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Abstract: Recently, pathfollowing algorithms for parametric optimization problems with
piecewise linear solution paths have been developed within the field of regularized regression.
This paper presents a generalization of these algorithms to a wider class of problems, namely a
class of parametric piecewise quadratic programs and related problems. By using pathfollowing
algorithms that exploit the piecewise linearity, the entire solution paths can be very efficiently
computed. Possible applications include design parameter selection for identification methods
such as Direct Weight Optimization.

Keywords: Parametric programming; convex optimization; multi-objective optimization;
piecewise quadratic; pathfollowing algorithm.

1. INTRODUCTION

In many applications, one encounters optimization prob-
lems involving a trade-off between two terms to optimize,
i.e., problems of the type

min
x∈P

L(x) + λJ(x) (1)

where λ is a design parameter controlling the trade-off, and
P is the feasible region. The problem (1) is a parametric
optimization problem [Guddat et al., 1990], or can also
be viewed as a special case of multi-objective optimization
[Boyd and Vandenberghe, 2004].

Examples of (single-)parametric optimization problems in
the form (1) can be found, e.g., in the field of regularized
regression. In this case, x should be interpreted as the
parameters to estimate, L(x) may be the ordinary least-
squares cost function, and J(x) represents an extra penalty
on the parameters (e.g., the 1-norm as in LASSO [Tibshi-
rani, 1996]). In Efron et al. [2004], the authors presented
a new estimation method, least angle regression (LARS),
and showed that the solutions to both LARS and LASSO
can be efficiently computed for all values of λ simultane-
ously. As pointed out in [Rosset and Zhu, 2004, 2007], the
key to these algorithms is that the solution paths (i.e.,
the optimal solutions x to the parametric optimization
problem as a function of λ) are piecewise linear as λ varies
from 0 to ∞. Similar results have recently also been shown
for the related nn-garrote method and grouped versions
of all these methods [Yuan and Lin, 2006]. In all these
cases, having a single-parametric optimization problem
allows for developing pathfollowing algorithms that exploit
the piecewise linearity to efficiently find and represent the
solution path.

Other related applications include support vector ma-
chines [Hastie et al., 2004], where the solution for differ-
ent regularization penalties can be computed using para-
metric programming; and nonlinear system identification
by Direct Weight Optimization [Roll et al., 2005], where

parametric programming can be used for selection of a
design parameter controlling the bias-variance trade-off
[Roll, 2007a].

This paper presents a generalization of the framework
of pathfollowing algorithms for piecewise linear solution
paths in [Efron et al., 2004, Rosset and Zhu, 2007, Yuan
and Lin, 2006], and extends the problem class to a broad
class of (single-)parametric piecewise quadratic programs
and related problems. It is shown that the solution paths
are piecewise linear, and a pathfollowing algorithm is
given. For the case of quadratic plus piecewise affine
cost functions, an algorithm with explicit expressions for
computation of the solution path is given.

Related work can also be found in the area of model
predictive control, where in recent years results in explicit
model predictive control has led to a growing interest
in multiparametric linear and quadratic programming. It
has been shown that the solutions to different classes of
problems are piecewise affine functions of the parameters
[see, e.g., Tøndel et al., 2003, Bemporad et al., 2002,
Borrelli, 2003]. However, it seems that piecewise quadratic
problems has only very recently begun to receive attention
[Mayne et al., 2007].

The paper is organized as follows: In the following two
sections, we will consider some specific classes of optimiza-
tion problems of the type (1), which will be shown to have
piecewise linear solution paths. Section 2 considers piece-
wise quadratic problems and describes a pathfollowing
algorithm. In Section 3, a class of quadratic plus piecewise
affine problems is considered, for which the directions of
the linear parts of the solution path can be computed
explicitly. Section 4 points out how the problem classes can
be extended, while Section 5 gives an illustrating example.
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2. PIECEWISE QUADRATIC PLUS PIECEWISE
AFFINE COST FUNCTION

