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Abstract: This work is concerned with the algorithmic reachability analysis of linear systems
with constrained initial states and inputs. In this paper, we present a new approach for the
computation of tight polyhedral over-approximations of the reachable sets of a linear system.
The main contribution over our previous work is that it makes it possible to consider systems
whose sets of initial states and inputs are given by arbitrary compact convex sets represented by
their support functions. We first consider the discrete-time setting and then we show how our
algorithm can be extended to handle continuous-time linear systems. Finally, the effectiveness
of our approach is demonstrated through several examples.
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1. INTRODUCTION

Computers have become ubiquitious in control systems
design, offering the opportunity for the development of
new techniques for synthesis and analysis. One of these
approaches, inspired by the algorithmic verification of dis-
crete systems (i.e. model checking (Clarke et al. (2000))),
has emerged from hybrid systems research and is based on
reachability analysis. It consists in computing the reach-
able sets of a system; thus making it possible to examine all
its possible behaviours. This information can then be used
either for algorithmic verification or controller synthesis
(see e.g. Dang (2000); Tomlin et al. (2003)).

Numerous techniques have been developped in the latest
decade for reachability analysis of hybrid systems (see
e.g. Bemporad and Morari (1999); Chutinan and Krogh
(1999); Asarin et al. (2000); Kurzhanski and Varaiya
(2000); Mitchell and Tomlin (2000)). The standard hybrid
reachability algorithm alternates computations of the sets
reachable under the discrete dynamics and of the sets
reachable under the continuous dynamics. Reachability
under the continuous dynamics is often the most challeng-
ing part of the job and it has been the main focus of the
work on hybrid system reachability.

In this paper, we consider the computation of the reachable
sets of discrete-time and continuous-time linear systems
with constrained initial states and inputs. These classes of
systems have been considered in several previous papers
including Varaiya (1998); Bemporad and Morari (1999);
Kurzhanski and Varaiya (2000); Girard (2005); Girard
et al. (2006); Kurzhanskiy and Varaiya (2007).
? This work was partially supported by the ANR project VAL-AMS.

Given a discrete-time linear system of the form:
xk+1 = Axk + Buk, x0 ∈ I, uk ∈ U (1)

where I and U are compact convex sets. We denote by Ωk

the set of reachable states at time k. It is straighforward
to verify that it satisfies the recurrence relation:

Ωk+1 = AΩk ⊕BU, Ω0 = I (2)
where ⊕ denotes the Minkowski sum 1 . For a given time-
horizon N , we are interested in computing the sequence
of sets Ω0, . . . ,ΩN . The relation (2) can be implemented
exactly for the classes of sets that are closed under linear
transformation and Minkowski sum (e.g. polytopes or
zonotopes). However, at each step of the computation,
the size of the representation of the set Ωk grows and
the problems becomes rapidly intractable for long time
horizons.

The usual turnaround is to make an over-approximation
at each step in order to limit the size of the representation
(Stursberg and Krogh (2003); Girard (2005)), leading to a
relation of the following type:

Ω̃k+1 = Approx
(
AΩ̃k ⊕BU

)
, Ω̃0 = I.

However, this scheme is subject to the so called wrapping
effect: at each step, starting points for new trajectories
are added to Ω̃k, which can lead eventually to dramatic
over-approximations (see Kühn (1999)). In (Girard et al.
(2006)), we proposed an algorithm avoiding this wrapping
effect problem for linear systems whose sets of initial states
and inputs are zonotopes.

1 The Minkowski sum of two sets U, V ⊆ Rd is the set defined by
U ⊕ V = {u + v : u ∈ U, v ∈ V }.
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In this paper, we extend our approach in order to handle
arbitrary compact convex sets. We represent convex sets
by their support functions, a standard tool in convex
analysis (see e.g. Bertsekas et al. (2003); Boyd and Van-
denberghe (2004)). The use of support functions for reach-
ability analysis has been considered previously in Varaiya
(1998) and we include in this paper a comparison between
the two approaches.

The paper is organized as follows. In section 2, we in-
troduce the notion of support function. In section 3, we
present our reachability algorithm for discrete-time linear
systems. We propose additional improvements to increase
its efficiency, we show how it can be used for control
synthesis and discuss its relation to the work presented
in Varaiya (1998). In section 4, we extend our algorithm to
handle continuous-time linear systems. The effectiveness of
our approach is shown in section 5 where several examples
are considered.

