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Abstract: The stability and robustness of input-constrained model predictive control can be
analyzed using the theory of integral quadratic constraints. We demonstrate the existence of
improved multipliers when there are only stage constraints. This can significantly reduce the
conservatism of any stability analysis, and we illustrate the improved performance with a simple
numerical example.

1. INTRODUCTION

1.1 Overview

Model predictive control (MPC) has found widespread use
and success in the process industries (Qin and Badgwell,
2003). Despite this success, it remains hard to guarantee
that a controller is robust without introducing prohibitive
complexity (Mayne et al., 2000). One reason is that stan-
dard approaches address controllers with general nonlinear
models and state constraints (see Magni and Scattolini,
2007, for a useful survey). Many practical problems in-
volve only linear stable models with input constraints.
For this case it is straightforward to find output-feedback
controllers with arbitrary horizon that are robust to struc-
tured and unstructured uncertainty (Heath et al., 2006).

The approach of Heath et al. (2006) uses the framework
of integral quadratic constraints (IQCs) (Megretski and
Rantzer, 1997), and is based on the observation that the
associated quadratic program is sector bounded (Heath
et al., 2005). The conservativeness sometimes associated
with such analysis can be reduced in many ways. One
approach is to interpret the results in terms of the theory
of dissipative systems (Hill and Moylan, 1977); modify-
ing the implicitly associated storage function can lead
to significantly improved results (Løvaas et al., 2007).
Alternatively, if the constraints are static then results can
be improved by the use of Zames-Falb multipliers (Heath
and Wills, 2007).

In this paper we assume the input constraints are re-
stricted to the class of stage constraints:

ui ∈ Ui for i = 0, . . . , N − 1 (1)

where ui is the predicted i-step-ahead control input, N−1
is the control horizon and each Ui is some convex polytopic
constraint set which includes the origin, but is independent
of uj for j = 0, . . . , N−1. The class includes simple bounds
on the actuators, and also constraints where several actu-
ators are constrained to move in a partially coordinated

manner. In general it excludes rate constraints, which can
only be expressed as stage constraints if additional state
constraints are introduced. A typical example of input
stage constraints occurs in cross-directional control for
web processes where adjacent actuators are constrained
so as not to cause excessive bending to the slice lip (Van
Antwerp et al., 2007; Heath, 1996). We show that for such
stage constraints a wider class of multiplier is applicable
than reported by Heath and Wills (2007). A special case
occurs when there are only simple bounds on the actuators,
and was reported by Heath (2006).

The key idea is to represent the quadratic program φ
associated with the model predictive control itself as an
equivalent feedback structure. The structure has a modi-
fied quadratic programψ in the forward path together with
a linear feedback term. With certain constraint structures
and by construction the modified quadratic program ψ can
be separated into several smaller quadratic programs θi
acting in parallel. Multipliers can then be associated
with each quadratic program θi; furthermore when the
quadratic programs θi are identical we can exploit the
results of Mancera and Safonov (2005).

The feedback structure has been considered before in
the special case of box constraints (Soroush and Muske,
2000; Syaichu-Rohman et al., 2003; Heath, 2006); here
the nonlinearity in the forward path can be reduced to
several saturation functions in parallel. Note that Soroush
and Muske (2000) and Syaichu-Rohman et al. (2003) are
both primarily concerned with computation and not with
stability analysis. The idea of generalizing the class of
multipliers by use of feedback structures was suggested
by D’Amato et al. (2001) in the context of repeated SISO
nonlinearities; in this paper the nonlinearities θi appear as
(not necessarily repeated) MIMO nonlinearities.

The paper is structured as follows. In Section 2 we demon-
strate the equivalent feedback structures. In Section 3 we
consider the application to model predictive control with
stage input constraints. We illustrate a simple numerical
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application in Section 4 where an improved stability result
is obtained.

1.2 Notation

As in Heath (2006) we follow the notation of D’Amato
et al. (2001) and Heath and Wills (2007) with the following
exceptions:

(1) We use lower and upper case letters to distinguish
scalar (or vector) and matrix valued functions respec-

tively. Thus we use h̃ to denote the Fourier transform
of h and H̃ to denote the Fourier transform of H .

(2) We use Γ to denote the Hessian in a quadratic
program.