First, we will consider a class of optimization problems in
the form (1) where J(x) is piecewise affine and L(x) is
a piecewise quadratic function. A general piecewise affine
convex function can be written as a maximum of a number
of affine functions [Boyd and Vandenberghe, 2004]:

J(x) = max
k

{cT
k x + dk} (2)

L(x) is supposed to be strictly convex and in the form

L(x) =
1

2
xT Qix + fT

i x + ri if x ∈ Xi (3)

where the matrices Qi = QT
i are positive definite, and the

regions Xi are polyhedral and defined by Xi = {x | H̃ix 4

q̃i}, i ∈ I (here 4 denotes componentwise inequalities).
Together, Xi form a partition of the x space 1 . Further-
more, we assume that for each λ ≥ 0, problem (1) has a
unique, finite optimal solution.

We can now show the following lemma.

Lemma 1. The problem

min
x

λ max
k

{cT
k x + dk} + L(x) (4)

subj. to Ax = b

Āx 4 b̄

with L(x) given by (3) has a piecewise linear solution path,
i.e., the optimal x ∈ R

n is a piecewise affine function of
λ ∈ [0,∞].

Proof: It is easy to see that the optimum of (4), which is
unique and finite for given λ according to the assumptions,
changes continuously with λ.

Now, we can partition the feasible set into a number of
relatively open polyhedra together with a number of points
(the corners of the polyhedra), denoted Pj (i.e., either
Pj = relint(Pj) or Pj is a single point; for the definition of
relative interior, see Boyd and Vandenberghe [2004]), such
that on Pj , the cost function of (1) equals

λ(cT
kj

x + dkj
) +

1

2
xT Qij

x + fT
ij

x + rij

Let the affine hull of Pj [Boyd and Vandenberghe, 2004]
be described by

aff(Pj) = {x | Ãjx = b̃j}

where Ãj is chosen such that it has full row rank.

Assume that the solution to (4) for a given λ lies in Pj .
Then, since this solution is either in the relative interior
of Pj or the only point of Pj , it is also the solution to

min
x

λ(cT
kj

x + dkj
) +

1

2
xT Qij

x + fT
ij

x + rij
(5)

subj. to Ãjx = b̃j

But the solution to this problem can be computed as

x = Q−1
ij

((
ÃT

j (ÃjQ
−1
ij

ÃT
j )−1ÃjQ

−1
ij

− I
)
(fij

+ ckj
λ) (6)

+ ÃT
j (ÃjQ

−1
ij

ÃT
j )−1b̃j

)

(see Roll [2007b]). Here, x is linear in λ. This means that
the solution to (4) must consist of a number of such linear

1 However, for simplicity we let Xi be closed sets, which means that

they will intersect at the boundaries.

pieces, one piece for every Pj that the solution path passes
through. Hence, the solution path is piecewise linear. 2

Remark 2. The strict convexity condition for L(x) can
be relaxed. It is sufficient that L(x) is strictly convex in
a neighborhood of each point on the solution path, and
convex elsewhere.

Having shown Lemma 1, let us try to derive an algorithm
that computes the entire solution path. For simplicity,
we assume that A has full row rank. We can rewrite the
problem by introducing a slack variable s according to

min
x,s

λs + L(x) (7)

subj. to s ≥ cT
k x + dk

Ax = b

Āx 4 b̄

The Lagrangian function of (7) becomes

L(s, x;µ, µĀ, µA) = λs + L(x) (8)

−

m∑

k=1

µk(s − cT
k x − dk) − µĀT

(b̄ − Āx) − µAT
(b − Ax)

where µ, µĀ and µA are Lagrangian multipliers for the
different constraints of (7).

Using a version of the Karush-Kuhn-Tucker (KKT) condi-
tions [Rockafellar, 1970, Cor. 28.3.1] we can see that (x, s)
is the optimal solution to (7) if and only if the following
conditions are satisfied for some subgradient ν of L(x):

ν +

m∑

k=1

µkck + ĀT µĀ + AT µA = 0 (9a)

λ −

m∑

k=1

µk = 0 (9b)

s ≥ cT
k x + dk (9c)

Āx 4 b̄ (9d)

Ax = b (9e)

µk(s − cT
k x − dk) = 0 (9f)

µĀ
j (b̄j − Ājx) = 0 (9g)

µk ≥ 0, µĀ
< 0 (9h)

The subgradient ν can be written as a convex combination
of linear expressions:

ν =
∑

i∈Ia

αi(Qix + fi), where Ia = {i |x ∈ Xi}, (10)

and the coefficients αi satisfy
∑

i∈Ia

αi = 1, αi ≥ 0.

