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Abstract: Manipulator endpoint location autonomous control procedures are suggested. A method of 
uplimited control hierarchy has been designed, which allows to provide a desired tracking precision under 
conditions of uncertainty of the control object operator and the effect of external unmeasured disturbances. 
Sliding mode state observers synthesis procedures have been designed, which allow, in a theoretically 
limited time interval, to obtain information on immeasurable variables of the state vector and available 
uncertainty. The results of the designed algorithms modeling are presented. Copyright © 2008 IFAC 

 

1. INTRODUCTION 

In this paper, program trajectory tracking problem by a 
endpoint manipulator is considered. The presently 
sufficiently studied manipulator planning and control 
methods in the general configuration variables space are not 
directly applied in this problem. The known control methods 
in the endpoint coordinates space almost always require a 
solution of reversed kinematics and dynamic problems in real 
time, which on rare occasions have an analytic and/or a single 
valued solution. In this work, a conceptually different 
approach this problem’s solution is suggested based on the 
mechanical system’s resulting image decomposition and not 
requiring a reversed problems solution in real time. 
The paper has the following structure. In section 1 the plant 
model is presented. In section 2, a procedure of transforming 
the plant model into the block canonical control form is 
designed with respect to the output variables (BCCFO, Utkin, 
2007) describing the space orientation of the endpoint. Such a 
transformation allows the use of the block principle 
(Drakunov et al., 1990; Krasnova, 2001) and to decompose 
the synthesis problem into independently solved elementary 
subproblems of lower dimension. In section 3, output 
variables autonomous control algorithms are designed under 
the conditions of certainty of the input control channels. The 
information support problems are solved with the help of a 
sliding mode state observer. It is significant that in this case 
being considered the obtained block controllable form is, at 
the same time, a block observed (Krasnova et al., 2001), i.e., 
the problems of the unmeasured variables control and 
observation are solved in the same transformed coordinates, 
which considerably facilitates the regulator synthesis. In 
section 4, a new stabilizing feedback type (which is new to 
mechanical systems) which is an uplimited realization of 
discontinuous control is suggested. A hierarchical principle 
for choosing of feedback coefficients is designed, which 
allows an autonomous control realization under the 
incomplete information on input control channels. In section 
5, the results of the designed algorithms modeling in 
MATLAB for a two-link plain manipulator are presented.  
 

2. PLANT MODEL AND PROBLEM STATEMENT 

Let us consider the dynamic model of the rigid manipulator 
with n  degrees of freedom 
 )],()(),()[(, 12211

1
221 tqGqqqCuqHqqq η+−−== −&&  (1) 

where nRQq ⊂∈ 11  is the vector of angular positions of the 

manipulator, nnRqH ×∈)( 1  is the positive definite nonlinear 

symmetric matrix of inertia, nnRqqC ×∈),( 21  is the matrix of 

centripetal and Coriolis forces, nRqG ∈)( 1  is the vector of 

gravitation forces, nRu ∈  is the vector of generalized 
moments developed by actuators, nRt ∈)(η  is the vector of 
external unmeasurable bounded disturbances. The multilink 
manipulator construction ends with a replaceable working 
mechanism (endpoint). The endpoint space orientation vector 
is described by nonlinear smooth functions of angular 
positions )( 11 qhy = , mRYy ⊂∈ 11 , 11 YQ → , nm ≤ . 

Program motion mRty ∈)(d1  tracking problem given in terms 
of the endpoint working space 1d1 Yy ∈  is posed. It is 
supposed that the vector function d1y  and its derivations are 
restricted. The tracking problem is limited to the problem of 
stabilizing the mismatch )()()( d111 tytyte −= , mRe ∈1  and is 
solved depending on the technological requirements or 
asymptotically 
 0)(lim 1 =

∞→
te

t
, (2) 

or with given accuracy 
 const11 =≤ δe  (3) 
based on model (1) representation in block canonical control 
form with respect to output variables 1y . 