Following Megretski and Rantzer (1997) we write

f ∈ IQC(Π) (2)

or more loosely we say f satisfies the IQC defined by Π to
denote

〈[

x
f(x)

]

,Π

[

x
f(x)

]〉

≥ 0 for all x (3)

On occasion we will find it useful to determine Π in terms
of its four block entries:

Π =

[

Π11 Π12

Π21 Π22

]

(4)

Following Jönsson (2000) we define the diagonal augmen-
tation of Π1, . . . ,ΠN as

daug(Π1, . . . ,ΠN ) =





















Π1
11 Π1

12

. . .
. . .

ΠN
11 ΠN

12

Π1
21 Π1

22

. . .
. . .

ΠN
21 ΠN

22





















(5)

For any M ∈ R
m,n with rank r define M c ∈ R

n−r,n

such that M cMT = 0, M cM cT = I and [MT ,M cT ]T ∈
R
m+n−r,n has rank n. Also define M̄ ∈ R

r,n as

M̄ =

{

M cc when r < n
I when r = n

(6)

so that M̄M̄T = I and the rows of M̄ form an orthonormal
basis of the space spanned by the rows of M .

We use � to denote row-wise non-strict inequality.

2. BLOCK STRUCTURE RESULTS

Let φ(y) be the quadratic program

φ(y) = arg min
u

1

2
uTΓu+ uT y subject to Lu � b (7)

with Γ > 0 fixed and b � 0.

2.1 Available IQCs

We begin by recalling the various IQCs satisfied by φ:

Lemma 1:

(1) Suppose φ takes the form (7). Then φ ∈ IQC(Πφ)
with

Πφ =

[

0 −I
−I −2Γ

]

(8)

(2) Suppose further that L and b are fixed. Let h ∈ L1

(or h ∈ l1) satisfy ||h||1 < 1 and either let φ be odd

or let h(t) ≥ 0 for all t. Let h̃ be the continuous (or
discrete) Fourier transform of h.
(a) φ ∈ IQC(Πφ) with

Πφ =

[

0 (h̃∗ − 1)I

(h̃− 1)I 0

]

(9)

(b) φ ∈ IQC(Πφ) with

Πφ =

[

0 (1 + ε)(h̃∗ − 1)I

(1 + ε)(h̃− 1)I (h̃+ h̃∗ − 2)Γ

]

(10)

for any ε > 0.

Proof:
For 1) see Heath et al. (2005); for 2) see Heath and Wills
(2007). 2

2.2 Equivalent feedback structure

We now show that the quadratic program φ is equivalent to
a feedback circuit with a related quadratic program in the
feedback loop. The following lemma is a generalization of
results of Soroush and Muske (2000) and Syaichu-Rohman
et al. (2003) where the constraints are box constraints and
it can be shown that φ is equivalent to a number of parallel
saturation functions together with a linear feedback. Here
we require a more general nonlinearity in the forward path.
Let ψ(y) be the quadratic program

ψ(y) = argmin
u

1

2
uTΓψu+ uT y subject to Lu � b (11)

Lemma 2:
Setting u = φ(y) in (7) is equivalent to the feedback
structure u = ψ(x) given by (11) with x = y− (Γψ − Γ)u.

Proof:
See Appendix. 2

Since
[

x
u

]

=

[

I (Γ − Γψ)
I

][

y
u

]

(12)

the following Corollary follows immediately:

Corollary:
If ψ ∈ IQC(Πψ) for some Πψ then φ ∈ IQC(Πφ) with

Πφ =

[

I
(Γ − Γψ) I

]

Πψ

[

I (Γ − Γψ)
I

]

(13)

2

The equivalent Corollary was exploited by Heath (2006)
to generalize the class of available multipliers for the case
where there are only box constraints. In this paper we
will endeavor to find forms which allow us to increase the
available set of multipliers when the constraints are more
general.

2.3 Constraint analysis

Our results require L to be structured in a certain manner.
Suppose we can partition L and b as
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PSfrag replacements
u y

φ

Fig. 1. The nonlinearity φ.

PSfrag replacements
u yx

ψ

Γψ − Γ

+

−

Fig. 2. The nonlinearity φ expressed as the nonlinearity ψ
with linear feedback.

L =







L0

...
LNL−1






and b =







b0
...

bNL−1






(14)

with
LiL

T
j = 0 for i 6= j (15)

Set
Γψ = I (16)

We can exploit the orthogonality of the terms Li to break
the quadratic program ψ into several smaller quadratic
programs.