The KKT conditions have a solution that is unique in
(x, s), but not necessarily in (µ, µĀ, µA). Hence, we should
keep the number of active constraints at a minimum, to
ensure that we get a unique solution.

Denote the different sets of active constraints by Ka (for

µk) and J a (for µĀ
j ), and let us also introduce the following

notation:

Ka = {k1, k2, . . . , knK} J a = {j1, j2, . . . , jnJ }

µKa =
(
µk1

. . . µk
nK

)T
µĀ
J a =

(

µĀ
j1 . . . µĀ

j
nJ

)T

CKa =
(
ck1

. . . ck
nK

)T
ĀJ a =

(

ĀT
j1 . . . ĀT

j
nJ

)T
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dKa =
(
dk1

. . . dk
nK

)T
b̄J a =

(
b̄j1 . . . b̄j

nJ

)T

Here, Āj denotes the jth row of Ā, while µĀ
j and b̄j denote

the jth element of µĀ and b̄, respectively. If we combine
(9a), (9b), (9f), (9g) and (9e), to obtain the solution we
then need to solve








∑

i∈Ia

αiQi 0 CT

Ka ĀT

Ja AT

0 0 1
T

nK 0 0

CKa 1
nK 0 0 0

ĀJa 0 0 0 0

A 0 0 0 0
















x
−s
µKa

µĀ
J a

µA








=









−
∑

i∈Ia

αifi

λ

−dKa

b̄Ja

b









(11)
If the solution for the current λ is in the interior of a Xi

region, then the α values are all zero except for αi = 1,
and the system of equations in the remaining unknowns
is linear. Furthermore, for given α it follows from [Roll,
2007b, Lemma 2] that if





CKa 1nK

ĀJ a 0
A 0



 (12)

has full row rank, then the solution to (11) is unique.

If x instead belongs to an intersection between a number
of regions

⋂

i∈Ia Xi, the α values are in general unknown.
Then (11) is not a system of linear equations, but as we will
see, it can still be handled using mostly linear techniques.
Let

HIax = qIa (13)

be a minimal number of constraints that restrict x to
aff

(⋂

i∈Ia Xi

)
(taking into account also the last three

block rows of (11)). What we need to find is a solution
to the combined problem (11) and (13).

Extend HIa to a square, non-singular matrix according to
(

HIa

H⊥
Ia

)

∈ R
n×n, HIaH⊥

Ia

T
= 0

Given a particular solution x∗ to (13), the general solution
can be written as

x = x∗ + H⊥
Ia

T
β

where β is arbitrary. Inserting this into the first block row
of (11) and multiplying from left by H⊥

Ia gives
∑

i∈Ia

αiH
⊥
Ia

(

Qi(x
∗ + H⊥

Ia

T
β) + fi

)

(14)

+ H⊥
IaCT

KaµKa + H⊥
IaĀT

J aµĀ
J a + H⊥

IaAT µA = 0

Now, since L(x) is continuous, the gradients of all the
quadratic functions with indices in Ia have the same
component along the common boundary of the regions Xi,
i ∈ Ia. Hence, the first sum of (14) is independent of α,
and we can choose any index l ∈ Ia and replace the sum
according to

∑

i∈Ia

αiH
⊥
Ia

(

Qi(x
∗ + H⊥

Ia

T
β) + fi

)

= H⊥
Ia

(

Ql(x
∗ + H⊥

Ia

T
β) + fl

)