3. MECHANICAL SYSTEM OUTPUT IMAGE 

The peculiarity of the problem being considered is that the 
image 11 YQ →  is single valued, but not mutually single 
valued, because different manipulator configurations may 
correspond to a particular endpoint position. Besides, Jrank , 
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where 11)( qhqJ nm ∂∂=× , may be different at different points 
of space 1Q . Let us assume that mJ ≡rank  111 QQq ⊂∈∀  

with the exception of a finite number of particular points ∗
1q . 

In case of redundant dimensionality of plant nm <  it is 
assumed that the same group of general basis variables 

mRq ∈1
1  ( ),(col 2

1
1
11 qqq = , mnRq −∈2

1  are free variables) 
chosen out of constructive considerations can be matched 
with the basis minor of matrix )( 1qJ  (i.e. the output variables 

1y ) with 11 Qq ∈ . Otherwise, the program trajectory should 
be divided in an appropriate manner into sections to which a 
different closed loop structure will correspond. 
The essence of model (1) imaging procedure in BCCFO 
consists of a two-time differentiation of output variables with 
account of system (1) and the assumptions made, in particular  
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where )](),()[()(),( 12211
1

1221 qGqqqCqHqJqqqJA +−′= − , 

)()( 1
1

1 qHqJB −= , mqBnqH =⇒=− )(rank)(rank 11
1  

11 Qq ∈∀ ; )( ijnm JJ =× , )( ijnm JJ ′=′ × , 21)( qqJJ ijij ∂∂=′ . 
The posed problem (2) and (3) is solved in terms of system 
(4) based on block approach (Drakunov et al., 1990; 
Krasnova, 2001). A conjoint problem, which is not 
considered here, consists of free coordinates mnRq −∈12  
control whose behavior is determined by the corresponding 
part of system (1).  

4. AUTONOMOUS CONTROL BASIC ALGORITHMS 

In this section, under the assumption about the certainty of 
the input channels, output variables autonomous control 
synthesis methods are designed implementing algorithms of 
various complexity, which is preconditioned by the 
possibility and the expediency of the setup of various 
measuring devices. System (4) consists of two elementary 
blocks in each one of which the state vector dimensionality 
coincides with the dimensionality of the virtual and true 
control vector, which allows for partitioning of the synthesis 
problem into independently solvable problems of 
dimensionality m . Using (4), let us rewrite the differential 
equation with respect to the mismatch 
 d121 yye && −= . (5) 
In system (5), vector 2y  is treated as a virtual control chosen 
in the form of d1112 yeKy &+−= , where ,}diag{ 11 ikK =  

01 >ik  ( ,mi 1= ) are feedback coefficients providing the 
demanded rate of convergence (2). To provide for the chosen 
virtual control, it is required to solve the mismatch 
stabilization problem 

d11122 yeKye &−+= . (6) 
Taking (6) into account, equation (5) takes the form 
 2111 eeKe +−=& . (7) 
Provision of asymptotic convergence of variable (6), i.e. 
 0)(lim 2 =

∞→
te

t
 (8) 

will lead to a solution of problem (2); provision of demanded 
precision 
 const22 =≤ δe  (9) 
will lead to (3) within system (7). Problems (8) and (9) are 
solved within system 
 d1211111212 )()()(),( yeeKKqBuqBqqAe &&& −+−+++= η  (10) 
with using of control u . Taking into account 

),(col 2
1

1
11 qqq = , let us split the control vector =Bu  

212111 )()( uqBuqB += , mRu ∈1 , 0det 1 ≠B  11 Qq ∈∀  and 
present system (10) in the form 
 1112 )((.) uqBe += ϕ& , (11) 

