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Abstract: Periodic solutions in piecewise linear feedback systems in Luré form, composed by
a linear time invariant dynamical system closed in feedback through a static piecewise linear
mapping are analyzed. A procedure for representing the closed loop system in complementarity
form, based on resistors-diode-sources equivalent circuits of the piecewise linear characteristic is
presented. Conditions for the existence of discrete–time periodic solutions in terms of solvability
of a suitable static linear complementarity problem are obtained. Numerical results for a chaotic
circuit show that the proposed approach can be also used to predict periodic solutions of
continuous–time systems in Luré form provided that consistency of the discretization is assumed.

1. INTRODUCTION

We consider piecewise linear feedback systems in the Luré
form, i.e. representable as the feedback interconnection of a
linear time invariant dynamical system Σd with a piecewise
linear static characteristic (ϕ, λ), as reported in Fig. 1. Σd

represents the linear system with a minimal state space
realization. The static characteristic (ϕ, λ) is a piecewise
linear multi–valued mapping, which includes piecewise lin-
ear functions (e.g. saturation), set–valued functions (e.g.
relay, quantizer) and unbounded characteristics (e.g. ideal
diode and Zener diode characteristics). The analysis of
periodic solutions in this class of nonsmooth dynamical
systems has attracted a wide interest in the literature,
see among others Gonçalves (2005); Stan and Sepulchre
(2007). A strong motivation for such interest is the rel-
evance of oscillations in the behavior of several practical
systems representable in Luré form. Interesting classes of
such systems are nonlinear circuits and power electronics
converters Frasca (2007). The existence of a periodic solu-
tion is often assumed for local and global stability analysis
of oscillations. Dealing with limit cycles conditions on the
existence are typically obtained by constructing a Poincaré
map and by imposing, given a sequence of switches per
cycle, the switching conditions Gonçalves (2005); Galias
(2005); di Bernardo and Vasca (2000). However such
Poincaré maps need the assumption on the structure of the
limit cycle and closed form solutions can only be given for
very special cases. In Jonsson and Megretski (2006) some
conditions for existence and uniqueness of limit cycles were
obtained by assuming Lipschitz continuity of the feedback
characteristic and its derivative.

In this paper we propose the use of the complementar-
ity formalism for obtaining conditions on the existence
of periodic solutions of known period in feedback sys-
tems in Luré form forced by periodic inputs. The com-
plementarity formalism has been shown to be useful for
well–posedness and stability analysis of piecewise linear
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Fig. 1. The class of systems under consideration.

feedback systems Brogliato (2004); Çamlıbel et al. (2002,
2006); Iannelli et al. (2006). A complementarity model of
the system in Fig. 1 is obtained by using resistors-diode-
sources circuits representing the piecewise linear character-
istic Chua (1984); Stern (1956). By assuming consistency
of the discretization the problem of the existence of a
periodic solution is than reformulated as a static linear
complementarity problem for which one can use conditions
on the existence of a solution. Numerical results with
a chaotic circuit show the effectiveness of the proposed
approach for detecting both stable and unstable periodic
solutions.

2. PRELIMINARIES

This section presents some facts about linear complemen-
tarity problems Cottle et al. (1992).

Problem 1. (LCP(q,L)). Given a real vector q and a real
matrix L, find a real vector z such that

z > 0 (1a)

q + Lz > 0 (1b)

zT (q+Lz) = 0, (1c)

where the inequalities are considered componentwise.

In the sequel (1) will be more compactly indicated by
means of the complementarity condition

0 6 (q + Lz) ⊥ z > 0. (2)

The meaning of (2) is that if two variables, say (q + Lz)
and z, are in a complementarity relation, then at least one
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of them must be zero and the other will be nonnegative
(componentwise interpretation).

Definition 1. A matrix L is called a P -matrix if all its
principal minors are strictly positive.

According to the definition, every positive definite matrix
is a P -matrix but the converse is not true.

Theorem 1. (Cottle et al., 1992, Theorem 3.3.7) Let L be
a real matrix. Then the LCP(q,L) has a unique solution
for any real vector q if and only if L is a P -matrix.

We now introduce the concept of a complementarity sys-
tem, i.e. a linear system whose dynamics must satisfy a
LCP for each time instant.

Definition 2. A discrete–time linear complementarity
system (LCS) is the following linear system subject to
complementarity constraints on z and w variables:

xk = Axk−1 + Bzk + Euk (3a)

wk = Cxk−1 + Dzk + Fuk (3b)

0 6 wk ⊥ zk > 0, (3c)

where x, u, z and w are real vectors (w and z of the same
dimension), k is the discrete–time variable and A, B, C,
D, E, F are matrices of suitable dimensions.