Hence, we can solve









H⊥
IaQlH

⊥
Ia

T
0 H⊥

IaCT

Ka H⊥
Ia ĀT

Ja H⊥
IaAT

0 0 1
T

nK 0 0

CKaH⊥
Ia

T
1

nK 0 0 0

ĀJaH⊥
Ia

T
0 0 0 0

AH⊥
Ia

T
0 0 0 0









︸ ︷︷ ︸

Γ(Ia,J a,Ka)








β
−s
µKa

µĀ
J a

µA








︸ ︷︷ ︸

w(Ia,J a,Ka)

=








−H⊥
Ia(Qlx

∗ + fl)
λ

−dKa

b̄J a

b








(15)

which, due to the minimality of (13), is still uniquely
solvable. The solution can then be inserted into the first
block row of (11) to solve for α.

To compute what happens for a small change in λ, we solve

Γ(Ia,J a,Ka)
∂w(Ia,J a,Ka)

∂λ
=








0
1
0
0
0








(16)

To start the algorithm, we first have to compute the
optimal solution for λ = 0 (let us denote this solution
by x0, and the solution for any given λ by xλ). This is
an ordinary convex optimization problem. After this, we
select a maximal subset of the constraints that are active
at x0, such that (12) has full row rank. (However, note
that in Ka, it is sufficient to include only one index k to
start with.)

The algorithm can now be described as follows:

Algorithm 1. Given: A parametric optimization problem
of the type (4).

(1) Set λ = 0.
(2) Compute the solution x0 to (4).
(3) Let S = {(λ, xλ)} = {(0, x0)}.
(4) Let Ka = {k} for some k in arg maxk{c

T
k xλ+dk}, and

let J a, Ia be maximal subsets of indices for which
corresponding constraints are active at x0, such that
(12) has full row rank. Compute HIa and H⊥

Ia . (If Ia

has only one member, HIa will be empty, and we can
let H⊥

Ia = I.)

(5) Compute (15) to get s, µKa , µĀ
J a , and µA.

(6) Compute the directions given by (16).
(7) Find the minimal δλ ≥ 0 such that one of the

following conditions are satisfied:
(a) s + ∂s

∂λδλ = cT
k (xλ + ∂x

∂λδλ) + dk and ∂s
∂λ < cT

k
∂x
∂λ

for some k 6∈ Ka. Then move the corresponding
k to Ka.

(b) µk + ∂µk

∂λ δλ = 0 and ∂µk

∂λ < 0 for some k ∈ Ka.
Then remove the corresponding k from Ka.

(c) Āj(xλ + ∂x
∂λδλ) = b̄j and Āj

∂x
∂λ > 0 for some

j 6∈ J a. Then move the corresponding j to J a.

(d) µĀ
j +

∂µĀ
j

∂λ δλ = 0 and
∂µĀ

j

∂λ < 0 for some j ∈ J a.
Then remove the corresponding j from J a.

(e) xλ+ ∂x
∂λδλ ∈ Xl for some l 6∈ Ia, and xλ+ ∂x

∂λ (δλ+
ε) 6∈ Xi for some ε > 0 and i ∈ Ia. Then include
l in Ia.

(f) There would not be a subgradient ν satisfying
(10) (with x replaced by xλ + ∂x

∂λδλ) if increasing
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δλ further. Then remove one i with corresponding
αi = 0 from Ia.

Add δλ to λ, update xλ, s, µKa , µĀ
J a , and µA, and

recompute HIa and H⊥
Ia . If there is no δλ ≥ 0 for

which the conditions are satisfied, set λ = ∞.
(8) Add the new pair (λ, xλ) to S; S := {S, (λ, xλ)}.
(9) If λ = ∞, stop. Otherwise, go to step 6.

When the algorithm has finished, S will contain the knots
of the piecewise linear solution path, and the solution to
problem (4) for any arbitrary λ can be obtained by linear
interpolation between two neighboring knots.

Note that only linear techniques are needed to find the
solution path, except for step 7f, where αi may be a
nonlinear function of λ. This step can be handled by simple
line search. It can also be shown that all the changes of
step 7 will lead to full row rank of (12).

To handle cases where xλ → ∞ when λ → ∞, we only
need a small modification of the algorithm. When λ is set
to ∞, we should store ∂x

∂λ instead of x∞. This allows for
finding the solutions xλ by extrapolation if λ is large.