d12111121221 )()()(),((.) yeeKKqBuqBqqA &&−+−+++= ηϕ . 
The widespread concept of system (11) stabilization problem 
synthesis consists of providing an autonomous control, i.e. 
decoupling common system motion into independently 
controlled subsystems describing the dynamics of separate 
output variables and subsequent independent stabilization 
problem synthesis in these subsystems. In this section, 
autonomous control methods within system (11) are designed 
under assumption that matrix )( 11 qB  parameters are known. 
Then the general control law has the form 
 (.))()( 20111 φ−= eUuqB , (12) 
where ))(),...,((col)( 2021020 meUeUeU =  is the stabilizing 
feedback compensating for intersecting links, (.)φ  is a vector 
function whose role consists of compensating for existing 
uncertainties. Control moments (12) play a dual role in the 
control system, because they are the demanded effects to be 
treated by actuators at the same time, which imposes a set of 
restrictions on their choice. For control law (12) to take 
effect, it is required that the vector functions it consists of be 
restricted and continuously uninterrupted in general case k  
times over all of its arguments in the area being considered, 
where k  is the relative degree of the actuator’s dynamic 
model composed with respect to the moments applied the 
actuator’s axis. 
Let us introduce denotation of mismatch 
 (.))()( 201113 φ+−= eUuqBe , mRe ∈3 . (13) 
It is essential that under this approach realized is the 
possibility of choosing various standard actuators in which 
the control moments demanded values tracking problem is 
solved either asymptotically 
 0)(lim 3 =

∞→
te

t
, (14) 

or with demanded precision 
 const33 =≤ δe . (15) 

4.1 Linear stabilizing feedback 

In system (11) let us form combined control  
 (.))( 22111 ϕ−−= eKuqB , (16) 

where ),...,(col(.) 1 mϕϕϕ = , ,mikkK ii 1,0,}diag{ 222 =>= . 
Closed systems (11), (16) with account of (13) will take the 
form 3222 eeKe +−=& . Provision of (14) within the actuator’s 
control system will lead to the following relations: 
 d11123 000 yyeee →⇒→⇒→⇒→ . 
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To implement control (16), measurements of 21, qq  and real 
time evaluation with high precision and quick action of 
compensating component (.)ϕ  are required, which 
presupposes the plant operator’s parametrical certainty, 
calculation of )(),( d1d1 tyty &&&  and a construction of the 
adequate model of disturbances )(tη  (under the assumption 
of their smoothness). Let us show that the requirements of the 
plant’s and its functional environment’s antecedent 
information volume and also of the number of calculations 
done in real time can be significantly reduced if a sliding 
mode state observer (Krasnova et al., 2001) is added to the 
feedback loop. This observer (measurements 1q  are sufficient 
for its construction) allows, in a theoretically limited time 
interval, for obtaining an estimate of transformed variables, 
linear combinations of the plant’s components (foregoing 
their immediate calculations) and existing uncertainties under 
the condition of their limitation, namely 
 0const >=≤ ii Fϕ , }max{ iFF = , mi ,1= . (17) 
For systems (7), (11) the state observer has the form 
 ,)(, 2111212111 vuqBzvzzKz +=++−= &&  (18) 

where mRzz ∈21,  are the state vectors, 21,vv  are the 
observer’s corrective effects which are chosen in the form of 
discontinuous functions so that the system stabilization 
problem written with respect to mismatches −−= gqh )( 11ε  

111 zez −=− , 222 ze −=ε , mR∈21,εε  is solved and which, 
using (7), (11), and (18), has from 
 .(.), 2212111 vvK −=−+−= ϕεεεε &&  (19) 
In the first equation of system (18) let us form discontinuous 
correcting actions 111 signεMv = , where here and further 

}diag{ 11 imM = , )sign,...,sign(colsign 1111 mεεε = , which will 
lead to generation in finite time 01 >t  of a sliding mode over 
multiplicity 1111 }0{ ezS =⇒== ε  under the fulfillment of 

conditions ,mim ii 1,21 => ε . According to equivalent control 
method (Utkin, 1992), with 1tt >  from a static equation we 
have estimates 2eq1eq121 0 εεε =⇒=−= vv&  whose values 
are obtained from the outputs of the first order linear filters  
 1111 v+−= ττμ & , mR∈1τ , 01 >μ , eq1101

lim v=
→

τ
μ

. (20) 

Obtained values (20) are used to form discontinuous 
corrective effects in the second equation (18) which, with 

222 signεMv = , ,miFm ii 1,2 => , will lead to generation in 
finite time 12 tt >  of a sliding mode over multiplicity 