It appears evident how the LCP(Cxk−1+Fuk, D) must be
feasible for each discrete step k since its solution zk affects
the dynamics.

3. PIECEWISE LINEAR CHARACTERISTICS

In this section we detail a possible procedure for repre-
senting piecewise linear characteristics (ϕ, λ) (examples
are reported in Fig. 2) in the following complementarity
formalism

ϕ = Asλ + Bsz + gs (4a)

w = Csλ + Dsz + hs (4b)

0 ≤ w ⊥ z ≥ 0, (4c)

where the real matrices As, Bs, gs, Cs, Ds and hs have
suitable dimensions. Such representation can be considered
really general for describing set–valued piecewise linear
mappings Leenaerts and Bokhoven (1998). Different tech-
niques can be used to obtain the model (4). Here we pro-
pose to obtain the representation by using Resistor-Diode-
Source (RDS) equivalent circuits corresponding to a given
piecewise linear characteristic Stern (1956); Chua (1984).
The interesting feature of the proposed representation is
that, if Σd is passive and the characteristic is nondecreas-
ing, the representation preserves the passivity of the closed
loop system which is an important property for obtaining
well-posedness and stability results Iannelli et al. (2006).
In order to obtain the complementarity model (4) it is
useful to analyze first the characteristic of the so-called
Ideal Diode (ID), see Fig. 3. Such (ϕ, λ) characteristic can
be written in the complementarity form (4) by choosing
ϕ = z and w = −λ, i.e. As = 0, Bs = 1, gs = 0, Cs = −1,
Ds = 0, hs = 0. The ID characteristic is a particular case
of a piecewise–affine nondecreasing convex single breaking
point characteristic, see Fig. 4. By using the ID behavior it
is possible to show that the (ϕ, λ) characteristic depicted in
Fig. 4 represents the current–voltage characteristic for the
circuit shown in the same figure. Note that in Chua (1984)
the series of a resistor, an ID and a voltage source is called
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Fig. 2. Piecewise linear mappings (one-dimensional case):
(a) piecewise linear function, (b-c-d) set–valued func-
tions, (b-c-d) unbounded characteristics.
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Fig. 3. Ideal Diode symbol with the corresponding (ϕ, λ)
current–voltage characteristic and the indication of a
possible pair of complementarity variables.

a concave resistor. For λ < Λ1 the ID is in the blocking
state, i.e. z1 = 0. By applying the Kirchhoff current law
(KCL) one can write ϕ = g0λ + Φ0, which by choosing

g0 , σ0 > 0 is the equation of the lowest affine piece
of the characteristic. For λ > Λ1 the ID will be in the
conducting state, then w1 = 0 and ϕ = g0λ + z1 + Φ0. By
substituting z1 = g1(λ−Λ1), which is obtained by applying
the Kirchhoff voltage law (KVL) to the circuit in Fig. 4, we

get ϕ = (g0+g1)λ−g1Λ1+Φ0. Then by choosing g1 , σ1−

σ0 > 0 we get ϕ = σ1λ − (σ1 − σ0)Λ1 + Φ0 which is the
equation of the second piece of the characteristic in Fig. 4.
The (ϕ, λ) characteristic in Fig. 4 can be represented by
integrating both blocking and conducting states of the ID
into the following complementarity model:

ϕ = g0λ + z1 + Φ0 (5a)

w1 = −λ +
1

g1
z1 + Λ1 (5b)

0 6 w1 ⊥ z1 > 0. (5c)

Let us consider now the piecewise–affine nondecreasing
concave single breaking point characteristic in Fig. 5.
Note that in Chua (1984) the parallel of a resistor, an
ID and a current source is also called a convex resistor.
By using the ID behavior and arguments similar to those
presented above, it is simple to show that the (ϕ, λ)
characteristic represents the current–voltage characteristic
for the circuit depicted in the same figure. By applying the
KCL and KVL to the circuit the (ϕ, λ) characteristic can
be represented in the following complementarity form:
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Fig. 4. Piecewise–affine nondecreasing convex single break-
ing point (ϕ, λ) characteristic and a corresponding
RDS circuit; σ0 and σ1 are the slopes of the affine
pieces; 1/g0 and 1/g1 are resistances.
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Fig. 5. Piecewise–affine nondecreasing concave single
breaking point (ϕ, λ) characteristic and a correspond-
ing RDS circuit; here r0 and r1 are resistances.

