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Abstract: This article concerns the system identification of a class of large scale systems
called “circulant systems”. Circulant systems have a special property that allows them to
be decomposed into simpler subsystems through a state transformation. This property has
been used in literature for control design, and here we show how it can be used for system
identification. The approach that is proposed here will both reduce the complexity of the problem
as well as provide models which have a circulant structure that can be exploited for control
design.
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1. INTRODUCTION

Large scale systems have been object of interest in system
and control theory since the late Seventies (Sandell et al.
[1978]). The high dimensionality of these systems has led
to the development of techniques which could reduce the
complexity of the problem. A possible approach is to
consider the large scale system as the result of the inter-
connection of many simpler subsystems, as in D’Andrea
and Dullerud [2003].

In this paper we focus on a special class of large scale
systems, which we call “circulant systems” (Denis and
Looze [1999]). Circulant systems are the result of the
periodic interconnection (D’Andrea and Dullerud [2003])
of a number of identical subsystems, as shown in Figure 1.
Each subsystem has exactly two neighbors, and interacts
with these neighbors in exactly the same way. Examples
of circulant systems can be found in different fields, e.g.
adaptive optics (Denis [1998]), paper machines (Laughlin
et al. [1993]) and as result of the approximation of partial
differential equations (Brockett and Willems [1974]).

Circulant systems have a remarkable property that allows
their structure to be exploited by decomposing them into
smaller systems; this property can be used for simplifying
the complexity of the analysis (Lunze [1986]) and control
design (Denis [1998], Denis and Looze [1999], Hovd and
Skogestad [1994]). We show in this paper that the struc-
tural properties of circulant systems can also be exploited
in order to simplify the identification of such systems
from input-output data. We then develop an identification
algorithm for models which have the circulant structure,
allowing the exploitation of such structure for controller
design.
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Fig. 1. Example of circulant system made of 4 identical
subsystems.

The paper is organized as follows. In Section 2 the prelim-
inary notions are presented; circulant systems are defined
and their properties are explained. The focus is put on how
circulant systems can be recognized a priori from physical
insight, and then the decomposition property is presented
together with its consequences for identification. Section 3
presents a novel general identification algorithm for cir-
culant systems based on subspace identification methods,
and Section 4 contains two simulated examples of the use
of such algorithm in practice. The conclusions of the paper
are in Section 5.

2. PRELIMINARIES

We start by showing the basic concepts that are needed
for introducing the notion of a circulant system. These
concepts include the definitions of some peculiar kind of
matrices, like circulant and block circulant matrices, and
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the Fourier matrix, that has some very special properties
with respect to circulant matrices.

Let j be the imaginary unit, and In the identity matrix
of order n; let ⊗ indicate the Kronecker product. For
a generic matrix A, AT indicates its transpose while
AH indicates its Hermitian (complex conjugate of the
transpose); b̄ indicates the complex conjugate of a matrix
or scalar b.
Definition 1. (Permutation matrix). The permutation ma-
trix of order n is defined as:

Πn =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

1 0 0 0 · · · 0

 =
[

0 In−1

1 0

]

Notice that Πn is orthogonal:
Π−1

n = ΠT
n

Right-multiplying an n× n matrix by Πn is equivalent to
cyclically shifting all its columns of one position to the
right. Left-multiplication instead cyclically shifts the rows
up.
Definition 2. (Circulant matrix). A square matrix E of
size n × n is called “circulant” if it has the following
structure:

E =


e1 e2 e3 e4 · · · en

en e1 e2 e3 · · · en−1

en−1 en e1 e2 · · · en−2

...
...

...
...

...
e2 e3 e4 e5 · · · e1


where ei ∈ R or ei ∈ C. This is the same as saying, a square
matrix is circulant if and only if each row is obtained from
the preceding one by a cyclic shift of one position to the
right.

This definition is equivalent to saying that a circulant
matrix is invariant to a similarity transformation with
respect to Πn:

E = Π−1
n EΠn = ΠT

nEΠn

Definition 3. (Block circulant matrix). A block circulant
matrix E of order n is a (non necessarily square) matrix
with the following block structure:

E =


E1 E2 E3 E4 · · · En

En E1 E2 E3 · · · En−1

En−1 En E1 E2 · · · En−2

...
...

...
...