2. SUPPORT FUNCTIONS

In this section, we present the notion of support function
that we will use to represent convex sets. The properties
of support functions are stated here without the proofs
that are quite straightforward and can be found in several
textbooks on convex analysis (see e.g. Bertsekas et al.
(2003); Boyd and Vandenberghe (2004)).
Definition 1. The support function of a compact convex
set Ω ⊆ Rd, denoted ρΩ, is defined as:

ρΩ : Rd → R
` 7→ maxx∈Ω ` · x

We also introduce the related notion of support vectors:
Definition 2. A support vector of a compact convex set
Ω ⊆ Rd, in the direction ` ∈ Rd, denoted νΩ,`, is a vector
of Rd such that

νΩ,` ∈ Ω and ` · νΩ,` = ρΩ(`).

Let us remark that, generally, the support vector of Ω
in the direction ` is not unique. It is to be noted that a
compact convex set is uniquely determined by its support
function as the following equality holds:

Ω =
⋂

`∈Rd

{x ∈ Rd : ` · x ≤ ρΩ(`)}. (3)

From equation (3), it is easy to see that a tight polyhedral
over-approximation of an arbitrary compact convex set can
be obtained by “sampling” its support function.
Proposition 1. Let Ω be a compact convex set and
`1, . . . , `r ∈ Rd be arbitrary chosen vectors, we define the
following halfspaces:

Hi = {x ∈ Rd : `i · x ≤ ρΩ(`i)}, i = 1, . . . , r.

Let us define the polyhedron Ω̃ =
⋂r

i=1Hi. Then, Ω ⊆ Ω̃.
Moreover, the over-approximation is tight as Ω touches the
faces of Ω̃ at the points νΩ,`1 , . . . , νΩ,`r .

For most classes of sets that are commonly used in the
context of reachability analysis, the support function and
a support vector can be easily computed:

• If Ω is the unit ball then

ρΩ(`) = ‖`‖2 and νΩ,` =
`

‖`‖2

Q

P

`
C

Fig. 1. Computation of the support function of
the Minkowski sum of the convex hull of two
parallelograms with a circle. ρCH(P,Q)⊕C(`) =
max(ρP (`), ρQ(`)) + ρC(`).

where ‖.‖2 denotes the usual Euclidean norm in Rd.
• If Ω is an ellipsoid: there exists a positive definite

symmetric matrix Q such that
Ω =

{
x : xT Q−1x ≤ 1

}
,

then

ρΩ(`) =
√

`T Q` and νΩ,` =
Q`√
`T Q`

.

• If Ω is the hyper-rectangle [−h1;h1]× . . .× [−hd;hd],
then

ρΩ(`) =
d∑

i=1

|hi`i| and νΩ,` = (σ(l1)h1, . . . , σ(ld)hd)T

where σ denotes the sign function:

∀x ∈ R, σ(x) =

{ 1 iff x > 0
0 iff x = 0
−1 iff x < 0

• If Ω is a zonotope: there exists g1, . . . , gr ∈ Rd such
that

Ω =

{
r∑

i=1

αigi : −1 ≤ αi ≤ 1 i = 1, . . . , r

}
,

then

ρΩ(`) =
r∑

i=1

|gi · `| and νΩ,` =
r∑

i=1

σ(gi · `)gi

• More generally, if Ω is a polytope then computing
ρΩ(`) and νΩ,` is equivalent to solving a linear pro-
gram.

Thus, support functions and support vectors can be com-
puted efficiently for a large class of sets. Further, more
complex sets can be represented easily by combining ele-
mentary support functions using the following properties:
Proposition 2. For all matrices A, all compact convex sets
U, V ⊆ Rd, and all non-zero vectors ` ∈ Rd, we have:

ρCH(U,V )(`) = max(ρU (`), ρV (`))

ρU⊕V (`) = ρU (`) + ρV (`)

ρAU (`) = ρU (AT `)

where CH(U, V ) denotes the convex hull of U and V .
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Using these properties, one can easily consider convex sets
of unusual shape without really worrying about their in-
ternal representation. Figure 1 illustrates how the support
function of the Minkowski sum of the convex hull of two
parallelograms with a circle can be computed.

