Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

[FAC

Direct Method of Manipulator Endpoint Control Synthesis

Svetlana A. Krasnova, Victor A. Utkin, Anton V. Utkin

Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
(Phone: +7(495) 334-93-21; e-mail: krasnova@ipu.rssi.ru, e-mail: vicutkin@ipu.rssi.ru)

Abstract: Manipulator endpoint location autonomous control procedures are suggested. A method of
uplimited control hierarchy has been designed, which allows to provide a desired tracking precision under
conditions of uncertainty of the control object operator and the effect of external unmeasured disturbances.
Sliding mode state observers synthesis procedures have been designed, which allow, in a theoretically
limited time interval, to obtain information on immeasurable variables of the state vector and available
uncertainty. The results of the designed algorithms modeling are presented. Copyright © 2008 IFAC

1. INTRODUCTION

In this paper, program trajectory tracking problem by a
endpoint manipulator is considered. The presently
sufficiently studied manipulator planning and control
methods in the general configuration variables space are not
directly applied in this problem. The known control methods
in the endpoint coordinates space almost always require a
solution of reversed kinematics and dynamic problems in real
time, which on rare occasions have an analytic and/or a single
valued solution. In this work, a conceptually different
approach this problem’s solution is suggested based on the
mechanical system’s resulting image decomposition and not
requiring a reversed problems solution in real time.

The paper has the following structure. In section 1 the plant
model is presented. In section 2, a procedure of transforming
the plant model into the block canonical control form is
designed with respect to the output variables (BCCFO, Utkin,
2007) describing the space orientation of the endpoint. Such a
transformation allows the use of the block principle
(Drakunov et al., 1990; Krasnova, 2001) and to decompose
the synthesis problem into independently solved elementary
subproblems of lower dimension. In section 3, output
variables autonomous control algorithms are designed under
the conditions of certainty of the input control channels. The
information support problems are solved with the help of a
sliding mode state observer. It is significant that in this case
being considered the obtained block controllable form is, at
the same time, a block observed (Krasnova et al., 2001), i.e.,
the problems of the unmeasured variables control and
observation are solved in the same transformed coordinates,
which considerably facilitates the regulator synthesis. In
section 4, a new stabilizing feedback type (which is new to
mechanical systems) which is an uplimited realization of
discontinuous control is suggested. A hierarchical principle
for choosing of feedback coefficients is designed, which
allows an autonomous control realization under the
incomplete information on input control channels. In section
5, the results of the designed algorithms modeling in
MATLAB for a two-link plain manipulator are presented.
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2. PLANT MODEL AND PROBLEM STATEMENT

Let us consider the dynamic model of the rigid manipulator
with n degrees of freedom

G4 = 4554, = H ' (q)[u~C(q,,4,)q, = G(g,) +1(0)], (1)
where g, € O, € R" is the vector of angular positions of the
manipulator, H(g,) € R™" is the positive definite nonlinear
symmetric matrix of inertia, C(q,,q,) € R”" is the matrix of
centripetal and Coriolis forces, G(g,) € R" is the vector of

ueR"

moments developed by actuators, 7(¢) € R" is the vector of

gravitation forces, is the vector of generalized

external unmeasurable bounded disturbances. The multilink
manipulator construction ends with a replaceable working
mechanism (endpoint). The endpoint space orientation vector
is described by nonlinear smooth functions of angular

y =hq,), 0 -1,

Program motion y,,(¥) € R™ tracking problem given in terms

positions vy €Y, cR", m<n.

of the endpoint working space y,, €Y, is posed. It is
supposed that the vector function y,, and its derivations are
restricted. The tracking problem is limited to the problem of
stabilizing the mismatch e, (t) = y,(¥) — y,,(¢), ¢, € R” and is
solved depending on the technological requirements or

asymptotically
lime (£) =0, 2)
—®©
or with given accuracy
||e1 || < 6, = const 3)
based on model (1) representation in block canonical control

form with respect to output variables y, .

3. MECHANICAL SYSTEM OUTPUT IMAGE

The peculiarity of the problem being considered is that the
image Q, — Y, is single valued, but not mutually single

valued, because different manipulator configurations may
correspond to a particular endpoint position. Besides, rank.J,
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where J(q,),,., = 0h/dq, , may be different at different points

mxn

of space Q,. Let us assume that rank/ =m Vg, € 0, O,

with the exception of a finite number of particular points ¢, .