3. QUADRATIC PLUS PIECEWISE AFFINE COST
FUNCTION

Now let us consider a class of optimization problems where
simple explicit expressions can be given for the directions
of the linear parts of the solution paths. The problems
considered will have a positive definite quadratic L(x) and
a J(x) which is a sum of absolute values of affine functions.
We will also allow linear equality constraints. In other
words, the problems we will consider can be written as

min
z

λ

m∑

k=1

|hT
k z + gk| +

1

2
zT Qz + pT z (17)

subj. to Az = b

where Q = QT is positive definite. Provided that the
problem is feasible, we can use the constraints to eliminate
variables, to get an equivalent problem in the form

min
z̃

λ

m∑

k=1

|h̃T
k z̃ + g̃k| +

1

2
z̃T Q̃z̃ + p̃T z̃ (18)

where the elements of z̃ are a subset of the elements in z.
We can now make the variable substitution x = Q̃1/2z̃ +
Q̃−1/2p̃. Hence, it turns out that it is sufficient to consider
problems of the type

min
x

λ

m∑

k=1

|cT
k x + dk| +

1

2
xT x (19)

in more detail. This is a special case of (4), and hence (19)
has a piecewise linear solution path.

We will now derive explicit expressions for the directions of
the linear parts of the solution path. For simplicity, we will
assume that the problem is non-degenerate in the sense
that for all x, the vectors of the set {ck|c

T
k x + dk = 0} are

linearly independent.

Introducing slack variables sk, we can rewrite (19) as

min
x,s

λ

m∑

k=1

sk +
1

2
xT x (20)

subj. to sk ≥ cT
k x + dk

sk ≥ −cT
k x − dk

The Lagrangian function of (20) becomes

L(s, x;µ+, µ−) = λ

m∑

k=1

sk +
1

2
xT x

−

m∑

k=1

µ+
k (sk − cT

k x − dk) −

m∑

k=1

µ−

k (sk + cT
k x + dk)

with µ+ and µ− being Lagrangian multipliers for the
different constraints of (20). The KKT conditions for the
problem are as follows:

x +

m∑

k=1

ckµ+
k −

m∑

k=1

ckµ−

k = 0 (21a)

λ − µ+
k − µ−

k = 0 (21b)

µ+
k (sk − cT

k x − dk) = 0 (21c)

µ−

k (sk + cT
k x + dk) = 0 (21d)

µ±

k ≥ 0 (21e)

Define the sets

K+ = {k : cT
k x + dk > 0}

K− = {k : cT
k x + dk < 0} (22)

K0 = {k : cT
k x + dk = 0}

For k ∈ K+, we get µ+
k = λ and µ−

k = 0 from (21b)

and (21d). Similarly, for k ∈ K− we obtain µ+
k = 0 and

µ−

k = λ. Using (21a) this implies that

x + λ
∑

k∈K+

ck − λ
∑

k∈K−

ck +
∑

k∈K0

ck(2µ+
k − λ) = 0 (23)

Since we would like to consider the linear parts of the
solution path, we can assume 0 < µ+

k < λ in the last sum.
To compute the effect of a small change in λ, we can use
(23) to get

∂x

∂λ
+

∑

k∈K+

ck −
∑

k∈K−

ck +
∑

k∈K0

ck(2
∂µ+

k

∂λ
− 1) = 0 (24)

If we introduce the notation K0 = {k1, . . . , kn0} and

C0 =
(
ck1

. . . ckn0

)T
, M+ =

(

µ+
k1

. . . µ+
kn0

)T

(25)

and similarly for C+ and C−, we can write (24) as

∂x

∂λ
+

(

C+T
1n+ − C−T

1n−

)

+C0T
(

2
∂M+

∂λ
− 1n0

)

= 0 (26)

At the same time, for j ∈ K0 it must hold that

cT
j

∂x

∂λ
= 0

Hence, multiplying (26) by C0 yields

C0
(

C+T
1n+ − C−T

1n−

)