...
E2 E3 E4 E5 · · · E1


where Ei ∈ Rp×q or Ei ∈ Cp×q, with p, q positive integers.

Let us now introduce some new notation. We will denote
the set of block circulant matrices of order n, with blocks
of size p × q, as Cn,p,q; we will use the symbol C R

n,p,q or
C C

n,p,q if we want to specify that the values of such matrices
are respectively real or complex. Let Dn,p,q instead denote
the set of block diagonal matrices with n block rows and
block columns, and blocks of size p× q. Again, we will use
either DR

n,p,q or DC
n,p,q if we want to emphasize the nature

of the values of such matrices. For a matrix E ∈ Dn,p,q,
Ei will indicate the ith block on the diagonal; for a matrix
E ∈ Cn,p,q, Ei indicates the ith block in the first row (as
shown in Definition 3).
Remark 4. The sums and products of block circulant
matrices of the same order are still block circulant. The
inverse of a square invertible block circulant matrix is
block circulant (Davis [1979]).
Lemma 5. (Block-permutation). A block circulant matrix
E ∈ Cn,p,q is invariant to a block-permutation transforma-
tion, that means:

(Πn ⊗ Ip)
−1

E (Πn ⊗ Iq)=
(
Π−1

n ⊗ Ip

)
E (Πn ⊗ Iq)=E

Definition 6. (Fourier matrix). We define the Fourier ma-
trix of order n as:

Fn =
1√
n


1 1 1 · · · 1
1 wn w2

n · · · w(n−1)
n

1 w2
n w4

n · · · w2(n−1)
n

...
...

...
...

1 w(n−1)
n w2(n−1)

n · · · w(n−1)(n−1)
n


with wn = e−

2πj
n = cos 2π

n − j sin 2π
n .

The matrix Fn is unitary and symmetric:

FH
n Fn = FnFH

n = In, FT
n = Fn

We call fi the ith row of Fn. We will now show that all
the rows but the first of the Fourier matrix are complex
conjugate between each other; if n is even, then f1 and
fn/2 are real, while the other rows form complex conjugate
pairs; if n is odd, then f1 alone is real with the other rows
forming complex conjugate pairs.
Lemma 7. The rows of Fn are either real or in complex
conjugate pairs according to the relation:

fn+2−i = f̄i for i = {2, . . . , n}

Fourier matrices have the remarkable property of diagonal-
izing any circulant matrix. This property is crucial because
it will allow the decomposition of large scale circulant
systems to smaller independent ones, thus reducing the
complexity of the identification problem. The property is
stated in the Theorem that follows, and then generalized
to block circulant matrices.
Theorem 8. (Diagonalization property). For a matrix E ∈
Cn×n, it holds that FnEFH

n is a diagonal matrix if and
only if E is circulant.

Proof. The proof can be found in Davis [1979].

Corollary 9. Consider a matrix E ∈ Cnp×nq. Then we
have that E = (Fn ⊗ Ip) E (Fn ⊗ Iq)

H ∈ DC
n,p,q if and only

if E ∈ C C
n,p,q.

It is possible to show that the complex block diagonal
matrices obtained through the transformation via Fourier
matrices from real block circulant matrices have some
special features; and all of the block diagonal matrices of
such kind can be transformed into real block circulant ones
with the inverse transformation.
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Corollary 10. For a matrix E ∈ C R
n,p,q, then for E =

(Fn ⊗ Ip) E (Fn ⊗ Iq)
H ∈ DC

n,p,q it holds that E1 ∈ Rp×q

and En+2−i = Ēi for i = {2, . . . , n}.
Conversely, for a matrix G ∈ DC

n,p,q for which G1 ∈ Rp×q

and Gn+2−i = Ḡi for i = {2, . . . , n}, we have that
(Fn ⊗ Ip)

H
G (Fn ⊗ Iq) ∈ C R

n,p,q.