In case of redundant dimensionality of plant m<n it is
assumed that the same group of general basis variables

g, €R" (q,=col(q,q), qi € R"™ are free variables)

chosen out of constructive considerations can be matched
with the basis minor of matrix J(g,) (i.e. the output variables

¥,) with g, € Q,. Otherwise, the program trajectory should

be divided in an appropriate manner into sections to which a

different closed loop structure will correspond.

The essence of model (1) imaging procedure in BCCFO

consists of a two-time differentiation of output variables with

account of system (1) and the assumptions made, in particular
V1 =J4)9; = Y25 Y2 =J(41,9,)9, +J(q))q, =
=J’(q1,q2)q2+J(q1)H_1[u—Cq2—G+7]]= 4)
= A(q,,9,) + B(g,)u + B(q,)1,

where 4=J'(q,,9,)q, - J(q1)H71(‘J1)[C(q1a%)‘J2 +G(q)],

B= J(‘Il)Hil(ql) > rankHil(ql) =n= rankB(q,) =m

Vg, €05 J :(Jij)a I e :(J,;')a J,;' :(a-]ij/a%)% .

The posed problem (2) and (3) is solved in terms of system
(4) based on block approach (Drakunov et al., 1990;
Krasnova, 2001). A conjoint problem, which is not

considered here, consists of free coordinates ¢,, € R"™

control whose behavior is determined by the corresponding
part of system (1).

4. AUTONOMOUS CONTROL BASIC ALGORITHMS

In this section, under the assumption about the certainty of
the input channels, output variables autonomous control
synthesis methods are designed implementing algorithms of
various complexity, which is preconditioned by the
possibility and the expediency of the setup of various
measuring devices. System (4) consists of two elementary
blocks in each one of which the state vector dimensionality
coincides with the dimensionality of the virtual and true
control vector, which allows for partitioning of the synthesis
problem into independently solvable problems of
dimensionality m . Using (4), let us rewrite the differential
equation with respect to the mismatch

&=y~ V- (&)
In system (5), vector y, is treated as a virtual control chosen
in the form of y,=-Ke +y,, where K, =diagi{k,},
k; >0 (i=1m) are feedback coefficients providing the

demanded rate of convergence (2). To provide for the chosen
virtual control, it is required to solve the mismatch
stabilization problem

e =y, +Kie—yy. (6)
Taking (6) into account, equation (5) takes the form

e =—Ke +e,. 7
Provision of asymptotic convergence of variable (6), i.e.

lime, (1) = 0 (®)

will lead to a solution of problem (2); provision of demanded
precision

||e2|| <0, = const )
will lead to (3) within system (7). Problems (8) and (9) are
solved within system

e, = A(q,,9,) + B(g))u+ B(g,)n + K, (K¢, +€,) — iy (10)
with using of control u. Taking into account
g, =col(q},q’), let us split the control vector Bu =

= B,(q,)u, + B,(q)u,, u,€eR", detB,#0 Vg, €0, and
present system (10) in the form

é, = () +B,(q)u,, QY

@() = A(q,,9,) + By(q,)u, + B(q)n+ K (=K, + €,) = V4 -

The widespread concept of system (11) stabilization problem
synthesis consists of providing an autonomous control, i.e.
decoupling common system motion into independently
controlled subsystems describing the dynamics of separate
output variables and subsequent independent stabilization
problem synthesis in these subsystems. In this section,
autonomous control methods within system (11) are designed
under assumption that matrix B,(¢q,) parameters are known.
Then the general control law has the form

Bi(q)u, =Uy(e;) - 4(),
where U,(e,) =col(U,(ey),....U,(e,,,))
feedback compensating for intersecting links, ¢(.) is a vector

(12)

is the stabilizing

function whose role consists of compensating for existing
uncertainties. Control moments (12) play a dual role in the
control system, because they are the demanded effects to be
treated by actuators at the same time, which imposes a set of
restrictions on their choice. For control law (12) to take
effect, it is required that the vector functions it consists of be
restricted and continuously uninterrupted in general case &
times over all of its arguments in the area being considered,
where & is the relative degree of the actuator’s dynamic
model composed with respect to the moments applied the
actuator’s axis.

