂTﬂi +alx subject to L;u; < b;
a 2 " ¢ (18)
and L{u; =0
fort=0,...,Nr —1 and
UN, = argminlﬂ% UN,, +1’l% T
Ny 2 F E (19)

subject to Lun, =0

Proof:
See Appendix. O

Let 0;(p) be the quadratic program
1 _
0;(p) = argmin §qTq + ¢"'p subject to L;LTq < b; (20)
q

Then we can write each u; (for i =0,... N — 1) as
We may also write uy, in this form if we define (with some
abuse of notation) Ly, =0 and Ly, = L°, since

un, = —LTLex (22)

N e e T
e atral

» I -T

Fig. 3. The nonlinearity ¢ expressed as the nonlinearities
0; with linear feedback.

Suppose 6; € IQC(IL;) for some II;. Since the L;’s are
orthogonal we have ¢ € IQC(IL,) with

Ny o _
I L
=3[ "]
=0 g !

for any \; > 0 withi=0,..., Np.

(23)

Remark: Since 0y, is linear, it may be better in the
general case to find an IQC for the nonlinearity ¢ (x) —
LTy, (L°x), and subsume 6y, within the linear parts of
the feedback loop. However for the cases we consider we
usually have L¢ = 0, so the issue does not arise.

Remark: We have the three important special cases:

(1) A special case occurs when L has block diagonal
structure
Lo

L= (24)

f/]\[L*l
so that ~
L, = [0 coe Ly oo 0]
If each L— has full column rank then
L;=[0---1---0]fori=0,...,Np—1and L°=0.
In this case
Iy = daug [Aolo, ..., An, —11In, 1]

(2) If each L; is identical (i.e. L; = L for some L) and
each corresponding b; is identical (b; = b for some
b) then each 6; is an identical nonlinearity. In this
case we can use the results of Mancera and Safonov
(2005) where the symmetry is exploited to generalize
the class of available multiplier.

(3) A further special case occurs where there are only box

(25)

constraints. In this case each L; takes the form

<[]

This last special case is considered by Heath (2006).

(26)

3. APPLICATION TO MPC

The application of the quadratic program in the form (7)
to input-constrained MPC is standard, e.g. (Maciejowski,
2002). For completeness we briefly describe the relation for
state space MPC without integral action. The generaliza-
tion to other forms of MPC is straightforward. Note that
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some forms of MPC may require more than one quadratic
program per operation (Muske and Rawlings, 1993), but
this need be no impediment to the use of IQC analysis
(Heath et al., 2006).

Given a horizon N, let J = J(X,U) describe the cost
function

N-1

1 1
I =gllon = aullp+ 5 3 Nl = 2l

1N71
+§ 2 [Jwi *USSH%-‘::
1=

Here X and U are sequences of predicted states and
inputs X = (x1,22,...,2y) with z; € R"™ and U =
(uo,ul, .. .,uN_l) with u; € R™. Where convenient we
will consider X and U to be stacked vectors X € RV
and U € RM™ without change of notation. The terms
Tss and wugs correspond to desired steady state values.
The weighting matrices P and () are positive semi-definite
while R is positive definite.

(27)

Let the state evolution model be z;1; = Ax; + Bu; and
let the input constraint sets be u; € U; for some polytopic
sets U; containing the origin. We may express u; € U; as
L;u; < b; with b; > 0. The MPC law may then be defined
to be:

MPC: Set u(t) to u(t) = EU* where E = [I 0 ... 0]
and
[ X7, U] = arg min J(X,U)
s. t. ;41 = Az; + Buy,
Liu; 2 b;
fore=0,...,N—1

(28)

The MPC may be expressed in implicit form by projecting
onto the equality constraints defined by the model. Intro-
duce the matrices

0 .
P = ! N Q 5 R =
p R
- B
AB B 4
b= A=
. . . AN
LAN-IB AN=2B ... B
(29)
Note that P = P when N = 1. Define
I =[1 - I" with I, € R" N7 (50)
I,=[I--- I" with I, € RmNmu
Define the implicit cost
1 _ _
JI(U) ==UT(R + T PO)U
1()2(+7 ) ) ) (31)
+UT (@" PAwg — " Plags — Rl uss)

We can then replace (28) in the MPC law by expressing
U* as

U* =arg mUin Jr(U)
s.t. LU =<b
where ~
Lg bo

L = and

i/N—l bN—l

This is exactly the form we discussed in Section 2; fur-
thermore L takes the structure of the first special case we
considered (24).

If further each U; is identical (i.e. U; = U for some U)
then L takes the structure of the second special case.
Similarly if each U; consists of only simple bounds on
the elements of u; then L takes the structure of the third
special case.

4. SIMULATION EXAMPLE
In this section, we use a simple numerical example to illus-
trate the application to the MPC developed in Section 3.