We are now ready to introduce the notion of a circulant
system and show its key features. After the definition,
we will first state a property that characterizes such
kind of systems, and then we will show how they can
be decomposed into smaller independent systems, thus
enabling efficient solutions to the identification problem.
Definition 11. (Circulant systems). Consider a discrete-
time MIMO system with nm inputs and nr outputs, with
state-space equations of the kind:{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) +Du(k) (1)

with A ∈ Rnl×nl, B ∈ Rnl×nm, C ∈ Rnr×nl, D ∈ Rnr×nm.
The vector x ∈ Rnl×1 is the state, u ∈ Rnm×1 is the
input signal and y ∈ Rnr×1 is the output signal. We call
the system “circulant” (or block circulant) if and only if
A ∈ C R

n,l,l, B ∈ C R
n,l,m, C ∈ C R

n,r,l and D ∈ C R
n,r,m. We

consider also the input u to be made of n blocks of size
m × 1, which we denote as ui, and the output y to be
made of n blocks of size r × 1, which we denote as yi

(i = 1, . . . , n). We call these blocks “local inputs” and
“local outputs”.

An important property of circulant systems is the invari-
ance with respect to shifts in the inputs and outputs. If a
certain input signal u generates an output signal y, then a
permuted version of the same input ((Πn ⊗ Im) u) will gen-
erate a permuted version of the same output ((Πn ⊗ Ir) y).
This is better explained in the following Lemma.
Lemma 12. (Invariance to input/output shift). Let the sig-
nal y(k) be the output of the circulant system of (1)
when excited by the input signal u(k). Then also ũ(k) =
(Πn ⊗ Im) u(k) and ỹ(k) = (Πn ⊗ Ir) y(k) are a valid
input/output pair for the same system.

Proof. From Lemma 5, we can rewrite (1) as:
x(k + 1) = (Π−1

n ⊗ Il)A(Πn ⊗ Il)x(k)+
+ (Π−1

n ⊗ Il)B(Πn ⊗ Im)u(k)
y(k) = (Π−1

n ⊗ Ir)C(Πn ⊗ Il)x(k)+
+ (Π−1

n ⊗ Ir)D(Πn ⊗ Im)u(k)
If we perform the state transformation: x̃(k) = (Πn ⊗
Il)x(k), then the system becomes:

x̃(k + 1) = Ax̃(k) + B (Πn ⊗ Im)u(k)︸ ︷︷ ︸
ũ(k)

(Πn ⊗ Ir)y(k)︸ ︷︷ ︸
ỹ(k)

= Cx̃(k) +D (Πn ⊗ Im)u(k)︸ ︷︷ ︸
ũ(k)

So we see that the dynamic equations for the input/output
pair ũ(k) and ỹ(k) are the same as for u(k) and y(k). So if
y(k) is a valid output for u(k), then ỹ(k) is a valid output
for ũ(k). 2

The property shown in this Lemma 12 is of fundamental
importance, because it makes it possible to recognize a

system as circulant a priori, from physical insight, without
knowing its dynamic equations. If a system possesses
certain symmetries such that it is possible to know that a
shift in the input signals will generate a shift in the output
signals, then it is possible to assume a circulant structure
in the identification process. This circulant structure can
be exploited to derive a specific subspace identification
algorithm that assumes such structure. The following
Theorem is key to the development of such an algorithm.
Theorem 13. (Decomposition property). A circulant sys-
tem of order nl as described in Definition 11 is equivalent
to n independent systems of order l in the complex domain.
Each of these subsystem has only m inputs and r outputs.

Proof. According to Corollary 9, it holds that:

A = (Fn ⊗ Il)HA(Fn ⊗ Il)
B = (Fn ⊗ Il)HB(Fn ⊗ Im)
C = (Fn ⊗ Ir)HC(Fn ⊗ Il)
D = (Fn ⊗ Ir)HD(Fn ⊗ Im)

(2)

with A ∈ DC
n,l,l, B ∈ DC

n,l,m, C ∈ DC
n,r,l, D ∈ DC

n,r,m. So
we can rewrite (1) as:

x(k + 1) = (Fn ⊗ Il)HA(Fn ⊗ Il)x(k)+
+ (Fn ⊗ Il)HB(Fn ⊗ Im)u(k)

y(k) = (Fn ⊗ Ir)HC(Fn ⊗ Il)x(k)+
+ (Fn ⊗ Ir)HD(Fn ⊗ Im)u(k)

⇔{
(Fn ⊗ Il)x(k + 1)=A(Fn ⊗ Il)x(k)+B(Fn ⊗ Im)u(k)
(Fn ⊗ Ir)y(k) = C(Fn ⊗ Il)x(k) + D(Fn ⊗ Im)u(k)