Let us introduce denotation of mismatch

ey = B,(q)u; —Uy(e,) +4(.) ,e; e R"™. (13)
It is essential that under this approach realized is the
possibility of choosing various standard actuators in which
the control moments demanded values tracking problem is
solved either asymptotically

lime;(¢) =0, (14)
—®©
or with demanded precision
||e3 || <0, =const . (15)
4.1 Linear stabilizing feedback
In system (11) let us form combined control
B,(q,)u, =—K,e, —p(.) , (16)

where () = col(@,,....p,), K, =diagik,},k,, >0,i=1Lm.
Closed systems (11), (16) with account of (13) will take the
form e, = -K,e, + e, . Provision of (14) within the actuator’s

control system will lead to the following relations:
e, >0=>e, 520=>¢ >0=y >y,
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To implement control (16), measurements of ¢,,q, and real

time evaluation with high precision and quick action of
compensating component ¢(.) are required, which

presupposes the plant operator’s parametrical certainty,
calculation of y,,(¢), y,4(t) and a construction of the

adequate model of disturbances 7(¢) (under the assumption

of their smoothness). Let us show that the requirements of the
plant’s and its functional environment’s antecedent
information volume and also of the number of calculations
done in real time can be significantly reduced if a sliding
mode state observer (Krasnova et al., 2001) is added to the
feedback loop. This observer (measurements ¢, are sufficient

for its construction) allows, in a theoretically limited time
interval, for obtaining an estimate of transformed variables,
linear combinations of the plant’s components (foregoing
their immediate calculations) and existing uncertainties under
the condition of their limitation, namely

|¢),.|SE.:const>0, F:max{E}, i=1,_m. (17)
For systems (7), (11) the state observer has the form

2y ==Kz, +z, + vy, 2, = Bi(q))u; +v,, (18)
where z,,z, € R" are the state vectors, v,,v, are the

observer’s corrective effects which are chosen in the form of
discontinuous functions so that the system stabilization
problem written with respect to mismatches &, = h(q,) — g -
—z,=e -2z, & =€, —z,, §,& €R" is solved and which,
using (7), (11), and (18), has from
& =—Ke+e-v, & =0()—v,. (19)

In the first equation of system (18) let us form discontinuous
correcting actions v, = M signg,, where here and further

M, =diag{m,}, signeg, = col(signg,,,...,signg,, ), which will
lead to generation in finite time ¢, >0 of a sliding mode over
multiplicity S, ={¢, =0} = z, = ¢, under the fulfillment of
conditions m;; >|82i|, i = Lm . According to equivalent control
method (Utkin, 1992), with ¢ >t from a static equation we
have estimates ¢, =&, -v, =0=v,, =¢&, whose values
are obtained from the outputs of the first order linear filters

Wt =—1,+v,, 7,€R", 1, >0, PE%)TI =V (20)
1

Obtained values (20) are used to form discontinuous
corrective effects in the second equation (18) which, with
v, = M,signe,, my >F,, i= 1Lm , will lead to generation in
finite time ¢, >¢# of a sliding mode over multiplicity
S, ={¢,=0NS,} =z, =e,. From the static equation we
£ =0() = Vyeq = 0= vy = 0()
values will be obtained from linear filters outputs

have estimates whose

Ty =—T,+Vv,, 7, €R", 1, >0, li%r2 =V - (21)
Hy

Control law (16), in the presence of state observer (18) and
filters (20)—(21), is implemented in the form
B(g)u; =—-K,z, —7,.