22122 }0{ ezSS =⇒== Iε . From the static equation we 
have estimates (.)0(.) eq2eq22 ϕϕε =⇒=−= vv&  whose 
values will be obtained from linear filters outputs 
 2222 v+−= ττμ & , mR∈2τ , 02 >μ , eq2202

lim v=
→

τ
μ

. (21) 

Control law (16), in the presence of state observer (18) and 
filters (20)–(21), is implemented in the form 

222111 )( τ−−= zKuqB .  
The volume of information support can be further reduced if 
the compensating component is not used in the law, i.e. 

accepted is control law 
 22111 )( ekuqB −= , 0const2 >=k . (22) 
To implement (22), measurements 1q  and a reduced observer  
 1111 vzKz +−=&  (23) 
are sufficient. Taking (7) into account, we have an equation 
with respect to mismatch 12111 veK −+−= εε& . Let us form 
discontinuous correcting effects 111 signεMv = , ii em 21 > , 

,mi 1= , which will lead to generation in finite time of a 
sliding mode over multiplicity 1111 }0{ ezS =⇒== ε . From 
the static equation we have estimates =−= eq121 veε&  

2eq10 ev =⇒=  whose values will be obtained from filters 
outputs (20). Control (22), in the presence of state observer 
(23) and filter (20), is implemented as 12111 )( τkuqB −= . 
To implement control law (22), unlike (16), it is not 
necessary to define the compensating component (.)ϕ . It 
suffices to be sure that its components (17) are restricted. The 
role of coefficient 2k  in closed system (11), (22) consists of 
suppressing of the existing uncertainties which leads to (9) 
holding true and, accordingly, the solution of the tracking 
problem with given precision (3). For better fine tuning, let 
us introduce majoritating function 
 22110 eLeLL ++≤ϕ , 0cons,, 210 >= tLLL  (24) 
for uncertain system (11). 
Let us show that there exist such values 0cons11 >== tkk i , 

2k , with which in closed system (7), (11) and (22) hold true 
relations (3) and (9). Let us introduce a quadratic form as a 
sum of quadratic forms 
 222

1
112

1
21 eeeeVVV TT +=+= . (25) 

For the derivative of the first summand of quadratic form 
(25), in view of (7), the following estimate is valid: 

)( 1121111 ekeeeeV TT −== && ).( 1121 ekee −≤  The inequality 

01 <V&  is ensured beyond the neighborhood 1121 / δ≤≤ kee  

with the fulfillment of the condition 121 /δek > . From this 

inequality at a fixed value of ∗= 11 kk  we define accuracy (9) 
that is necessary to ensure in system (11), (22):  
 const.2112 ==≤ ∗ δδke  (26) 
For the derivative of the second summand of quadratic form 
(25), in view of (11), (13), (22), (24), (26), the following 
estimate is valid: 222 eeV T && = ≤−+= )(.)( 2232 ekeeT ϕ  

0)( 22322
1

2102
1

<−+++≤ ∗ ekeeLeLLe
k

 beyond the 

neighborhood 22 δ≤e  with the fulfillment of the conditions 

,/)/( 21111022 LkLkLk ++> ∗∗δ  )/( 11323 δ∗> kek , += 222 kk  

23k+ . The first inequality is the lower estimate for the choice 

of ∗= 2222 kk . From the second inequality at a fixed value of 
∗= 2323 kk  we define the accuracy (15) that is necessary to 

ensure in actuators control system synthesis ( 023 =∗k , if (14) 
is valid). Control (22) in closed tracking system (7) and (11) 
will lead to the following relations:  
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 ⇒≤⇒≤ 2233 δδ ee 11 δ≤e . 
Note that if control resources ),...,(col 1111 muuu =  are 
bounded ii Uu 11 ≤ , }min{ 11 iUU = , then there may not be 
enough allowed reinforcement coefficients )( 1max2 Uk  for 
landing in given neighborhood (3). In practice, the presence 
of restrictions will lead to (22) realizing in view of piece-wise 
linear function ))((sat)( 21max2111 eUkuqB −= . 
The natural tendency would be to account for existing 
restrictions on the synthesis stage. This goal is served, for 
example, by systems with discontinuous controls. 