Lemma 3:
Suppose ψ takes the form (11). Then we may write u =
ψ(x) as

u =

NL
∑

i=0

ui (17)

with

ui = arg min
ũi

1

2
ũTi ũi + ũTi x subject to Liũi � bi

and Lci ũi = 0
(18)

for i = 0, . . . , NL − 1 and

uNL
= arg min

ũNL

1

2
ũTNL

ũNL
+ ũTNL

x

subject to LũNL
= 0

(19)

Proof:
See Appendix. 2

Let θi(p) be the quadratic program

θi(p) = arg min
q

1

2
qT q + qT p subject to LiL̄

T
i q � bi (20)

Then we can write each ui (for i = 0, . . .NL − 1) as

ui(x) = L̄Ti θi(L̄ix) (21)

We may also write uNL
in this form if we define (with some

abuse of notation) LNL
= 0 and L̄NL

= Lc, since

uNL
= −LcTLcx (22)

PSfrag replacements

u yx

+
−

L̄T0 θ0 L̄0

L̄TNL−1 θNL−1 L̄NL−1

LcT −I Lc

I − Γ

Fig. 3. The nonlinearity φ expressed as the nonlinearities
θi with linear feedback.

Suppose θi ∈ IQC(Πi) for some Πi. Since the L̄i’s are
orthogonal we have ψ ∈ IQC(Πψ) with

Πψ =

NL
∑

i=0

λi

[

L̄Ti
L̄Ti

]

Πi

[

L̄i
L̄i

]

(23)

for any λi ≥ 0 with i = 0, . . . , NL.

Remark: Since θNL
is linear, it may be better in the

general case to find an IQC for the nonlinearity ψ(x) −

LcT θNL
(Lcx), and subsume θNL

within the linear parts of
the feedback loop. However for the cases we consider we
usually have Lc = 0, so the issue does not arise.

Remark: We have the three important special cases:

(1) A special case occurs when L has block diagonal
structure

L =







L̃0

. . .

L̃NL−1






(24)

so that
Li =

[

0 · · · L̃i · · · 0
]

(25)

If each L̃i has full column rank then
L̄i = [ 0 · · · I · · · 0 ] for i = 0, . . . , NL−1 and Lc = 0.
In this case

Πψ = daug [λ0Π0, . . . , λNL−1ΠNL−1]

(2) If each L̃i is identical (i.e. L̃i = L̃ for some L̃) and
each corresponding bi is identical (bi = b for some
b) then each θi is an identical nonlinearity. In this
case we can use the results of Mancera and Safonov
(2005) where the symmetry is exploited to generalize
the class of available multiplier.

(3) A further special case occurs where there are only box

constraints. In this case each L̃i takes the form

L̃i =

[

1
−1

]

(26)

This last special case is considered by Heath (2006).

3. APPLICATION TO MPC

The application of the quadratic program in the form (7)
to input-constrained MPC is standard, e.g. (Maciejowski,
2002). For completeness we briefly describe the relation for
state space MPC without integral action. The generaliza-
tion to other forms of MPC is straightforward. Note that
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some forms of MPC may require more than one quadratic
program per operation (Muske and Rawlings, 1993), but
this need be no impediment to the use of IQC analysis
(Heath et al., 2006).

Given a horizon N , let J = J(X,U) describe the cost
function

J =
1

2
||xN − xss||

2
P +

1

2

N−1
∑

i=1

||xi − xss||
2
Q

+
1

2

N−1
∑

i=0

||ui − uss||
2
R (27)

Here X and U are sequences of predicted states and
inputs X = (x1, x2, . . . , xN ) with xi ∈ R

nx and U =
(u0, u1, . . . , uN−1) with ui ∈ R

nu . Where convenient we
will consider X and U to be stacked vectors X ∈ R

Nnx

and U ∈ R
Nnu without change of notation. The terms

xss and uss correspond to desired steady state values.
The weighting matrices P and Q are positive semi-definite
while R is positive definite.

Let the state evolution model be xi+1 = Axi + Bui and
let the input constraint sets be ui ∈ Ui for some polytopic
sets Ui containing the origin. We may express ui ∈ Ui as
L̃iui � bi with bi � 0. The MPC law may then be defined
to be:

MPC: Set u(t) to u(t) = ĒU∗ where Ē = [ I 0 . . . 0 ]
and

[X∗, U∗] = arg min
X,U

J(X,U)

s. t. xi+1 = Axi +Bui,

L̃iui � bi
for i = 0, . . . , N − 1

(28)

The MPC may be expressed in implicit form by projecting
onto the equality constraints defined by the model. Intro-
duce the matrices

P̄ =









Q
. . .