3. REACHABILITY OF DISCRETE-TIME SYSTEMS

We now move to the main contribution of the paper. Let
us consider a discrete-time linear system of the form:

xk+1 = Axk + vk, x0 ∈ I, vk ∈ V (4)
where I ⊆ Rd and V ⊆ Rd are compact convex sets.
Equation (4) is equivalent to (1) by setting V = BU . We
denote by Ωk the subset of states reachable at time k. For
a given time-horizon N , we are interested in computing
the sequence of sets Ω0, . . . ,ΩN . Equivalent to equation
(2), we have the following recurrence relation:

Ωk+1 = AΩk ⊕ V, Ω0 = I. (5)
The exact computation of these sets, though sometimes
possible, is often intractable as the complexity of the repre-
sentation of Ωk increases at each iteration. For that reason,
we are interested in computing simple over-approximations
of the reachable sets.

Using Proposition 1, we will compute a tight polyhedral
over-approximation Ω̃k of the reachable set Ωk. Given a
certain number of arbitrarily chosen directions `1, . . . , `r,
the polyhedron Ω̃k will be defined as the intersection of
halfspaces:

Hk,i = {x : `i · x ≤ ρΩk
(`i)}, i = 1, . . . , r.

Then, computing the over-approximation Ω̃k of Ωk is
equivalent to evaluating the support function ρΩk

at
`1, . . . , `r.

3.1 Computing the support function

Let ` ∈ Rd, in this part we propose an efficient algorithm
for the computation of ρΩ0(`), . . . , ρΩN

(`).
Proposition 3. For all k ∈ {0, . . . , N},

ρΩk
(`) = ρI

(
(AT )k`

)
+

k−1∑
i=0

ρV

(
(AT )i`

)
. (6)

Proof The proof is done by induction. Since Ω0 = I,
we have ρΩ0 = ρI and therefore, equation (6) holds for
k = 0. Let us assume that it holds for some k ∈ {0, . . . , N}
and show that it holds for k + 1. From equation (5) and
Proposition 2, it follows that

ρΩk+1(`) = ρAΩk⊕V (`) = ρΩk

(
AT `

)
+ ρV (`).

Then, from the induction assumption,

ρΩk+1(`) = ρI

(
(AT )kAT `

)
+

k−1∑
i=0

ρV

(
(AT )iAT `

)
+ ρV (`)

= ρI

(
(AT )k+1`

)
+

k∑
i=0

ρV

(
(AT )i`

)
.

Hence, equation (6) holds for k + 1 as well. By induction,
the proposition is proved. �

In order to compute efficiently ρΩ0(`), . . . , ρΩN
(`), we

introduce the following auxiliary sequences r0, . . . , rN ∈
Rd and s0, . . . , sN ∈ R:

r0 = `, rk+1 = AT rk,
s0 = 0, sk+1 = sk + ρV (rk). (7)

Equivalently, we have

rk = (AT )k` and sk =
k−1∑
i=0

ρV

(
(AT )i`

)
.

Therefore,
ρΩk

(`) = ρI(rk) + sk.
Algorithm 1 implements the evaluation of the support
functions ρΩ0 , . . . , ρΩN

.

Algorithm 1 Evaluation of the support functions
ρΩ0 , . . . , ρΩN

.
Input: The matrix A, the support functions ρI and ρV ,

the vector ` and an integer N .
Output: Yk = ρΩk

(`) for k in {0, . . . , N}
1: r0 ← `
2: s0 ← 0
3: Y0 ← ρI(r0)
4: for k from 0 to N − 1 do
5: rk+1 ← AT rk

6: sk+1 ← sk + ρV (rk)
7: Yk+1 ← ρI(rk+1) + sk+1

8: end for
9: return {Y0, . . . , YN}

Algorithm 1 performs, at each of its N iterations, a
linear transformation on a vector and the evaluation of
the support functions ρI and ρV . The global complexity
of Algorithm 1 is therefore O(N(d2 + CI + CV )) where
CI and CV denote the complexity of evaluating ρI and
ρV , respectively 2 . Let us remark that the complexity of
Algorithm 1 is linear in the time horizon N and polynomial
in d; this is comparable to the complexity of the most
competitive algorithms (Girard et al. (2006); Kurzhanskiy
and Varaiya (2007)).

Then, the computation of the tight over-approximations
of the reachable sets Ω̃0, . . . , Ω̃N defined as intersections
of r halfspaces has overall complexity

O(rN(d2 + CI + CU )).
In the following, we show how the efficiency of the algo-
rithm can be further improved.