If we apply the following invertible transformations for
state, input and output:

x̂(k) = (Fn ⊗ Il)x(k)
û(k) = (Fn ⊗ Im)u(k)
ŷ(k) = (Fn ⊗ Ir)y(k)

(3)

then the system turns into:{
x̂(k + 1) = Ax̂(k) + Bû(k)
ŷ(k) = Cx̂(k) + Dû(k) (4)

All the matrices involved in this system are block diagonal,
so this system is equivalent to the following n independent
lth order subsystems (of complex variables), each of them
with m inputs and r outputs:{

x̂i(k + 1) = Aix̂i(k) + Biûi(k)
ŷi(k) = Cix̂i(k) + Diûi(k) for i = 1, . . . , n (5)

where Ai, Bi, Ci and Di are respectively the blocks in
the diagonal of A, B, C and D, and x̂i(k), ûi(k) and
ŷi(k) are the blocks of the column vectors x̂(k), û(k) and
ŷ(k); Ai ∈ Cl×l, Bi ∈ Cl×m, Ci ∈ Cr×l, Di ∈ Cr×m,
x̂i(k) ∈ Cl×1, ûi(k) ∈ Cm×1 and ŷi(k) ∈ Cr×1. 2

Notice that the subsystems into which the global system
is decomposed have nothing to do with the “physical”
subsystems, like the ones shown in Figure 1. The state-
space systems of complex variables found here can be seen
as a kind of modal decomposition of the global system;
in order to stress the difference between these and the
“physical” subsystems, we will call the former “modal”
subsystems.
Remark 14. The decomposition property (Theorem 13)
can be interpreted under the formalism of systems over
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spatial groups, as in Bamieh et al. [2002]. In this perspec-
tive, the circulant dynamic system is an operator with
spatial coordinates ranging over Zn (the finite group of
integers modulo n) that has the property of “spatial invari-
ance” (Lemma 12). A Fourier transform of the coordinates
into its dual group (Zn again in this case) is then able to
block-diagonalize the system.

It is important also to point out that not all the n modal
subsystems of (5) are independent; actually, as a direct
consequence of Corollary 10, the systems of index n+2− i
are the complex conjugate version of the systems of index
i, for i = {2, . . . , n}. So there are only n/2+1 independent
systems if n is even and (n + 1)/2 independent systems if
n is odd.
Corollary 15. (Properties of decomposition). With respect
to (5), let Pi indicate any among the following: Ai, Bi, Ci,
Di, x̂i(k), ûi(k) and ŷi(k). It holds that:

P1 is real
Pn+2−i = P̄i for i = {2, . . . , n}

3. IDENTIFICATION OF CIRCULANT SYSTEMS

3.1 Motivation and rationale

As a consequence of Lemma 12, we have seen that there
exist categories of systems which can be identified as
circulant just from physical insight, as a result of the
invariance of their input and output pairs to shifts. As an
example, consider again the system shown in Figure 1: the
global system is made of four smaller identical subsystems,
each with its input and output, connected in a circular way.
The interconnections between neighboring systems are all
the same, and actually it is impossible to distinguish one
system from the other.

In such a situation, putting Subsystem 1 in the place of
Subsystem 2, Subsystem 2 in the place of Subsystem 3,
Subsystem 3 in the place of Subsystem 4, and Subsystem 4
in the place of Subsystem 1 would still yield the same
global system. Then we know that the invariance to shift
of input/output pairs of Lemma 12 must hold, as it
impossible to know if we are looking at the original system
or its shifted (or “rotated”) version.

So there might be the necessity of identifying such a kind of
systems from data. Subspace methods (Van Overschee and
De Moor [1994], Verhaegen [1994]) are the most common
choice for MIMO systems, and they could be used in a
situation as this to identify a discrete-time state-space
model of the global system, from the set of all outputs
and all inputs. The problem of this approach is in the
fact that subspace methods return state-space matrices
up to an arbitrary similarity transformation, that disrupts
any structure the system may have. Moreover, we will also
demonstrate that it can be useful to force the circulant
structure to the model in order to improve the accuracy of
the estimation, using the knowledge of the symmetries of
the system as a priori information on the MIMO model.

We will shortly show that it is indeed possible to exploit
the structure of circulant systems for identification; in fact,
we will illustrate an identification algorithm that:

(1) allows using the prior knowledge of the system as
circulant;

(2) reduces the computational complexity of the problem;
(3) preserves the circulant structure, that is, the identi-

fied model is again a circulant system.