The volume of information support can be further reduced if
the compensating component is not used in the law, i.e.

accepted is control law

B, (g,)u, =—k,e,, k, =const >0. (22)
To implement (22), measurements ¢, and a reduced observer
(23)
are sufficient. Taking (7) into account, we have an equation
with respect to mismatch &, =-K, ¢ +e, —v,. Let us form

z,=-Kz, +v,

discontinuous correcting effects v, = M signeg,, m; >|ezl.|,

i :I,_m, which will lead to generation in finite time of a
sliding mode over multiplicity S, ={g, =0} =z, =¢, . From
the static equation we have estimates & =e, -, =
=0=v,, =e, whose values will be obtained from filters

outputs (20). Control (22), in the presence of state observer
(23) and filter (20), is implemented as B,(q,)u, = —k,7, .
To implement control law (22), unlike (16), it is not
necessary to define the compensating component ¢(.). It
suffices to be sure that its components (17) are restricted. The
role of coefficient &, in closed system (11), (22) consists of
suppressing of the existing uncertainties which leads to (9)
holding true and, accordingly, the solution of the tracking
problem with given precision (3). For better fine tuning, let
us introduce majoritating function

o] < Ly + Li|le || + Ly|le, ||, Lo Ly, L, = const >0
for uncertain system (11).
Let us show that there exist such values &, = k,, =const >0,

k, , with which in closed system (7), (11) and (22) hold true

relations (3) and (9). Let us introduce a quadratic form as a
sum of quadratic forms

24

- — 1,7 LT
V=V+V,=3ee +3e5e,.

(25)
For the derivative of the first summand of quadratic form
(25), in view of (7), the following estimate is valid:

Vi=elé =ef (e, —kie,) <|ley|(e.| - kiles])- The inequality
V, <0 is ensured beyond the neighborhood ||e1 || < ||ez||/ k <6,
with the fulfillment of the condition k; > ||e2||/5l . From this

inequality at a fixed value of k, =k we define accuracy (9)
that is necessary to ensure in system (11), (22):

||e2|| <k/8, =8, = const. (26)
For the derivative of the second summand of quadratic form
(25), in view of (11), (13), (22), (24), (26), the following
Vz =6, = e, (p()+ ey —kye,) <
<JealLo + Lleali+ Lofes] fes] ~ kaflesp <0 beyond  the

estimate  is  valid:
neighborhood ||e2|| < ¢, with the fulfillment of the conditions
kyy > Ly (ki3 + Lk + Ly, kyy > |les|/(K8))  ky = kyy +

+k,, . The first inequality is the lower estimate for the choice
of k,, =k,,. From the second inequality at a fixed value of
k,; = k;, we define the accuracy (15) that is necessary to

ensure in actuators control system synthesis (k,, =0, if (14)

is valid). Control (22) in closed tracking system (7) and (11)
will lead to the following relations:
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les| < 65 = |lea] < 8, = |l < 5,
Note that u, =col(u,,,...,u,,) are
bounded |u1,.|SU1,, U, =min{U,;}, then there may not be

U,) for
landing in given neighborhood (3). In practice, the presence
of restrictions will lead to (22) realizing in view of piece-wise
linear function B, (q,)u, = —sat(k,,.. (U))e,).

The natural tendency would be to account for existing

restrictions on the synthesis stage. This goal is served, for
example, by systems with discontinuous controls.

if control resources

enough allowed reinforcement coefficients &

2max

4.2 Discontinuous stabilizing feedback

In system (11), (17) let us form a discontinuous control
B,(q,)u, = —Msigne,, (27)
which under conditions F, <m, <m, . (U,), i=1m will

lead to the appearance in a finite time of a sliding mode over

multiplicity S={,=0} >¢ >0=y > y,. A
combined control B (g,)u, =—Msigne, —¢(.), where
O<m; <m,,,. —F,i= l,_m , will lead to a similar result.

Even though algorithm (27) is not realizable in the
problem being considered due to physical limitations
imposed on controlling moments, it is important from

theoretical point of view as a limited case. The following

control law is an uplimited realization of a discontinuous

control in the form of nonlinear continually differentiated
limited function.