3.2 Improvements

An important advantage of Algorithm 1 is that it can
be trivially parallelized. Indeed, the support function can
be evaluated independently in the different directions
`1, . . . , `r. Thus, running the reachability analysis on α
processors makes the overall complexity drops to:

O
(⌈ r

α

⌉
N(d2 + CI + CU )

)
.

The following improvement is more sophisticated. Let
us assume that the different directions of approximation
`1, . . . , `r have been chosen such that:

`i = (AT )ji`, i = 1, . . . , r

2 If I and U are low order full dimensional zonotopes or ellipsoids,
the complexity becomes O(Nd2).
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where 0 = j1 < j2 < · · · < jr. Then, from Proposition 3,
it follows that for all i = 1, . . . , r:

ρΩk
(`i) = ρI

(
(AT )k`i

)
+

k−1∑
p=0

ρV

(
(AT )p`i

)
= ρI

(
(AT )k(AT )ji`

)
+

k−1∑
p=0

ρV

(
(AT )p(AT )ji`

)
= ρI

(
(AT )k+ji`

)
+

k−1∑
p=0

ρV

(
(AT )p+ji`

)
= ρI

(
(AT )k+ji`

)
+

k+ji−1∑
p=ji

ρV

(
(AT )p`

)
= ρI(rk+ji) + sk+ji − sji .

Thus, it is sufficient to compute the sequences r0, . . . , rN+jr

and s0, . . . , sN+jr . Then, it can be shown that the com-
plexity of the reachability analysis drops to

O((N + jr)(d2 + CI + CU + r)).
Let us remark that in that case, the reachability algorithm
cannot be parallelized any more.

3.3 Control synthesis using support vectors

We would like to point out a relation of our approach with
a class of optimal control problems. Indeed, a slight mod-
ification of Algorithm 1 allows us to synthesize optimal
control inputs for the linear system (4). When computing
the support function of a set in a direction `, it is generally
easy to get also an associated support vector (see Section
2). These support vectors can be then used as control
inputs to solve the optimal control problem:

Maximize ` · xN (8)
under the dynamics of equation (4). Then, a straightfor-
ward application of Pontryagin maximum principle (see
e.g. Bertsekas (2000)) leads us to the following result:
Proposition 4. The trajectory solving the optimal control
problem (8) is obtained for the initial condition x0 = νI,rN

and the sequence of inputs:
vk = νV,rN−k−1 , k = 0, . . . , N − 1.

Let us remark that Algorithm 1 computes ρI(rN ) and
ρV (r0), . . . , ρV (rN−1). Computing, in addition the associ-
ated support vectors allows us to solve the optimal control
problem (8).

3.4 Comparison with a similar approach (Varaiya (1998))

Reachability analysis based on the use of support vectors
has already been proposed in Varaiya (1998). We would
like to discuss here the differences between the two ap-
proaches. In Varaiya (1998), the support functions of the
reachable sets Ω0, . . . ,ΩN are computed recursively using
the relation:

ρΩk+1(`) = ρΩk
(AT `) + ρV (`).

Then, the polyhedral over-approximation Ω̃k is defined as
the intersection of the halfspaces:

Hk,i = {x : `k,i · x ≤ ρΩk
(`k,i)}, i = 1, . . . , r

where `k,i = (AT )N−k`N,i. Then, the directions used for
the approximation are not the same for all Ωk. There are
two reasons that makes this point potentially problematic.

The first reason is numerical. Let us fix `N,i, then the
directions used for the approximation of Ωk are `k,i =
(AT )N−k`N,i. For simplicity, we assume that the eigen-
value of AT with largest modulus is real and denote `∗

the associated eigenvector. Then for a long time horizon
N , all the vectors `k,1, . . . , `k,r tends to point towards the
direction of `∗ when k approaches 0. This means that
the polyhedral over-approximation Ω̃k is likely to be ill-
conditioned for small values of k. The second reason is
more practical. Sometimes, we are not interested in ap-
proximating the reachable sets but rather the projection
of the reachable sets on an output space. Let us consider,
for instance the single output system:{

xk+1 = Axk + vk, x0 ∈ I, vk ∈ V
yk = cxk

where cT ∈ Rd. Then, in order to compute a tight over-
approximation of the sets reachable by y0, . . . , yN it is
sufficient to run Algorithm 1 with ` = cT . Similarly, when
dealing with hybrid systems with switching conditions
given by hyperplanes, it is interesting to choose the direc-
tions of approximation given by the normal vectors to the
hyperplanes. Indeed, in that case the over-approximation
Ω̃k intersects the hyperplane if and only if Ωk intersects it
(see Girard et al. (2006)).