+C0C0T
(

2
∂M+

∂λ
− 1n0

)

= 0 (27)
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Due to the non-degeneracy assumption, C0C0T
is invert-

ible, and we get

∂M+

∂λ
= (28)

1

2

(

C0C0T
)−1

C0
(

−C+T
1n+ + C−T

1n− + C0T
1n0

)

Inserting this into (26) results in

∂x

∂λ
=

(

I − C0T
(

C0C0T
)−1

C0

)

(29)

·
(

−C+T
1n+ + C−T

1n− + C0T
1n0

)

Note that since this expression is locally constant, the
solution x will locally change linearly as λ changes. Just as
for the problem class considered in Section 2, this means
that when computing the solution path, we only need to
store the solutions and values of λ for the knots of the
solution path, as the values in between can be obtained
afterwards by simple linear interpolation.

We can now give an algorithm for finding the solution path
to a problem in the form (19).

Algorithm 2. Given: A problem of the type (19).

(1) Set λ = 0, xλ = 0, µ+ = 0 and S = {(λ, xλ)}.
(2) Compute the sets K+,K− and K0, as defined in (22).
(3) Compute the directions given by (28) and (29).
(4) Find the minimal δλ ≥ 0 such that one of the

following conditions are satisfied:
(a) cT

k (xλ + ∂x
∂λδλ) + dk = 0 and cT ∂x

∂λ < 0 for some

k ∈ K+. Then move k from K+ to K0.
(b) cT

k (xλ + ∂x
∂λδλ) + dk = 0 and cT ∂x

∂λ > 0 for some

k ∈ K−. Then move k from K− to K0.

(c) µ+
k +

∂µ+

k

∂λ δλ = λ and
∂µ+

k

∂λ > 0 for some k ∈ K0.

Then move k from K0 to K+.

(d) µ+
k +

∂µ+

k

∂λ δλ = 0 and
∂µ+

k

∂λ < 0 for some k ∈ K0.

Then move k from K0 to K−.
Add δλ to λ. If there is no δλ ≥ 0 for which the
conditions are satisfied, set λ = ∞.

(5) Add the new pair (λ, xλ) to S; S := {S, (λ, xλ)}.
(6) If λ = ∞, stop. Otherwise, go to step 3.

4. RELATED SOLUTION PATHS FOR DIFFERENT
PROBLEMS

Apart for the classes described in the previous sections,
there are several other problem classes that have piecewise
linear solution paths. In fact, starting from one problem,
we can derive a family of problems having the same solu-
tion path. This can be seen from the following observation
(cf. Boyd and Vandenberghe [2004, Exercise 4.51]).

Observation 1. Suppose that L : D(L) ⊆ R
n → R(L) ⊆ R

and J : D(L) → R(J) ⊆ R are convex functions defined
on the same convex domain D(L), that

min
x

L(x) + λJ(x) (30)

has a well-defined solution path 2 for λ ∈ [0,∞], and that
f1 : R(L) → R and f2 : R(J) → R are strictly increasing
functions. Then the solution path of
2 By well-defined solution path we here mean that for all values of λ,

there is at least one minimum to the problem, and that all minimum

points are finite.

min
x

f1(L(x)) + ηf2(J(x)) (31)

for η ∈ [0,∞] is a subset of the solution path of (30).

Proof: See [Roll, 2007b]. 2

Remark 3. If f1(L(x)) and f2(J(x)) are convex, the so-
lution paths are identical. This can be seen by applying
Observation 1 to f1(L(x)), f2(J(x)), f−1

1 , and f−1
2 .

Remark 4. If we do not assume convexity of L(x) and
J(x), Observation 1 does not necessarily hold (for a
counterexample, see [Roll, 2007b]).

Where f1, f2, J and L are differentiable, the relationship
between η and λ can be established as follows (for simplic-
ity, we only consider the case of Remark 3): For an optimal
point xη on the solution path, for some λ it holds that

∇L(xη) + λ∇J(xη) = 0

= f ′
1(L(xη))∇L(xη) + ηf ′

2(J(xη))∇J(xη)

If ∇J(xη) 6= 0, this yields

η = λ
f ′
1(L(xη))

f ′
2(J(xη))

(32)

If ∇J(xη) = 0, then ∇L(xη) = 0, and xη will be a
minimum point for all λ and η.