The algorithm is a direct consequence of the diagonaliza-
tion property of circulant systems (Theorem 13) and it
can be outlined as follows. As the system can be trans-
formed into n independent subsystems, and as for each
of these subsystem we can find a priori which are the
inputs and outputs, then it is possible to identify each
of these modal subsystems separately from each other. To
this purpose, it is sufficient to transform the inputs and the
outputs as in (3), and use them with any method (subspace
identification, prediction error, etc., see Ljung [1987]) to
identify the state-space matrices of the modal systems;
the only additional care we will need to take is that we
should extend the method to models with complex values.
Actually not all the n subsystems have to be identified, but
only the independent ones, while the others are just the
complex conjugates as explained in Corollary 15. Then,
once these systems have been identified, the global model
can be retrieved with the use of (2). Corollary 9 will grant
that the global matrices obtained are block circulant, while
Corollary 10 will grant that such matrices have real values.

We said in the previous paragraph that any method can
be used for identifying the modal subsystems; actually,
subspace methods seem to be the best choice at this
point, as they are inherently fit to deal with state-space
models (instead of transfer functions) and they can nat-
urally be extended to the complex domain. The subspace
identification process is a “numerical recipe” that yields
four matrices as result of an input/output couple; all the
algebraic operations used in subspace identification (ma-
trix sum, matrix product, singular value decomposition or
QR factorization) can be extended to complex numbers.
Moreover, subspace methods will offer insight on the order
of the subsystems (l), making it possible to choose a good
value for it (although the different subsystems may yield
different results, it is necessary to choose the same order
l for all of them). For these reasons, in the sequel of
the paper we will use a subspace algorithm, specifically
the MOESP (Multi-variable Output-Error State sPace)
algorithm (Verhaegen [1994]). MOESP is fit for systems
with white measurement noise only, and in the examples
here we will restrict to them. But of course the idea
of the algorithm can be extended to more sophisticated
subspace methods that take into account different models
of noise, like PI-MOESP, PO-MOESP (Verhaegen and
Verdult [2007]) or N4SID (Van Overschee and De Moor
[1994]).

Now we are ready to write the algorithm explicitly.

3.2 The novel algorithm

Algorithm 16. (Circulant system identification). A set of
n input signals ui(k) ∈ Rm×1 and n output signals yi(k) ∈
Rm×1 is given, for i = {1, . . . , n} and k = {1, . . . , kmax}.
This set of data is associated with a dynamic system; we
know, thanks to considerations stemming from Lemma 12,
that this system has a circulant structure and that we can
use a circulant system model according to Definition 11 to
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describe it, where n, m and r are already known and l is
unknown.

Problem: identify an lnth order state-space circulant model
from input-output data.

The problem is solved in the following steps:

(1) Compute the Fourier matrix Fn of order n.
(2) Transform input and output signals, by computing:

û(k) = (Fn ⊗ Im)u(k)
ŷ(k) = (Fn ⊗ Ir)y(k)

(3) Verify that each signal û(k) is persistently exciting
(Verhaegen and Verdult [2007]) of at least order l.

(4) Use MOESP to identify the independent state-space
models of order l from each ûi/ŷi pair:{

x̂i(k + 1) = Âix̂i(k) + B̂iûi(k)
ŷi(k) = Ĉix̂i(k) + D̂iûi(k)

for i = 1, . . . , n

If n is even, then identify the systems for i =
{1, . . . , n/2}; if n is odd instead, identify the systems
for i = {1, . . . , (n + 1)/2}: the method will yield as
results the identified (complex) matrices Âi, B̂i, Ĉi

and D̂i. Then use Corollary 15 to get the matrices of
the other (dependent) systems:

Âi = Ân+2−i

B̂i = B̂n+2−i

Ĉi = Ĉn+2−i

D̂i = D̂n+2−i

for i=
{
{n/2 + 1, . . . , n} if n even
{(n + 1)/2, . . . , n} if n odd

(5) Construct the block diagonal matrices: Â, B̂, Ĉ and
D̂ putting the identified blocks together.