The main advantage of the algorithm presented in (Varaiya
(1998)) over Algorithm 1 is that it can be extended very
easily to time-varying linear systems. Algorithm 1 does not
extend to this class of systems as Proposition 3 holds only
for time-invariant linear systems.

4. REACHABILITY OF CONTINUOUS-TIME
SYSTEMS

In this section, we show how a similar approach can be
used for reachability analysis of continuous-time systems
of the form:

ẋ(t) = Ax(t) + v(t), x(0) ∈ I, v(t) ∈ V (9)
where I ⊆ Rd and V ⊆ Rd are compact convex sets. We
denote by Ω(t) the set of reachable points at time t. Similar
to the discrete-time case, we want to express ρΩ(t) as a
function of ρI and ρV .
Proposition 5. For all t ∈ R+,

ρΩ(t)(`) = ρI

(
etAT

`
)

+
∫ t

0

ρV

(
eτAT

`
)

dτ. (10)

Proof One trajectory of system (9) is given by:

x(t) = etAx(0) +
∫ t

0

e(t−τ)Av(τ)dτ.

Then,

` · x(t) = ` · etAx(0) + ` ·
∫ t

0

e(t−τ)Av(τ)dτ

= ` · etAx(0) + ` ·
∫ t

0

eτAv(t− τ)dτ

= x(0) · etAT

` +
∫ t

0

v(t− τ) · eτAT

`dτ.
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Then ρΩ(t)(`) is obtained by maximizing ` · x(t) over the
initial condition x(0) ∈ I and input function v : [0, t]→ V .
Then,

ρΩ(t)(`) = max
x(0)

x(0) · etAT

` + max
v

∫ t

0

v(t− τ) · eτAT

`dτ

= ρΩ0

(
etAT

`
)

+ max
v

∫ t

0

v(t− τ) · eτAT

`dτ

For all v : [0, t]→ V , for all t ∈ R+ and τ ∈ [0, t], we have
that

v(t− τ) · eτAT

` ≤ ρV

(
eτAT

`
)

Therefore,

max
v

∫ t

0

v(t− τ) · eτAT

`dτ ≤
∫ t

0

ρV

(
eτAT

`
)

dτ

Let us consider the input function v∗ : [0, t] → V that
associate to τ ∈ [0, t], a support vector of V in the direction
e(t−τ)AT

`. Then, for all τ in [0, t]:

v∗(t− τ) · eτAT

` = ρV

(
eτAT

`
)

It follows that

max
v

∫ t

0

v(t− τ) · eτAT

`dτ ≥
∫ t

0

ρV

(
eτAT

`
)

dτ

and equation (10) holds. �

For the practical computation of the support function of
the reachable sets, we introduce, similar to the discrete-
time case, auxiliary functions r : R+ → Rd and s : R+ → R
defined by the differential equations:

ṙ(t) = AT r(t), r(0) = `,
ṡ(t) = ρV (r(t)), s(0) = 0.

(11)

Equivalently, we have

r(t) = etAT

` and s(t) =
∫ t

0

ρV

(
eτAT

`
)

dτ

Using Proposition 5, it follows that the support function of
the reachable set Ω(t) can be computed using the following
equation

ρΩ(t)(`) = ρI(r(t)) + s(t).
Hence, the computation of a tight polyhedral over-
approximation of the reachable sets can be done by sim-
ulating the differential equations (11) for several initial
conditions given by the directions used for approximation.

5. EXPERIMENTAL RESULTS

In this section, we show the effectiveness of our approach
on some examples. Both discrete-time and continuous-
time algorithms have been implemented in OCaml. All
computations were performed on a Pentium IV 3.2GHz
with 1GB RAM.

5.1 RLC model of a transmission line

The first example we consider is a verification problem for
a transmission line borrowed from Han (2005). The goal is
to check that the transient behavior of a long transmission
line is acceptable both in terms of overshoot and of
response time. Figure 2 shows a model of the transmission
line, which consists of a number of RLC components (R:

Fig. 2. RLC model of a transmission line

Fig. 3. Reachable tube of uout(t)

resistor, L: inductor, C: capacitor) modelling segments of
the line. The left side is the sending end and the right side
is the receiving end of the transmission line.