Q
P









, R̄ =







R
. . .

R







Φ =









B
AB B
...

...
. . .

AN−1B AN−2B · · · B









, Λ =







A
...
AN







(29)

Note that P̄ = P when N = 1. Define

Ix = [ I · · · I ]
T

with Ix ∈ R
nx,Nnx ,

Iu = [ I · · · I ]
T

with Iu ∈ R
nu,Nnu

(30)

Define the implicit cost

JI(U) =
1

2
UT (R̄ + ΦT P̄Φ)U

+ UT
(

ΦT P̄Λx0 − ΦT P̄ Ixxss − R̄Iuuss
)

(31)

We can then replace (28) in the MPC law by expressing
U∗ as

U∗ = arg min
U

JI(U)

s. t. LU � b
(32)

where

L =







L̃0

. . .

L̃N−1






and







b0
...

bN−1







This is exactly the form we discussed in Section 2; fur-
thermore L takes the structure of the first special case we
considered (24).

If further each Ui is identical (i.e. Ui = U for some U)
then L takes the structure of the second special case.
Similarly if each Ui consists of only simple bounds on
the elements of ui then L takes the structure of the third
special case.

4. SIMULATION EXAMPLE

In this section, we use a simple numerical example to illus-
trate the application to the MPC developed in Section 3.

Consider a two-input two-output discrete plant with trans-
fer function matrix

G(z) =









1.11

z − 0.21

0.66

z − 0.52

0.94

z − 0.93

0.53

z − 0.26









We may write G(z) in state space from as

G(z) ∼

[

A B
C 0

]

(33)

with

A =







0.21
0.93

0.52
0.26






, B =







1 0
1 0
0 1
0 1






,

C =

[

1.11 0 0.66 0
0 0.94 0 0.53

]

(34)

We assume full state information is available. The plant is
controlled by an MPC law with cost function (27) where
the input horizon (N − 1) = 2 and the weighting matrices
are Q = I and R = kI for some k ≥ 0. The weighting
matrix P is given as the solution of the discrete algebraic
Riccati equation

P = ATPA−ATP (BTPB +R)−1ATPB +Q (35)

The input is expressed as ui = [u
(1)
i , u

(2)
i ]T . Suppose that

this system is subject to the input constraints of the

form |u
(1)
i | ≤ 1, |u

(2)
i | ≤ 1 and |u

(1)
i + u

(2)
i | ≤ 1 with

i = 0, . . . , N − 1. These can be expressed as L̃ui � b̃ with

L̃ =















1 0
−1 0

0 1
0 −1
1 1

−1 −1















b̃ =















1
1
1
1
1
1















(36)

Hence the constraints for the whole horizon can be ex-
pressed as Lu � b with
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L =







L̃
. . .

L̃






b =







b̃
...

b̃






(37)

Then

L0 =
[

L̃ 0 0
]

L1 =
[

0 L̃ 0
]

L2 =
[

0 0 L̃
]

(38)

If we let I2 denote the 2× 2 identity matrix and 0 denote
the 2 × 2 zero matrix then

Lc0 =

[

0 I2 0
0 0 I2

]

Lc1 =

[

I2 0 0
0 0 I2

]

Lc2 =

[

I2 0 0
0 I2 0

]

(39)

and

L̄0 = Lc0
c = [I2 0 0]

L̄1 = Lc1
c = [0 I2 0]

L̄2 = Lc2
c = [0 0 I2]

(40)

If we set Γψ = I then ψ can be written as

ψ(x) =

2
∑

i=0

θi(x) (41)

with

θi(x) = arg min
ui

1

2
uTi ui + uTi x

subject to Liui � bi

and Lciui = 0

(42)

Since the Li’s and bi’s are fixed both φ itself and each θi
satisfy IQCs of the form (8), (9) and (10). For the sake of
this demonstration we will only consider IQCs of the form
(8). Thus φ ∈ IQC(Πφ) with

Πφ =

[

0 −I
−I −2(R̄+ ΦT P̄Φ)

]

(43)

Meanwhile each θi satisfies θi ∈ IQC(Πi) with

Πi =

[

0 −I2
−I2 −2I2

]

(44)