4.2 Discontinuous stabilizing feedback  

In system (11), (17) let us form a discontinuous control 
 2111 sign)( eMuqB −= , (27) 

which under conditions )( 1max iiii UmmF ≤< , mi ,1=  will 
lead to the appearance in a finite time of a sliding mode over 
multiplicity }0{ 2 == eS d111 0 yye →⇒→⇒ . A 
combined control (.)sign)( 2111 ϕ−−= eMuqB , where 

iii Fmm −≤< max0 , mi ,1= , will lead to a similar result. 
Even though algorithm (27) is not realizable in the 

problem being considered due to physical limitations 
imposed on controlling moments, it is important from 

theoretical point of view as a limited case. The following 
control law is an uplimited realization of a discontinuous 
control in the form of nonlinear continually differentiated 

limited function. 

4.3 Nonlinear stabilizing feedback  

For system (11) let us form control law in the from 
 (.),)(arctg)( 22111 ϕ−−= ekMuqB  0const >=M , (28) 
where ))arctg(),...,arctg((col)arctg( 22m212122 mekekek = , 

222 )arctg( π<iiek , 0cons22 >== tkk i , 

 iki eek
i

2222i sign)arctg(
2

π
∞→

→ , ,mi 1= . (29) 

In closed system (11), (28), (13) 3222 )(arctg eekMe +−=&  
with conditions iiii FUmm −≤< )(0 1max  holding true, 
asymptotic convergence (8) is ensured, because 022 <iiee &  

with 02 ≠ie  and iiii ekek 2222 ~)(arctg  with 02 →ie , ,mi 1= . 
Control law (28) information support: measurements 1q  and 
state observer (18), (20), (21). Let us show that control (28) 
without the compensating component in the form 
 )(arctg)( 22111 ekMuqB −=  (30) 
allows to ensure the given tracking precision. Precision that it 
is necessary to ensure in closed system (11), (30) 
 )(arctg(.) 2232 ekMee −+= ϕ& , (31) 
is defined by expression (26). Let us register the value of 
coefficient 2k  out of the following considerations: 

 )/(ctg)(arctg2/ 112222 δςςδπ ∗∗ >=⇒<− kkkk , (32) 
where ς  is a small positive value. 
For the derivative of the second summand of quadratic form 

(25), in view of (17), (31)–(32), beyond the neighborhood 

22 δ≤e  the following estimate is valid: ×== TT eeeV 2222 &&  

≤−+× ∗ ))(arctg(.)( 223 ekMeϕ ))2/(( 32 ςπ −−+ MeFe , 

02 <V&  if )2/(21 ςπ −> FM , )2/(2 32 ςπ −> eM , =M  
)( 1max21 UMMM ≤+= . These inequalities are the estimates 

for the choice of coefficients in control law (30). To 
implement (30), measurements 1q  and a reduced observer 
(23), (20) are required. 

5. MAIN RESULT 

Basic algorithms (12) allow for diagonalization of a closed 
system and realization of autonomous control of output 
coordinates, but require calculation in real time of matrix 

)( 11 qB  and its inverse. Let us attempt to avoid these 
calculations. First, let us consider a particular case when 

)()( 11 ijbqB =  is a matrix with a dominating diagonal in the 
area being considered, namely 

 ∑
≠=

>
m

ijj
ijii bb

,1
, 0≠iib , ijij bb ≤  11 Qq ∈∀ , mji ,1, = . (33) 

Considering (33) for system (11) the control law has the form 
 )(arctg)( 221 ekbMSu ii−= , (34) 
where }sign{diag)( iiii bbS = , which is different from (30) in 
that for its realization the precise matrix )( 11 qB  coefficients 
are not required, but only the possible range of their change 
in the area being considered, and additionally, for nonzero 
diagonal elements, their signs are required whose 
determination may be considerably easier than calculation of 
the values.  
Let us show that in closed system (11), (34) given precision 
(9) is ensured. To obtain the lower estimate for choice 

1
2 UM π≤ , let us research the second summand of quadratic 

form (25) represented in coordinate-wise form 

 2
22

1
2

1
22 )(, ii

m

i
i eVVV == ∑

=
. (35) 