4.3 Nonlinear stabilizing feedback

For system (11) let us form control law in the from
B, (q,)u, = —Marctg(k,e,) —@(.), M =const>0, (28)
where arctg(k,e,) = col(arctg(k,,e,,)....,arctg(k,,.e,,)) »

larctg(ky,e,)| < %, k, = ky, = const >0,

arctg(kﬁezl.)k—> Zsigne,,, i=1m. (29)

In closed system (11), (28), (13) e, = —Marctg(k,e,) + e,
with (U,,)—-F. holding

asymptotic convergence (8) is ensured, because e, <0

conditions 0 <m; <m,

imax true’
with e,; #0 and arctg(k,.e,;) ~ k,.e,;, with e,, =0, i=lm.
Control law (28) information support: measurements ¢, and

state observer (18), (20), (21). Let us show that control (28)
without the compensating component in the form

B,(q,)u, = —Marctg(k,e,) (30)
allows to ensure the given tracking precision. Precision that it
is necessary to ensure in closed system (11), (30)

e, = ¢(.) + e; — Marctg(k,e,) , 3D
is defined by expression (26). Let us register the value of
coefficient k, out of the following considerations:

/2 —arctg(k,5,) < ¢ =k, =k, >ctgc /(k/5,),
where ¢ is a small positive value.

(32)

For the derivative of the second summand of quadratic form

(25), in view of (17), (31)—~(32), beyond the neighborhood
||e2||s 5, the following estimate is valid: 7, =elé, = el x
x (p() + e; — Marctg(kye,)) < |le,|(F + ;| - M (z/2-¢)),

Vy<0 if M, >2F/x-25), M,>2e|/(x-2¢), M=
=M, +M,<M

for the choice of coefficients in control law (30). To
implement (30), measurements ¢, and a reduced observer

(23), (20) are required.
5. MAIN RESULT

(U,) . These inequalities are the estimates

max

Basic algorithms (12) allow for diagonalization of a closed
system and realization of autonomous control of output
coordinates, but require calculation in real time of matrix
B,(q,) and its inverse. Let us attempt to avoid these

calculations. First, let us consider a particular case when
B,(q,) = (b,) is a matrix with a dominating diagonal in the

area being considered, namely
by > Yb,.b, %0, |b|<b, Vg0, ij=Tm.(33)
J=lj#i ‘
Considering (33) for system (11) the control law has the form
u; = —MS(b; )arctg(k,e, ), (34)
where S(b,) = diag{signd, }, which is different from (30) in
that for its realization the precise matrix B,(g,) coefficients
are not required, but only the possible range of their change
in the area being considered, and additionally, for nonzero
diagonal elements, their signs are required whose
determination may be considerably easier than calculation of
the values.
Let us show that in closed system (11), (34) given precision
(9) is ensured. To obtain the lower estimate for choice
M < 2U,, let us research the second summand of quadratic

form (25) represented in coordinate-wise form

V=2V Vs :%(621‘)2 . (35)
i=1
For the derivative of the i-th (i= I,_m) summand of

quadratic from (35) accounting for (11), (33), (34), (17) valid
is the estimate
Vi = sy, = e, [9,()~ M 3 b,signd jarctg(ke, )~ Mb, x
J=1j#i
x signb,arctg(k,e,)1 < e, |[F, — M (b,(=—¢)— b, 5)].

U
J=L g

Outside of the neighborhood |@2,-| < 9, valid are inequalities

>t

J=1, i

vV, <0 if 2F /(zB)< M , B =min{b,(1-%) -

In a general case when assumption (33) does not hold true,
we use the control hierarchy method ideology developed for
systems with discontinuous controls (Utkin, 1992). For
uplimited realization (34) of discontinuous controls being
considered, below is designed a step-by-step procedure for
choosing coefficients M =diag{m;}, m, =const>0,

ky; >0, 0= 1,m based on inequalities, allowing to artificially
obtain a matrix with a dominating diagonal (in a general case,
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with dominating elements from different columns) before a
control, for an i-th component of which outside the
neighborhood |ezl.| < 9,, with account of (32) valid are the
estimates:

uy < uy; |<71i’ uy =m(5-¢;), ﬁli =m7, i:L_m- (36)
For simplicity, let us establish the hierarchy of vector e,
components, which matches their order: |e21| <O, pees

|e2m|S52m. This sequence means that |e21.|S52,, will be

ensured only after |e21| <O, pees e2’H| < 6,,, hold true.