ϕ =
1

r0 + r1
λ −

r1

r0 + r1
z1 −

1

r0 + r1
Λ0 +

r1

r0 + r1
Φ1

(6a)

w1 =
r1

r0 + r1
λ +

r0r1

r0 + r1
z1 −

r1

r0 + r1
Λ0 −

r0r1

r0 + r1
Φ1

(6b)

0 6 w1 ⊥ z1 > 0, (6c)

where r0 , 1
σ0

> 0 and r1 , 1
σ1

− 1
σ0

> 0.

By generalizing the procedure presented above it is possi-
ble to obtain a complementarity model (4) for any nonde-
creasing piecewise affine characteristic (ϕ, λ), Vasca et al.
(2007).

4. COMPLEMENTARITY MODEL

Let us assume that Σd in Fig. 1 is a discrete–time linear
time invariant system:

xk = Adxk−1 + Bd(−ϕk) + Eduk (7a)

λk = Cdxk + Dd(−ϕk) + Fduk, (7b)

with x ∈ R
n, u ∈ R

m and (Ad, Bd, Cd) minimal.

We will consider the representation (4) for the static piece-
wise linear characteristics (ϕ, λ) in Fig. 1. By substitut-
ing (4) in (7)

xk = Adxk−1 − Bd [Asλk + Bszk + gs] + Eduk (8a)

λk = Cdxk−1 − Dd [Asλk + Bszk + gs] + Fduk (8b)

wk = Csλk + Dszk + hs (8c)

0 6 wk ⊥ zk > 0. (8d)

By looking at (8b), if the matrix DdAs has no eigenvalues

in −1, the matrix M , I + DdAs ∈ R
m×m is invertible

and

λk = M−1 [Cdxk−1 − DdBszk − Ddgs + Fduk] . (9)

Now system (8) can be written as (3) with

A := Ad − BdAsM
−1Cd, (10a)

B := BdAsM
−1DdBs − BdBs, (10b)

C := CsM
−1Cd, (10c)

D := Ds − CsM
−1DdBs, (10d)

E :=
[

Ed − BdAsM
−1Fd g

]

, (10e)

F :=
[

CsM
−1Fd h

]

, (10f)

where we have included in the vector u also the ones
needed to represent the constant term coming from gs and
hs, i.e.

g := Bd

[

AsM
−1Dd − I

]

gs, (11a)

h := hs − CsM
−1Ddgs. (11b)

Note that being M singular, it means that the feedback
structure has an algebraic loop not solvable and we get
an ill-posed problem. Note that in the case Dd > 0 and
As > 0, the matrix M = (I + DdAs) is invertible Haddad
and Bernstein (1990). The same can be proved if Dd > 0
and As > 0 and diagonal, which is the case for the matrix
As in the proposed complementarity model.

In next section we analyze the existence of periodic solu-
tion of the discrete–time system (3). If Σd is a continuous–
time linear time invariant system representable as

ẋ = Ãdx + B̃(−ϕ) + Ẽdu (12a)

λ = C̃dx + D̃d(−ϕ) + F̃du, (12b)

one can also conclude the existence of periodic solutions of
such system by assuming consistency of the disretization.
In fact, following a procedure similar to the one presented
above, the closed loop system would be

ẋ = Acx + Bcz + Ecu (13a)

w = Ccx + Dcz + Fcu (13b)

0 6 w ⊥ z > 0, (13c)

where the matrices are given by (10) with Ad, Bd, Cd,
Dd, Ed and Fd replaced by the corresponding matrices
with the tilde, respectively. By discretizing (13) by using
the backward Euler method with sampling period Ts

it is possible to get the following discrete–time linear
complementarity system:

xk = xk−1 + TsAcxk + TsBczk + TsEcuk (14a)

wk = Ccxk + Dczk + Fcuk (14b)

0 6 wk ⊥ zk > 0 (14c)

and thus one obtains (3) with

A := (I − TsAc)
−1, (15a)

B := (I − TsAc)
−1TsBc, (15b)

C := Cc(I − TsAc)
−1, (15c)

D := Dc + Cc(I − TsAc)
−1TsBc, (15d)

E := (I − TsAc)
−1TsEc, (15e)

F := Fc + Cc(I − TsAc)
−1TsEc. (15f)

Let us assume that the continuous–time complementarity
system (13) has a periodic trajectory of period T . It is
natural to assume for the discretization Ts = T/N with N
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a positive integer. Note that the continuous–time instants
at which conditions (13c) change, i.e. when one or more
components of w or z become zero, do not need to be
known a priori and do not need to be sampling time
instants. In other words the shape of the periodic solution
is not fixed a priori. By assuming consistency of the dis-
cretization, i.e. the discrete–time system approximates the
continuous–time system, the discrete–time complementar-
ity system (3) will have a periodic trajectory of period
N . Such arguments are often valid from a practical point
of view, so as it will be shown by our numerical results.
However from a more theoretical point of view one should
prove consistency of the discretization which is a non
trivial task in the complementarity framework Çamlıbel
(2001); Frasca (2007).