For the derivative of the i -th ( mi ,1= ) summand of 
quadratic from (35) accounting for (11), (33), (34), (17) valid 
is the estimate  

×−−== ∑
≠=

ii

m

ijj
jjjijiiiii MbekbbMeeeV

,1
222222 )(arctgsign(.)[ϕ&&  

)].)(([||)](arctgsign
,1

22222 ∑
≠=

−−−≤×
m

ijj
ijiiiiiii bbMFeekb ππ ς

Outside of the neighborhood 22 δ≤ie  valid are inequalities 

02 <∀ iV&  if MBF <)/(2 π , ∑
≠=

−−=
m

ijj
ijii bbB

,1

2 })1(min{ π
ς . 

In a general case when assumption (33) does not hold true, 
we use the control hierarchy method ideology developed for 
systems with discontinuous controls (Utkin, 1992). For 
uplimited realization (34) of discontinuous controls being 
considered, below is designed a step-by-step procedure for 
choosing coefficients }diag{ imM = , 0const >=im , 

02 >ik , mi ,1=  based on inequalities, allowing to artificially 
obtain a matrix with a dominating diagonal (in a general case, 
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with dominating elements from different columns) before a 
control, for an i -th component of which outside the 
neighborhood iie 22 δ≤  with account of (32) valid are the 
estimates: 
 iii uuu 111 || << , )( 21 iii mu ςπ −= , 21

π
ii mu = , mi ,1= . (36) 

For simplicity, let us establish the hierarchy of vector 2e  
components, which matches their order: 2121 δ≤e ,…, 

mme 22 δ≤ . This sequence means that iie 22 δ≤  will be 

ensured only after 2121 δ≤e ,…, 1,21,2 −− ≤ iie δ  hold true. 
Step 1. In the first equation of system (11) let us choose a 
controlling coordinate )arctg(sign 212111111 ekbmu −= , 

0)( 111 ≠qb . For the derivative of the first summand of 
quadratic from (35) with account of (36) outside the 
neighborhood 2121 δ≤e  valid is the estimate 

≤−+== ∑
=

)arctg(sign( 212111111
2

11121212121 ekbmbubeeeV
m

j
jjϕ&&  

 ⇒<−−+≤ ∑
=

0))((|| 12111
2

11121 ςπmbubFe
m

j
jj  

 .))(/()( 1
2

11211
2

111 i

m

j
jj UmbubF π

π ς ≤<−+⇒ ∑
=

 

For problem regularization, let us introduce a new control 11
~u  

and consider an uplimited realization of the equivalent 
control method (Utkin, 1992). In asymptotic, with +∞→21k  
relations (29), 021 →e&  and eq1111

~ uu →  hold true. From a 

static equation −−=⇒=++= ∑
=

1111111
2

11121 (~0~ ϕϕ uubube
m

j
jj&  

11
2

11 /) bub
m

j
jj∑

=
−  which holds true with a precision of an 

infinitely small )/1( 211 kα , we find a new control 11
~u  and 

substitute it in the rest of the equations of system (11) for 11u  
and obtain 

 ,
2

1
11

2 ∑
=

+=
m

j
jijii ube ϕ&  mi ,2= , (37) 

where 1111
1 /bbiii ϕϕϕ −= , 1111

1 /bbbbb jiijij −= . On the second 
step in the second equation of system (37) control 

)arctg(sign 2222
1
22212 ekbmu −= , 0)( 1

1
22 ≠qb  is formed, and the 

regularization of the problem occurs in the said manner, etc. 
Step μ . As a result of the previous transformations, the last 

1+− μm  equations of system (37) take form 

 ,1
11

2 ∑
=

−− +=
m

j
jijii ube

μ

μμϕ&  mi ,μ= , (38) 

where ,/ 2
1,1

2
,1

2
1,

21 −
−−

−
−

−
−

−− −= μ
μμ

μ
μ

μ
μ

μμ bbbbb jiijij  11 −− ≤ μμ
ijij bb , 

21 −− = μμ ϕϕ ii ,/ 2
1,1

2
1

2
1,

−
−−

−
−

−
−− μ

μμ
μ
μ

μ
μ ϕ bbi  11 || −− ≤ μμϕ ii F . Let us 

choose in μ -th equation of system (38) control  

 )arctg(sign 22
1

1 μμ
μ
μμμμ ekbmu −−= , 0)( 1

1 ≠− qbμ
μμ . 