Step 1. In the first equation of system (11) let us choose a
controlling coordinate u,, = —mysignb arctg(k,e,,) ,
b,(q,)=0. For the derivative of the first summand of
quadratic from (35) with account of (36) outside the
neighborhood |€21| < 6,, valid is the estimate

. m
Vi = exéy = €y, (9y + 2. by juy; — byymysignb, arctg(ky,e,,) <
=

<ey, | (£ + zgl/ﬁl/ _l;llml(%_gl)) <0=
=

i

= (F + Ybyi ) (b (5 - 6)) <m, <2U,,.
j=2

For problem regularization, let us introduce a new control #,,

and consider an uplimited realization of the equivalent
control method (Utkin, 1992). In asymptotic, with k,, — 4o

relations (29), é,, -0 and u, = u,,,, hold true. From a

m
static equation é,, = ¢, + > by u,; + by, =0 =iy, = (~¢, -
Foaa

—ibl j#;)/ by, which holds true with a precision of an
j=2

infinitely small ¢,(1/k,,), we find a new control #,, and
substitute it in the rest of the equations of system (11) for u,,
and obtain

by =@+ by, i=2m, (37)
Jj=2

where @] =@, —b,, /by, , by = b, —b,b,,; /b, . On the second
step in the second equation of system (37) control
u,, = —m,signbyarctg(k,,e,,), bi,(q,) # 0 is formed, and the

regularization of the problem occurs in the said manner, etc.
Step . As a result of the previous transformations, the last

m— u+1 equations of system (37) take form

m —_—
5 — HHl u-l P
& =@+ Zb;,- Uy, 1=H,m, (33)
J=u
w1 _ g u-2 u-2 7 u-2 u-2 pu-1 7 u-1
where b = by bl AbE DD, b B,

- -2 -2 -2 -2 11— -
o = o _bifly—lw;/j—l /b:tl—l,y—lﬂ | of I I< £ '. Let wus
choose in u -th equation of system (38) control

U, = —m#signb;’;larctg(kQ”ez#) , b;:l (¢)#0.

Then outside of neighborhood |e2 #| <3,, we have

m

7 -1 11 -l : 11

Vie=e, (o) + Zbﬂj u,; — bl m signb} “arctg(k, e,,) <
J=u+l

1 G ul= Tul
ey, [(F + Zfl)”‘/’ w,—bsm,(5-5,)<0=
J=H

= (F+ b (b (E-g) <m, <2U . (39)

J=p+l

Iy7
With k,, — +oo relations (29), é,, =0 u #,, = 1,

hold true. From a static equation which holds true with a

precision of an infinitely small ¢, (1/k,,) , we find u,,,

m
- -l u=1 pu-l~
€ = Pu + _lejw' U +bﬂﬂ U
J=ut

=0=> 00, = (-pp~ = Yby ) /b

J=pu+l

"

and substitute it in the rest of equations (38) for u,,, etc.

As a result of this procedure, we obtain the last equation (38)

. _ . m-1 m—1 m-1 _ _m-2 m-2 m-2
eZm - (pm + bmm Z’llm H Where (/)m - §0m - bm,mflgom—l .
. ,m=2 m-2 m-2 m-1 _ 7m-2 m-=2 3m-2 m-2
. bmfl,mfl > X gomf] /bmfl,mfl H bmm - bmm - bm,mflbmfl,m /bmfl,mfl >

m—1 7. m—1 m—1 m-1 _ : m—1
bmm < bmm H | wm |S Fm ’ u]m - _mmSlgnbmm arCtg(k2me2m) .

Outside of the neighborhood |e2m| <J,, we have:

Vi = €2, (@) = by 'm, signby tarctg(k,,e,,,) <
ey, |(Fyt =bytm, (5-¢,) <0=
= Fy (b (5 -¢,) <m, <2U,,.

Value

substituted in the estimates of previous coefficients (39),
from which, with g =m—1, we determine the fixed value

m, =m, chosen from the indicated range is

m’ ., etc.:

m-12

(%_g/z))<m; S%U]#,/—l:m—l,l.