Since each θi has identical structure, we may exploit the
results of Mancera and Safonov (2005) to find IQCs for ψ.
Once again for this demonstration we will limit ourselves
to exploiting the relation (23). Hence ψ ∈ IQC(Πψ) with

Πψ =

2
∑

i=0

λi

[

L̄Ti
L̄Ti

]

Πi

[

L̄i
L̄i

]

= daug(λ0Π0, λ1Π1, λ2Π2)

=

[

0 −Πλ

−Πλ −2Πλ

]

(45)

where 0 denotes the 6 × 6 zero matrix and Πλ is defined
as

Πλ =

[

λ0I2
λ1I2

λ2I2

]

(46)

Suppose we set xss = 0 and uss = 0. Then the MPC cost
function (27) can be expressed as

JI(U) =
1

2
UT (R̄+ ΦT P̄Φ)U + UTΦT P̄Λx0 (47)

Define Gx(z) = (zI −A)−1B and

M(z) = ΦT P̄ΛGxĒ ∼

[

AM BM
CM DM

]

(48)

The QP for MPC controller can be expressed by an IQC
as φ ∈ IQC(Πφ) with

Πφ =

[

I R̄+ ΦT P̄Φ − I
0 I

]T

Πψ

[

I R̄+ ΦT P̄Φ − I
0 I

]

(49)

corresponding to the vector [xT , uT ]T .

Hence the system is stable if the following inequality can
be satisfied

[

M(ejω)
I

]T

Πφ

[

M(ejω)
I

]

≤ −εI, ∀ω ∈ [−π, π] (50)

with some ε > 0

By the KYP lemma, the above inequality can be converted
into the following LMI

[

ATMPMAM − PM ATMPMBM
BTMPMAM BTMPMBM

]

+ Π̃φ ≤ −tI,

for some t > 0

(51)

with PM = P TM > 0 and

Π̃φ =

[

CM DM

0 I

]T

Πφ

[

CM DM

0 I

]

(52)

Recall that the input weighting is R = kI . We know
(Heath and Wills, 2005) that for k sufficiently big the
closed-loop system is stable. Exploiting the IQC (43) we
find that the closed-loop system is stable for k ≥ 7.9.
Exploiting the IQC (49) and the results of this paper we
find the closed-loop system is guaranteed stable for all k.

5. CONCLUSION

For input constrained MPC the nonlinearity in the con-
troller satisfies certain IQCs. We have shown that it is
possible to generalize the class of IQCs for MPC with only
stage input constraints of the form ui ∈ Ui where each Ui is
a convex polytope. The results are derived by considering
feedback structures to represent the nonlinearity. We have
demonstrated with a simple numerical example that the
results may lead to considerable reduction of conservative-
ness in the stability analysis of MPC.

APPENDIX: PROOF OF LEMMAS

Proof of Lemma 2:
The KKT conditions for ψ are

Γψu+ x+ LTλ = 0

Lu− b+ s = 0

s � 0

λ � 0

λT s = 0

(53)
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If we substitute for x we obtain
Γu+ y + LTλ = 0

Lu− b+ s = 0

s � 0

λ � 0

λT s = 0

(54)

These are precisely the KKT conditions for φ. 2

Proof of Lemma 3:
The KKT conditions for ui with i = 0, . . .NL − 1 are

ui + x+ LTi λi + Lci
T
zi = 0 (55)

Lciui = 0 (56)

and
Liui − bi + si = 0

λTi si = 0
λi � 0
si � 0











(57)

Furthermore
uNL

= −LcTLcx (58)

From (55) and (56) we find

zi = −Lcix (59)

for i = 0, . . . , NL − 1. Summing (55) over i together with
(58) and (59) gives

u+NLx+

NL−1
∑

i=0

LTi λi =

NL−1
∑

i=0

Lci
T
Lcix− Lc

T
Lcx

=

NL−1
∑

i=0

(I − L̄Ti L̄i)x− Lc
T
Lcx

= (NL − 1)x (60)

Hence
u+ x+ LTλ = 0 (61)

with

λ =







λ0

...
λNL−1






(62)

We may also write (57) as

Lu− b+ s = 0
λT s = 0
λ � 0
s � 0











(63)

where

s =







s0
...

sNL−1






(64)

2
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control. In F. Allgöwer and A. Zheng, editors, Nonlin-
ear model predictive control, pages 163–179. Birkhäuser
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