Then outside of neighborhood μμ δ 22 ≤e  we have 

≤−+= −−

+=

−− ∑ )arctg(sign( 22
11

1
1

11
22 μμ

μ
μμμ

μ
μμ

μ

μ
μ

μ
μμμ ϕ ekbmbubeV

m

j
jj

&  

⇒<−−+≤ −

+=

−− ∑ 0))((|| 2
1

1
1

11
2 μ

π
μ

μ
μμ

μ

μ
μ

μ
μμ ςmbubFe

m

j
jj  

 .))(/()( 1
2

2
1

1
1

11
μπμμ

πμ
μμ

μ

μ
μ

μ
μ ς UmbubF

m

j
jj ≤<−+⇒ −

+=

−− ∑ (39) 

With +∞→μ2k  relations (29), 02 →μe&  и eq11
~

μμ uu →  
hold true. From a static equation which holds true with a 
precision of an infinitely small )/1( 211 kα , we find μ1

~u , 
1

1
1

11
11

1

1
1

11 /)(~0~ −

+=

−−−

+=

−− ∑∑ −−=⇒=++= μ
μμ

μ

μ
μ

μ
μμμ

μ
μμ

μ

μ
μ

μ
μμμ ϕϕ bubuubube

m

j
jj

m

j
jj&

and substitute it in the rest of equations (38) for μ1u , etc. 

As a result of this procedure, we obtain the last equation (38) 

m
m
mm

m
mm ube 1

11
2

−− += ϕ& , where :2
1

2
1,

21 −
−

−
−

−− −= m
m

m
mm

m
m

m
m b ϕϕϕ  

,: 2
1,1

−
−−

m
mmb  ,/ 2

1,1
2
1

−
−−

−
−× m

mm
m
m bϕ  ,/ 2

1,1
2
,1

2
1,

21 −
−−

−
−

−
−

−− −= m
mm

m
mm

m
mm

m
mm

m
mm bbbbb  

11 −− ≤ m
mm

m
mm bb , 11 || −− ≤ m

m
m
m Fϕ , )arctg(sign 22

1
1 mm

m
mmmm ekbmu −−= . 

Outside of the neighborhood mme 22 δ≤  we have:  

 ≤−= −−− )arctg(sign( 22m
111

2 m
m
mmm

m
mm

m
mmmm ekbmbeV ϕ&  

 ⇒<−−≤ −− 0))((|| 2
11

2 mm
m

mm
m

mm mbFe ςπ  
 .))(/( 1

2
2

11
mmm

m
mm

m
m UmbF π

π ς ≤<−⇒ −−  

Value ∗= mm mm  chosen from the indicated range is 
substituted in the estimates of previous coefficients (39), 
from which, with 1−= mμ , we determine the fixed value 

∗
−1mm , etc.: 

.1,1,))(/()( 1
2

2
1

1
2

11 −=≤<−+ ∗−

+=

∗−− ∑ mUmbmbF
m

j
jj μς μπμμ

πμ
μμ

μ

πμ
μ

μ
μ  

It is right to consider the designed procedure of choosing 
feedback coefficient as hierarchic in asymptotic with 

+∞→>>>>>> mkkk 22221 ... . It is essential that the 
indicated constructs are conducted at the stage of researching 
the problems which allows to reduce the volume of 
calculations performed in real time. To realize the given 
algorithm, the immediate measurements of output variables 

1y  and observer (23), (20) are sufficient. Requirements to 
additional measurements of coordinates 1q  are determined by 
the possibility of realizing the control law 
 )(arctg)( 22

1
1 ekbMSu i

ii
−−= , }sign{diag)( 1

11
1 −− = ii

ii bbS (40) 