The dynamics of the system are given by the single-input
single-output linear dynamical system{

ẋ(t) = Ax(t) + buin(t), x(0) ∈ I, uin(t) ∈ U
uout(t) = cx(t)

where x(t) ∈ Rd is the state vector containing the voltage
of the capacitors and the current of the inductors and
uin(t) ∈ U ⊆ R is the voltage at the sending end. The
output of the system is the voltage uout(t) ∈ R at the
receiving end.

Initially, the system is supposed to be in an ε-neighborhood
(with ε = 0.01) of its steady state for an input voltage
inside [−0.2; 0.2]. Then, at time t = 0, the input voltage is
switched to a value in [0.99; 1.01]:

I = −A−1b[−0.2; 0.2]⊕ Bε U = [0.9; 1.1]

The model we considered has dimension 81. Figure 3 shows
the reachable tube of the output voltage for a time horizon
of 3ns, it was computed in 0.10s using 0.234MB.

5.2 Extensive experiments

Our implementation has also been tested on randomly
generated discrete-time examples of different dimension.
Tables 1 and 2 summarize the results of our experimen-
tations. We computed a tight over-approximation of the
reachable sets Ω0, . . . ,Ω100, for random matrices A of di-
mension d. We either used the algorithm from Girard et al.
(2006) (denoted as direct in the tables), or Algorithm 1
(sf); initial and inputs set were given either as zonotopes
of order 1 (Z) or ellipsoids (E); and the computed tight
over-approximation consisted in the intersection of 1, d,
or d2 half-spaces. The program was terminated after 90s.
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d = 10 20 50 100 200 500

direct Z 1 < 0.01 0.01 0.13 1.00 5.44 85.9
sf Z 1 < 0.01 < 0.01 0.01 0.01 0.05 0.28
direct E 1 < 0.01 0.02 0.27 1.71 11.8
sf E 1 < 0.01 < 0.01 < 0.01 0.02 0.05 0.31

direct Z d < 0.01 0.02 0.27 1.86 11.4
sf Z d < 0.01 0.02 0.23 1.5 11.1
direct E d 0.01 0.04 0.41 2.82 21.9
sf E d < 0.01 0.02 0.19 1.48 8.98

direct Z d2 0.04 0.35 7.38 90.6
sf Z d2 0.04 0.36 9.83
direct E d2 0.03 0.26 6.69
sf E d2 0.03 0.32 9.16

Table 1. Execution time (in seconds) for N =
100 for several linear systems of different di-

mensions

d = 10 20 50 100 200 500

direct Z 1 0.234 0.234 0.234 0.703 2.258 13.43
sf Z 1 0.234 0.234 0.234 0.469 1.480 8.707
direct E 1 0.234 0.234 0.469 1.172 4.961
sf E 1 0.234 0.234 0.234 0.703 2.332 12.53

direct Z d 0.234 0.234 0.469 1.172 3.195
sf Z d 0.234 0.234 0.234 0.703 2.184
direct E d 0.234 0.469 0.937 3.281 7.332
sf E d 0.234 0.234 0.234 0.703 3.035

direct Z d2 0.703 2.812 18.28 77.81
sf Z d2 0.234 0.469 3.75
direct E d2 0.703 3.047 18.98
sf E d2 0.234 0.469 3.75

Table 2. Memory consumption (in MB) for
N = 100 for several linear systems of different

dimensions

We can see that the new algorithm has great performances
for systems with a single output: it can compute exact
bounds on this output for the first 100 timesteps in less
than a third of a second for a 500 dimensionnal system,
while the fastest previoulsy known algorithm, to the best
of the authors knowledge, takes more than a minute. For
a larger number of directions of tightness, Algorithm 1
compares well to one of the most competitive algorithms.

6. CONCLUSION

We have presented an efficient algorithm for computing
reachable sets of discrete-time and continuous-time linear
systems with constrained initial states and inputs. We
showed that it can handle arbitrary compact convex sets,
and can be used to solve a class of optimal control problem.
For single ouput systems, it is faster than other algorithms
by a factor d, which allows it to handle hundreds of
dimensions in a fraction of a second. For more general
problems, it is one of the fastest algorithms and can even
be further improved by parallelization and by carefully
choosing the directions of approximations.
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