5. EXISTENCE OF PERIODIC SOLUTIONS

Let us consider system (3) which is here repeated for the
sake of readability:

xk = Axk−1 + Bzk + Euk (16a)

wk = Cxk−1 + Dzk + Fuk (16b)

0 6 wk ⊥ zk > 0 (16c)

If (16) has a periodic solution of period N that means
xN = x0. The state evolution gives

xN = ANx0 +

N
∑

i=1

AN−i (Bzi + Eui) = x0 (17)

By solving with respect to x0 and defining ΠN ,
(

I − AN
)

−1
:

x0 = ΠN

N
∑

i=1

AN−i (Bzi + Eui) . (18)

Note that ΠN satisfies the following properties:

AΠN = ΠNA (19a)

ΠNAN = ΠN − I (19b)

By writing (16b) for k = 1, . . . , N

w1 = Cx0 + Dz1 + Fu1 (20a)

w2 = CAx0 + CBz1 + Dz2 + CEu1 + Fu2 (20b)

w3 = CA2x0 + CABz1 + CBz2 + Dz3

+ CAEu1 + CEu2 + Fu3 (20c)

...

wN = CAN−1x0 +

N−1
∑

i=1

CAN−1−iBzi + DzN

+

N−1
∑

i=1

CAN−1−iEui + FuN (20d)

By substituting (18) in (20)

wk = CAk−1ΠN

(

N
∑

i=1

AN−i (Bzi + Eui)

)

+

k−1
∑

i=1

CAk−1−iBzi + Dzk +

k−1
∑

i=1

CAk−1−iEui + Fuk

(21)

for k = 1, . . . , N .

By collecting all the terms zi and ui and by using proper-
ties (19) one can write

w1 =CΠNAN−1Bz1 + Dz1 + CΠNAN−2Bz2 + . . .

+ CΠNAN−1Eu1 + Fu1 + CΠNAN−2Eu2 + . . .
(22a)

w2 = (C(ΠN − I)B + CB) z1

+
(

CΠNAN−1B
)

z2 + Dz2 + . . . +

+ (C(ΠN − I)E + CE) u1

+
(

CΠNAN−1E
)

u2 + Fu2 + . . . (22b)

and so on. The equations above together with the com-
plementarity conditions (16c) can be rewritten as the
following LCP:









w1

w2

...
wN









= MN









z1

z2

...
zN









+ qN (23a)

0 6 wk ⊥ zk > 0, k = 1, . . . , N (23b)

where

MN =











CΠNAN−1B CΠNAN−2B · · · CΠNB
CΠNB CΠNAN−1B · · · CΠNAB

...
...

. . .
...

CΠNAN−2B CΠNAN−3B · · · CΠNAN−1B











+









D 0 · · · 0
0 D · · · 0
...

...
. . .

...
0 0 · · · D









(24)

and qN is reported in (25). Note that MN is a circulant
matrix whose first row is

(

CΠNAN−1B + D CΠNAN−2B · · · CΠNB
)

Then, by using Theorem 1 one can conclude that the
system (16) has a unique periodic solution of period N
if and only if MN is a P-matrix. Moreover, the periodic
solution is given by the solution of the LCP (23). If MN

is not a P-matrix the LCP (23) could have no solution or
multiple solutions. In any case any solution of the LCP
will correspond to a periodic solution of the system (16).

6. NONLINEAR CIRCUIT EXAMPLE

Let us consider the electrical circuit (Wolfram-Research,
2007) reported in Fig. 6, where the capacitor value depend
on the charge x1: C = C1 for x1 > 0 and C = C2 < C1

for x1 < 0. By considering as state variables the charge on

C(x1)

-LR

e +
�

��
−

e0

x2

x1

C(x1)

+

−+

−

Fig. 6. A chaotic circuit. The input voltage is e =
V0 sin(2πf) and the dynamic behavior of the system
depends on the input voltage amplitude V0.
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qN =











CΠNAN−1E + F CΠNAN−2E · · · CΠNE
CΠNE CΠNAN−1E + F · · · CΠNAE

...
...

. . .
...

CΠNAN−2E CΠNAN−3E · · · CΠNAN−1E + F



















u1

u2

...
uN









(25)

the capacitor x1 and the current in the inductance x2 the
circuit can be modeled as:

ẋ1 = x2, (26a)

Lẋ2 = −Rx2 + e − e0 − ϕ(λ), (26b)

λ = x1. (26c)

and the characteristic ϕ(λ) can be represented as in Fig. 7.