6. EXAMPLE 

As an example, let us consider the dynamic model of the two-
link planar manipulator with 2== mn  degrees of freedom. 
Components of plant operator (1), where ),(col 12111 qqq = , 

),(col 12111 yyy = , have the following form: 

 21221
2
1

2
121

2
1111 )cos2( IqllllmIlmH ccc +++++= , (41) 

 2
2
2222 IlmH c += , 2

2
22122122112 cos IlmqllmHH cc ++== , 

 221221211 sin qqllmC c−= , 211221221 sin qqllmC c= , 022 =C , 
 2112212221221212 sinsin qqllmqqllmC cc −−= ,  

 ],cos)cos([cos 11112112211
2
111 qlqqlgmqglmG cc +++=  
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 )cos( 1211222 qqglmG c += ,  
 )cos(cos)( 121121111111 qqlqlqhy ++== , 
 )sin(sin)( 121121112212 qqlqlqhy ++== , 

where 8,9=g [ kgH / ], 25,0,4,0 21 == II  [ 2mkg ⋅ ] are 
applied moments of inertia, 41 =m , 32 =m  [ kg ] are mass 
of links, 5,0,5,0 21 == ll [ m ] are lengths of links, ,3,01 =cl  

25,01 =cl  [ m ] are distances to the center of gravity of links. 
The program trajectory has the following form (fig. 1) 
 .cos,sin 20d1210d11 tRgytRgy +=+=  (42) 
In this case, two manipulator configurations ),( 1211 qq , 

)~,~( 1211 qq  may correspond to a particular endpoint position 
(fig. 2). Let us note that mutually single-valued 11 qy ↔  
correspondence between endpoint position and angular 
positions of the manipulator may be established with the help 
of information about the sign of 12q . 
 

 

Fig. 1.  Fig. 2.  

There is 0sindet 1221 ≠= qllJ  112 Qq ∈∀  in output image 
system (1), (41) to BCCFO (4) with the exception of 
particular points πkq ±=∗

12 , ,...1,0=k , which corresponded 
to the extended or folded manipulator arm. 
Let us transform system (1), (41) into form (7), (11), namely 

,2,1,(.)(.)(.), 221122111 =++=+−= iububeeeke iiiiiiii ϕ&&  (43) 

−++=−+−+
+−+−−−

−+−+−= Δ

])sin([,)(
])sin()sin(

[])cos([where

222111121212121121111111

*
21111112

*
12111112

*
21212

*
12212

1
22211112221221

qqqlyqyyeekk
GHqlyGHqlyGHy

GHyqqqlyqy

d ϕ

ϕ

&&

 

,)(])cos

()cos([

1222121212
*
211111

11
*
12111111

*
21211

*
12211

1

dyeekkGHql

yGHqlyGHyGHy
&&−+−+−

−−−++− Δ

),()( 1122122111
*
1 qGqcqcG ++= )()( 1222222121

*
2 qGqcqcG ++=  

12212211 HHHH −=Δ , ])sin[( 22122111112
1

11 HyHqlyb −−= Δ , 

],)sin([ 11111121212
1

12 HqlyHyb −−= Δ

])cos([ 21111112211
1

21 HqlyHyb −−= Δ ,  

])cos[( 12111111111
1

22 HyHqlyb −−= Δ . 
Mismatches d111111 )( yyte −= , d121212 )( yyte −=  of 
assignment (42) in system (43) under linear stabilizing 
feedback (22) (fig. 3-4), under discontinuous stabilizing 
feedback (27) (fig. 5-6) are shown. Nonlinear controls (40) 

)(),( 21 tutu  (fig. 7-8) and corresponding mismatches )(11 te , 
)(12 te  (fig. 9-10.) are shown. 

  

Fig. 3. 005,011 ≤e  Fig. 4. 0045,012 ≤e  

  

Fig. 5. 0)(11 =te , 3>t sec Fig. 6. 012 =e , 3>t sec 

  

Fig. 7. )(1 tu  Fig. 8. )(2 tu  

  

Fig. 9. 001,011 ≤e  Fig. 10. 001,012 ≤e  
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