Consider a two-input two-output discrete plant with trans-
fer function matrix

111 0.66
2—0.21 z—0.52
G(2)
094 053

z—0.93 z—0.26
We may write G(z) in state space from as

AlB
6~ | 2fo ] (3)
with
0.21 10
0.93 10
A= 0.52 " B=101]"
0.26 01 (34)
o[t 0 066 o
=10 094 0 053

We assume full state information is available. The plant is
controlled by an MPC law with cost function (27) where
the input horizon (N — 1) = 2 and the weighting matrices
are Q = I and R = kI for some k£ > 0. The weighting
matrix P is given as the solution of the discrete algebraic
Riccati equation

P=AT"PA-AT"P(B"PB+R) 'ATPB+Q (35)
The input is expressed as u; = [ugl), UEQ)]T. Suppose that
this system is subject to the input constraints of the
form |u§1)| < 1, |u§2)| < 1 and |u§1) + u52)| < 1 with
1 =0,...,N — 1. These can be expressed as Lu; < b with

1 0 1
-1 0 1

. 0 1 - |1

L= b= |, (36)
11 1
~1 -1 1

Hence the constraints for the whole horizon can be ex-
pressed as Lu < b with
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Then

Lo=[L00]
Li=[0LO0] (38)
Ly=[00L]

If we let I denote the 2 x 2 identity matrix and 0 denote
the 2 X 2 zero matrix then

0]
I
0]
I

~
=0
I
|©l\’?(||o[\’?(uoou
[N~}

o
FO o O o

o O

and
I_/Q = LSC =
I_/l = Lic =

[, 0 0]
0 I, 0]
00 I

If we set I'y, = I then % can be written as

2
(@) = bilx)
i=0
with
1
0;(r) = argmin iuZTuz +ulz
subject to L;u; < b;
and Liu; =0

Since the L;’s and b;’s are fixed both ¢ itself and each 6;
satisfy IQCs of the form (8), (9) and (10). For the sake of
this demonstration we will only consider IQCs of the form
(8). Thus ¢ € IQC(I1y) with

0 -1
s = {1 “9(R+ @Tp@)} (43)
Meanwhile each 6; satisfies 6; € IQC(II;) with
[ 0 -5
I = [12 212] (44)

Since each 6; has identical structure, we may exploit the
results of Mancera and Safonov (2005) to find IQCs for .
Once again for this demonstration we will limit ourselves
to exploiting the relation (23). Hence ¢ € IQC(IL,) with

=3[ [

=0
= daug(AoTlg, ATy, AoT15) (45)
[0 I
= | —II, —2II,

where 0 denotes the 6 x 6 zero matrix and II is defined
as
Aol

I, = Mo (46)

)\212‘|

Suppose we set 55 = 0 and uss = 0. Then the MPC cost
function (27) can be expressed as

1 o= _ _
Jr(U) = 5UT(R + T PP)U + U ®T PAxg (47)
Define G (z) = (21 — A)~'B and
5 - [Au B
M(z) = 8T PAG,E ~ {CA”; Dﬁ } (48)

The QP for MPC controller can be expressed by an IQC
as ¢ € IQC(II,) with
_ _ T _ _
I R+®"Po—1 I R+®"Po—1
n¢:[0 1 } m, [O 1 ] (19)
corresponding to the vector [zT, uT]T.

Hence the system is stable if the following inequality can
be satisfied

[M(;M]T 1, (M < —er, woelmal (50)

with some ¢ > 0

By the KYP lemma, the above inequality can be converted
into the following LMI

AT PyAy — Py AT, PyBuy ] -
I, < —tI
[ BL PyAy  BLpPyBy TS T (1)
for some ¢t > 0
with Pyy = PL; > 0 and
T
- Cu D Cy D
e T i

Recall that the input weighting is R = kI. We know
(Heath and Wills, 2005) that for k sufficiently big the
closed-loop system is stable. Exploiting the IQC (43) we
find that the closed-loop system is stable for k > 7.9.
Exploiting the IQC (49) and the results of this paper we
find the closed-loop system is guaranteed stable for all k.

5. CONCLUSION

For input constrained MPC the nonlinearity in the con-
troller satisfies certain IQCs. We have shown that it is
possible to generalize the class of IQCs for MPC with only
stage input constraints of the form u; € U; where each U; is
a convex polytope. The results are derived by considering
feedback structures to represent the nonlinearity. We have
demonstrated with a simple numerical example that the
results may lead to considerable reduction of conservative-
ness in the stability analysis of MPC.

APPENDIX: PROOF OF LEMMAS

Proof of Lemma 2:
The KKT conditions for ¢ are
Tyu+z+LTA=0
Lu—b+s=0
s>=0
A=0
As=0
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If we substitute for z we obtain
Tu+y+LTA=0
Lu—b+s=0
s>=0
Ar-0
AMs=0
These are precisely the KKT conditions for ¢. O

(54)

Proof of Lemma 3:
The KKT conditions for u; with i =0,... Ny — 1 are

wi + x4+ LIN + L5 2, =0 (55)
Liu; =0 (56)
and
Li’ll,ifbiﬁ*si =0
Msi =0
b @
S; t 0
Furthermore
un, = —LTLex (58)
From (55) and (56) we find
zi =—LSx (59)

for i =0,..., N — 1. Summing (55) over i together with
(58) and (59) gives

N —1 Nr—1
u+t Npz+ > LIN= Y L{ Léw— L Lox
i=0 i=0
Nr—1
= Z (I —LTLj)x — LT L°x
i=0
=(Np -1z (60)
Hence
ut+az+LTA=0 (61)
with
Ao
A= (62)
AN -1
We may also write (57) as
Lu—b+s5=0
Ms=0
.t )
s =0
where
50
s = _ (64)
SNL—1
O
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