-1 O 7 -1 -
(p+ S5m0
J=u+

It is right to consider the designed procedure of choosing
feedback coefficient as hierarchic in asymptotic with
ky >>ky >>...>>k,, > +o. It is essential that the

indicated constructs are conducted at the stage of researching
the problems which allows to reduce the volume of
calculations performed in real time. To realize the given
algorithm, the immediate measurements of output variables
»y, and observer (23), (20) are sufficient. Requirements to

additional measurements of coordinates ¢, are determined by
the possibility of realizing the control law
u, = —MS(b Marctg(ke,) , S(bi) = diagisignd;'} (40)

6. EXAMPLE

As an example, let us consider the dynamic model of the two-
link planar manipulator with n =m =2 degrees of freedom.
Components of plant operator (1), where ¢, =col(q,,,9q;,) »

¥, =col(y,,,¥,) , have the following form:
H, = mllfl +1, + mz(ll2 + lfl + 211 .,c08q,)+1,, (41)
H,, = mzlfz +1,, Hy, =H, =myll,cosq, + mzljz +1,,
Cy =-myll ,sinq,qy , Cyy =mylil,81nq,q,,, Cyy =0,
Cyy, =-myll,8inq,q5 —mylil,,81Inq),q,, ,

G = mllflgcos g, +myg[l., cos(q,, +q,,) +1,cosq,],
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G, =myl,gcos(q,, +4;,)

i =h(q,) =1 cosq, +1,co8(qy, +q,),
Vi =hy(q,) =1;sing,, +1,sin(q,, +¢q,,) ,
where g=98[H/kg], I,=04,1,=0,25
applied moments of inertia, m; =4, m, =3 [kg ] are mass
of links, /, =0,5,/, =0,5 [ m] are lengths of links, /, = 0,3,
1., =0,25 [m] are distances to the center of gravity of links.

[kg-m®] are

The program trajectory has the following form (fig. 1)
Vig = & + Rsint, y,4 = g, + Rcost. (42)
(9115912) »

(¢,,,4,,) may correspond to a particular endpoint position

In this case, two manipulator configurations

(fig. 2). Let us note that mutually single-valued y, <> ¢,
correspondence between endpoint position and angular
positions of the manipulator may be established with the help
of information about the sign of ¢, .

W 61 83 &3 04 a5 o8 0
Pt 1 ant 1]

Fig. 1.

Fig. 2.

There is detJ =/l,sing, #0 Vg, €Q, in output image
system (1), (41) to BCCFO (4) with the exception of
particular points g,, = +kz, k=0,,..., which corresponded
to the extended or folded manipulator arm.

Let us transform system (1), (41) into form (7), (11), namely
&y = —kyey +ey,€y = 0,()+ by Ouy + by (uy, 1=1,2, (43)
where ¢ = [,,q5 + (V2 —1,€08¢,,¢5))4:, 1+ £ [V, Hy, G| —
—VuH,G, = (v, =1 sing, ) H, G/ + (3, = sing, ) H, G, +

+ky (ke +e50) = Vg @0 =[V0q0 + vy +18i0G,,95)9,1-
_f[)’anGl* + 3 H 1, G, + (3 =1 c0sq, ) H, G = (3, —

~ 1 cosgq, ) H G, 1+ ki (—kype, +€5,) = Vo

G/ = (¢}a1 +€192) + G1(4)), G, = (€31 +C2002) + Gy (q))
A=H.H,-H,H,, b, =%[(y12 =l sing,,)H,, —y,Hy]1,
by, =5y, Hy, = (v, —1sing, )H,,],

by =5y Hy — (0, =1 cosq, ) H,y 1,

by, =+[(y,, =1 cosq, )H, -y, ,H,].

Mismatches e () =y —Yias €)=Y = Vi of

assignment (42) in system (43) under linear stabilizing
feedback (22) (fig. 3-4), under discontinuous stabilizing
feedback (27) (fig. 5-6) are shown. Nonlinear controls (40)
u,(t), u,(¢t) (fig. 7-8) and corresponding mismatches e, (),

e, (¢) (fig. 9-10.) are shown.

...q
£ 8 8§ =

Ir———
Trothing wost y2y124 ol
&

T & & 8

L
Tessjsnc]

T ||

Fig. 3. |e,| <0,005 Fig. 4. [e,, <0,0045
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z r B

»....
$ 8 8 F @
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Fig. 5. ¢,,(t)=0, ¢t >3sec Fig. 6. ¢, =0, t >3sec

o IR B R L R LIV

& 1 F ] % 3 & 3 % T 7 7w

Fig. 9. [e;| <0,001 Fig. 10. |e,| < 0,001
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