ϕ

-

6

λ

C2

λ

λ

C1

Fig. 7. Piecewise linear characteristic ϕ(λ) = λ

C(λ) with

C(λ) = C1 for λ > 0 and C(λ) = C2 < C1 for λ < 0.

The model (26) can be represented in the form (12) with
u = e−e0 = V0 sin(2πft)−e0. By following the procedure
described in Section 3 the parameters of the representation
in Fig. 5 are Λ0 = 0, Φ1 = 0, σ0 = 1/C2, σ1 = 1/C1, and
from (6) r0 = C2 and r1 = C1 − C2. Then the static
model (4) will have the following matrices:

As =
1

C2
, Bs = −

1

C2
, gs = 0 (27a)

Cs = −
1

C2
, Ds =

1

C2
+

1

C1 − C2
, hs = 0. (27b)

Let us assume the following values for the circuit param-
eters:

C1 = 0.1µF, C2 = 400pF, R = 60Ω

L = 100µH, f = 700kHz, e0 = 0.1V.

It is possible to show that for small values of V0 (like
V0 = 0.1V) there exists a steady state solution of the
same period of the forcing signal (T = 1/f). By choos-
ing the sampling period Ts = 2.86 ns, constructing the
model (16) and solving the corresponding LCP (23) with
N = 500 = round[1/(Tsf)] the results reported in Fig. 8
are obtained. The LCP solution formulated starting from
the discrete–time system captures the periodic solution
of the continuous–time system. The amplitude V0 of the
sinusoidal input e is the bifurcation parameter. By in-
creasing the amplitude V0 first it occurs a period doubling
bifurcation, i.e. the continuous–time system will exhibit
a stable periodic solution with period T = 2/f . The
sampling period is still fixed to Ts = 2.86 ns and the
simulation results obtained for V0 = 0.2V are reported in
Fig. 9. By choosing N = 500 the solution of the LCP (23)
provides the solution reported with dashed line in Fig. 9.
Indeed for V0 = 0.2V it exists not only the solution of
period T = 2/f but also an unstable periodic solution of
period 1/f . By choosing (with the same sampling period)
N = 1000 samples the solution of the LCP (23) provides
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0

0.5

1

1.5

2
x 10

−3

x
1

x
2

V
0
 = 0.1, 1−period LCP

Fig. 8. Steady state solutions computed by simulation,
i.e. by using Matlab/Simulink scheme or equivalently
by using the step by step solutions of LCPs (16) (solid
line), and computed by the proposed LCP approach
(dashed line), i.e. by using (23).

−4 −2 0 2 4 6 8 10
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−0.5

0

0.5

1

1.5

2
x 10

−3

x
1

x
2

V
0
 = 0.2, 1−period LCP

Fig. 9. Steady state solutions computed by simulation
(solid line) and computed by the proposed LCP
approach (dashed line).

the stable solution reported in Fig. 9 with solid line. The
same arguments can be repeated for V0 = 0.26V for
which it exists a stable periodic solution of period four
times the forcing T = 4/f computable from the LCP (23)
with N = 2000, and an unstable periodic solution with
period 1/f computable from the LCP (23) with N = 500,
see Fig. 10. The time evolution of the complementarity
variables for the stable periodic solution (including the
transient) is reported in Fig. 11. Also, for V0 = 0.26V
it exists an unstable periodic solution of period T = 2/f
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which can be detected by the proposed complementarity
approach by solving the LCP (23) with N = 1000.

−4 −2 0 2 4 6 8 10
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−10
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0
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1.5
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x 10

−3

x
1

x
2

V
0
 = 0.26, 1−period LCP

Fig. 10. Steady state solutions computed by simulation
(solid line) and computed by the proposed LCP
approach (dashed line).
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w
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x 10
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0.4

0.6

0.8

1
x 10

−9

[s]

z

Fig. 11. Time evolution of the complementarity variables
starting from zero initial conditions and computed by
using the step by step solutions of LCPs (16).

7. CONCLUSION

The complementarity framework has been used to prove
existence of periodic solutions for linear time invariant
systems connected in feedback through a piecewise linear
static mapping. By assuming consistency of the discretiza-
tion, conditions for the existence of periodic solutions in
terms of solvability of a suitable static linear complemen-
tarity problem are obtained. The conditions do not need
to fix a priori the shape of the periodic trajectory and the
LCP allows to compute both stable and unstable periodic
solutions.
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