(6) Retrieve the global system matrices with the following
formulas:

Â = (Fn ⊗ Il)HÂ(Fn ⊗ Il)
B̂ = (Fn ⊗ Il)HB̂(Fn ⊗ Im)
Ĉ = (Fn ⊗ Ir)HĈ(Fn ⊗ Il)
D̂ = (Fn ⊗ Ir)HD̂(Fn ⊗ Im)

(6)

Â, B̂, Ĉ and D̂ are real and block circulant, thanks to
Corollaries 15, 9 and 10.

4. SOME SIMULATION RESULTS

4.1 Measurement noise

For demonstrating the use of the algorithm, a stable
circulant system of 12th order, with n = 4, l = 3, m = 1
and r = 1 was randomly generated. The four input signals
are made of 200 random samples each; white measurement
noise has been added to all the four outputs.

In the test, we generated 250 different input/output pairs,
and used them to identify the system. The algorithm
shown in this paper (from now on, we will call it “circulant
MOESP”) was used and compared to a standard MOESP
that assumes no structure at all for the system. In Figure 2
are shown the poles of the true system, together with the
poles identified with the two different methods in 50 of
the 250 runs; the poles identified with standard MOESP
are indicated by a cross, while those which were found
with the algorithm which assumes a circulant structure
are indicated by a circle. At a glance it is possible to see

that the circles are in general closer to the true poles if
compared to the crosses (Figure 3 shows a magnification
around one of the poles). Table 1 shows this observation
in a more rigorous way, by comparing the mean square of
the error in identifying each of the poles of the system.

Fig. 2. Poles of the identified model in a set of 50 different
experiments.

Fig. 3. Detail of Figure 2 around one of the poles.

Root mean square error
Pole standard MOESP circulant MOESP

−0.02486 0.04641 0.01958
0.13497± 0.17077j 0.06768 0.01879
0.27881± 0.21487j 0.08064 0.02038
0.38761± 0.26329j 0.02801 0.00877
0.60841± 0.20941j 0.00783 0.00394
0.65795± 0.04966j 0.02973 0.00870

0.68937 0.05027 0.01679

Table 1. Comparison of performances of the
two different methods in identifying the poles

with measurement noise.
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So this example suggests that if we have a system with
circulant structure, the novel method performs better than
standard MOESP.

4.2 Non perfectly circulant systems

Another test has been done adding “random perturbation”
to the A matrix as well. This causes the system to be
not perfectly circulant (that is most likely in real-life
situations), but it has been verified that the method is still
applicable; the idea is to show that small perturbations
in the circulant structure do not cause completely wrong
results. Again, we generated 250 different input/output
pairs (with measurement noise), and used them to identify
the system. For each pair, theAmatrix has been perturbed
with a different random matrix, each element of which was
smaller than 1/1000 in modulus. For small perturbations
such as these, there is still an advantage in the accuracy
of the method with respect to standard MOESP, as shown
in Figure 4 and in Table 2.

Fig. 4. Error in identifying one of the poles (the second in
Table 2) in 50 experiments with perturbations on the
A matrix.

Root mean square error
Pole (if no noise) standard MOESP circulant MOESP

−0.02486 0.05287 0.02033
0.13497± 0.17077j 0.06198 0.02002
0.27881± 0.21487j 0.07897 0.02169
0.38761± 0.26329j 0.02744 0.00926
0.60841± 0.20941j 0.00771 0.00426
0.65795± 0.04966j 0.02874 0.00922

0.68937 0.05199 0.01857

Table 2. Comparison of performances of the
different methods in identifying the poles, with
measurement noise and perturbations on A.

5. CONCLUSIONS

This paper has shown a new method for identifying a
certain class of large scale systems possessing the property
of circulant symmetry. This new method is based on a
special property of circulant systems that allows them

to be decomposed into a number of smaller “modal”
subsystems of smaller order, allowing the independent
identification of each one of them. The method can be
used as a complement to any identification algorithm, but
subspace methods are more appropriate, so in this paper
the MOESP algorithm has been used and tested.

A complete algorithm that makes use of MOESP to iden-
tify circulant systems was developed. This algorithm al-
lows maintaining the circulant structure in the final result,
while subspace methods in general generate outputs up to
an unpredictable similarity transformation. Moreover, the
method uses the a priori information on the symmetries
of the system to get better results, with a smaller compu-
tational effort.

The algorithm has been applied to an academic example,
and the tests have verified the better ability of the algo-
rithm in identifying circulant systems and the robustness
to small perturbations of the circulant structure.
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