5. EXAMPLE

To illustrate Algorithm 1, let us study a simple example.
Consider the parametric optimization problem

min
x

L(x) + λJ(x) (33a)

where

L(x) = (33b)






1

2
xT x +

(
0 2

)
x if

(
0 1

1 2

)

x ≤

(
0

0

)

1

2
xT x +

(
2 3

)
x if

(
−1 1

−1 −2

)

x ≤

(
0

0

)

1

4
xT

(
2 −1

−1 4

)

x +
(
0 5

)
x if

(
0 −1

1 −1

)

x ≤

(
0

0

)

and

J(x) = max{(−1 −1) x, (2 −1) x − 3,
1

2
(1 1) x −

9

2
}

(33c)
Applying Algorithm 1 to this problem will give a solution
path with knots given by Table 1. The solution path is also
plotted in Figure 1, where it is apparent that it moves from
the minimum of L(x) (x =

(
0
−2

)
, for λ = 0) to a minimum

of J(x) (x = ( 1
2 ), for λ ≥ 17

2 ). From Table 1, we can see
that we reach the boundary between the regions of two
different quadratic functions when λ = 2

3 , and when λ = 4.
To know for how long the solution should move along this
boundary, we must compute the α values of (10) using the
first block row of (11). The resulting expressions are shown
in Table 2. Note that, in this example, the expressions
become linear, which means that we can find the entire
solution path using only linear techniques.

6. CONCLUSIONS

This paper has extended the use of piecewise linear solu-
tion paths suggested for LARS and LASSO in [Efron et al.,
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λ xT

λ
s µT Ka Ia

0
(
0 −2

)
2

(
0 0 0

)
{1} {1}

2

3

(
2

3
−

4

3

)
2

3

(
2

3
0 0

)

{1} {1, 2}

7

3

(
1

3
−

2

3

)
1

3

(
7

3
0 0

)

{1} {2}

3
(
1 0

)
−1

(
3 0 0

)
{1, 2} {2}

4
(
1 1

)
−2

(
11

3

1

3
0

)

{1, 2} {2, 3}

13

2

(
1 1

)
−2

(
9

2
2 0

)

{1, 2} {3}

17

2

(
1 2

)
−3

(
17

3

17

6
0

)

{1, 2, 3} {3}

∞
(
1 2

)
−3

(

∞
17

6
∞

)

{1, 2, 3} {3}

Table 1. Intermediate results of Algorithm 1
for problem (33).

x
1

x
2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 1. Solution path (thick line) for problem (33) of
Section 5, together with contour plots of L(x) (gray)
and J(x) (black).

λ αT

2

3
+ δλ

(

1 −
3

5
δλ,

3

5
δλ, 0

)

4 + δλ

(

0, 1 −
2

5
δλ,

2

5
δλ

)

Table 2. Checking the α values.

2004] to a more general setting of piecewise quadratic
functions. The benefit of exploiting the piecewise linear so-
lution paths is that we can efficiently compute all solutions
to a parametric optimization problem, which is important
in many applications, including LARS and LASSO [Efron
et al., 2004] and variants using Huber norm [Rosset and
Zhu, 2007], nn-garrote [Yuan and Lin, 2006], regularization
in support vector machines [Hastie et al., 2004], and design
parameter selection in Direct Weight Optimization [Roll,
2007a].

A topic for further studies is to enhance the computational
complexity of Algorithms 1 and 2 by taking advantage of
the specific problem structures. For instance, to further
increase the efficiency of Algorithm 2, one could consider
to compute the expressions (28) and (29) recursively, sim-
ilarly to what is done in, for instance, the RLS algorithm.
Also numerical issues should be studied in more detail.

Furthermore, it would be interesting to compute the so-
lutions in the other direction, i.e., for λ starting at ∞
and decreasing to 0. These could all be topics for further
research.
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